Math 385 Handout 4: Uncountable sets

Uncountable sets

One might get the feeling that one infinite set is as big as any other, but in fact:

Theorem. (Cantor) The set of real numbers \(\mathbb{R} \) is uncountable.

Before giving the proof, recall that a real number is an expression given by a (possibly infinite) decimal, e.g. \(\pi = 3.141592\ldots \). The notation is slightly ambiguous since

\[
1.0 = .9999\ldots
\]

We will break ties, by always insisting on the more complicated nonterminating decimal.

Proof It suffices to prove that \(\mathbb{R} \) has an uncountable subsets. We work with numbers in the interval \(I = \{ x \in \mathbb{R} \mid 0 \leq x \leq 1 \} \). We give a proof by contradiction. Suppose that \(I \) was countable, and let’s say that \(f : \mathbb{N} \rightarrow I \) is a one to one correspondence, say:

\[
\begin{align*}
f(0) &= .123\ldots \\
f(1) &= .456\ldots \\
f(2) &= .789\ldots \\
&\vdots
\end{align*}
\]

Then mark the numbers down the diagonal, and construct a new number \(x \in I \) whose \(n+1 \)th decimal is different from the \(n+1 \)decimal of \(f(n) \). Then we have found a number not in the image of \(f \), which contradicts the fact \(f \) is onto.

Cantor originally applied this to prove that not every real number is a solution of a polynomial equation with integer coefficients (contrary to earlier hopes). We expand on this idea as follows. Say that a number is describable if there is a name (such as 5, \(\pi \)), or formula \(1 + \sqrt{2}/3 \), or perhaps a computer program, for obtaining it. The point is that the description should involve a finite number of symbols in a fixed finite alphabet. Since the set of such descriptions is countable (by hw), we obtain.

Cor. There are real numbers which cannot be described (and in particular computed).

This is the starting point for Cantor’s theory of *transfinite* numbers. The cardinality of a countable set (denoted by the Hebrew letter \(\aleph_0 \)) is at the bottom. Then we have the cardinality of \(\mathbb{R} \) denoted by \(2^{\aleph_0} \), because there is a one to one correspondence \(\mathbb{R} \rightarrow P(\mathbb{N}) \). Taking the powerset again leads to a new transfinite number \(2^{2^{\aleph_0}} \). This process goes on forever thanks to:

Theorem. (Cantor) For any set \(X \), there does not exist a one to one correspondence from \(X \) to \(P(X) \). In particular, the power set \(P(\mathbb{N}) \) is uncountable.

Proof We prove this by contradiction. Suppose that \(f : X \rightarrow P(X) \) is a one to one correspondence. Define \(C = \{ x \mid x \notin f(x) \} \). Note that \(C \) is an element of \(P(X) \), it is given as \(f(y) \) for some \(y \). Either \(y \in C \) or \(y \notin C \). If \(y \in C \), then \(y \notin f(y) = C \) which is a contradiction. So \(y \notin C = f(y) \), this implies that \(y \in C \), which is again a contradiction. The only way to avoid a contradiction is for \(f \) not to exist.

Homework

1. Prove that the set of all irrational real numbers is uncountable.

2. Prove that the set of functions \(f : \mathbb{N} \rightarrow \mathbb{N} \) is uncountable.