RATIONAL ROOTS
DONU ARAPURA

Let \(f(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_0 \) be a polynomial with integer coefficients. A number \(r \) such that \(f(r) = 0 \) is called a root. We'll mainly be interested in rational roots. In this case we have:

Proposition 1. (The rational root test) Any rational solution of \(f(x) = 0 \) is automatically an integer.

Proof. Let \(r = \frac{b}{c} \) be root where \(b \) and \(c \) are integers with \(c > 0 \) and \(\gcd(b, c) = 1 \).

Suppose that \(r \) is not an integer, then \(c \neq 2 \). Multiplying \(f(r) \) by \(c^n \) yields:

\[
b^n + a_{n-1}b^{n-1}c + \ldots + a_0c^n = 0.
\]

After isolating \(b^n \) on one side of the equation, we see that \(c \) divides it. This implies that any prime factor say \(p \) of \(c \) divides \(b^n \). Since \(p \) is prime, it must actually divide \(b \). Therefore \(p \) is common factor of \(b \) and \(c \) contrary to our assumptions. So \(r \) must be an integer.

We consider some methods to determine what the integers roots are, or if such roots exist?

Trial and Error with bounds

The idea is simply to substitute various integers \(0, \pm 1, \ldots \) into \(f(x) \) until we find a root. If we find a root say \(r \), then divide \(f(x) \) by \((x - r) \) and repeat. We need to be able to decide when to stop. Here's a simple test:

Proposition 2. Let \(R \) be the maximum of \(\frac{|a_{n-1}|}{n}, \frac{|a_{n-2}|}{n^{1/2}}, \frac{|a_{n-3}|}{n^{1/3}}, \ldots \). The any real (e.g. integer) root \(r \) must satisfy \(-R \leq r \leq R \).

Proof. Suppose \(|r| > R \), then

\[
\frac{|a_{n-1}|}{r} < \frac{|a_{n-1}|}{R} \leq \frac{1}{n}
\]

because \(R > |a_{n-1}|n \). Similarly,

\[
\frac{|a_{n-2}|}{r^2} < \frac{|a_{n-1}|}{R^2} \leq \frac{1}{n}
\]

and so on. Therefore

\[
\frac{|a_{n-1}|}{r} + \frac{|a_{n-2}|}{r^2} + \ldots \leq \frac{|a_{n-1}|}{r} + \frac{|a_{n-2}|}{r^2} + \ldots < \frac{1}{n} + \frac{1}{n} + \ldots = 1.
\]

Consequently

\[
\frac{f(r)}{r^n} = 1 + \frac{a_{n-1}}{r} + \frac{a_{n-2}}{r^2} + \ldots > 0.
\]

So \(r \) cannot be a root. \(\square \)
Example 1. Let \(f(x) = x^3 + 4x + 15 \). Then \(R \) is the max. of 0, \(\sqrt{12} \) and (45)\(^{1/3} \) which is less than 4. Checking that \(f(x) \neq 0 \) for \(x = 0, \pm 1, \pm 2, \pm 3 \) (the work can be cut in half by observing that \(f(x) > 0 \) when \(x > 0 \)) shows that \(f \) has no rational roots.

Congruences

Let \(n \) be an integer greater than 1. Given integers \(x \) and \(y \), we say that \(x \) is congruent to \(y \) modulo \(n \) or

\[
x \equiv y \pmod{n}
\]

when \(x - y \) is divisible by \(n \).

Theorem 1. The following properties hold.

1. \(x \equiv x \pmod{n} \).
2. If \(x \equiv y \pmod{n} \) then \(y \equiv x \pmod{n} \).
3. If \(x \equiv y \pmod{n} \) and \(y \equiv z \pmod{n} \) then \(x \equiv z \pmod{n} \).
4. If \(x \equiv y \pmod{n} \) and \(x' \equiv y' \pmod{n} \), then \(x + x' \equiv y + y' \pmod{n} \) and \(xx' \equiv yy' \pmod{n} \).

Proof. We’ll prove only a couple of lines. The rest are left as an exercise.

3. If \(x \equiv y \pmod{n} \) and \(y \equiv z \pmod{n} \) then \(n \) divides \((x - y) \) and \((y - z) \). Therefore \(n \) divides \((x - z) = (x - y) + (y - z) \), so \(x \equiv z \pmod{n} \).

5. If \(x \equiv y \pmod{n} \) and \(x' \equiv y' \pmod{n} \), then \((x - y) = na \) and \((x' - y') = na' \). So \(xx' - yy' = (na + y)(na' + y') - yy' = n(naa' + ay' + a'y) \) is divisible by \(n \).

Given an integer \(x \), let \(\bar{x} \) denote the remainder of \(x \) after dividing by \(n \) (as described in the division algorithm). This is the unique integer between 0 and \(n - 1 \) such that \(x \equiv \bar{x} \pmod{n} \). Let

\[
\mathbb{Z}/n\mathbb{Z} = \{0, 1, \ldots, n - 1\}
\]

The rule for addition and multiplication are

\[
x + y = \bar{x} + \bar{y}
\]

and

\[
xy = \bar{x}\bar{y}
\]

(don’t confuse these with ordinary arithmetic). For example, \(3 \cdot 5 = 1 \) in \(\mathbb{Z}/7\mathbb{Z} \).

With these operations \(\mathbb{Z}/n\mathbb{Z} \) becomes a commutative ring. Given a polynomial \(f(x) = x^n + a_n x^{n-1} + \ldots + a_0 \), let \(\bar{f}(x) = x^n + \bar{a}_n x^{n-1} + \ldots + \bar{a}_0 \). This is a polynomial with coefficients \(\mathbb{Z}/n\mathbb{Z} \) (in particular, we evaluate this using the rules of arithmetic in this ring). Now comes the main point.

Lemma 1. Let \(r \) be an integer root of \(f(x) \), then \(\bar{r} \) is root of \(\bar{f}(x) \) in \(\mathbb{Z}/n\mathbb{Z} \).

Proof. We have \(\bar{r}^2 = \bar{r}\bar{r} = \bar{r}^2 \) and \(\bar{r}^3 = \bar{r}\bar{r}\bar{r} = \bar{r}^3 \) and so on. Therefore

\[
\bar{f}(r) = r^n + a_n r^{n-1} + \ldots + a_0 = r^n + \bar{a}_n \bar{r}^{n-1} + \ldots + \bar{a}_0 = \bar{f}(\bar{r})
\]

Therefore \(\bar{f}(\bar{r}) = 0 = 0 \) if \(r \) is a root.

Example 2. Let \(f(x) = x^4 + 3210x^3 + 3001 \). Choose \(n = 3 \). Then \(\bar{f} = x^4 + 1 \). In \(\mathbb{Z}/3\mathbb{Z} \), one gets \(\bar{f}(0) = 1 \), \(\bar{f}(1) = 2 \), \(\bar{f}(2) = 2 \) so \(f \) has no integer roots.
Exercises
1. Finish the proof of theorem 1.
2. Determine the rational roots of \(x^5 - 1\).
3. Show that \(f(x) = x^3 + 420x^2 + 423\) has no rational roots by working in \(\mathbb{Z}/7\mathbb{Z}\).