Name:

There will be only 5 problems on the exam, each worth 10 points, some with items a), b), c), d), e), where each item is worth 2 points.

1. Determine the radii of convergence of the following series:
 a) \(\cot z = \sum_{n=0}^{\infty} a_n (z - 1)^n \),
 b) \(\sum_{n=0}^{\infty} \frac{z^n}{n!} \),
 c) \(\sum_{n=0}^{\infty} 2^n z^n \),
 d) \(\sum_{n=0}^{\infty} \frac{z^n}{n!} \),
 e) \(\cot z = \sum_{n=0}^{\infty} a_n (z - 1)^n \).

2. Find an analytic function in the complex plane, whose real part is
 \(e^{-x}(x \cos y + y \sin y) \),
 where \(z = x + iy \).

3. True or false: if \(f \) is an analytic function in a region \(D \), and \(|f'(z)| \leq 1 \) for all \(z \in D \), then \(|f(z_1) - f(z_2)| \leq |z_1 - z_2| \) for all \(z_1, z_2 \) in \(D \)? Prove it, if true, or give a counterexample, if false.

4. Suppose that \(f \) is meromorphic in the unit disc \(|z| < 1 \), and has only one simple pole \(z_0 \neq 0 \) there. Let \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) be the Taylor series of \(f \) at 0. Prove that
 \(z_0 = \lim_{n \to \infty} \frac{a_n}{a_{n+1}} \).

5. Find and classify all isolated singularities of the following functions in \(\mathbb{C} \).
 (Singularities at \(\infty \) should be considered too, if they are isolated. For poles, tell their multiplicities).
 \(\frac{1}{e^z - 1} - \frac{1}{\sin z}, \frac{\sin z}{z}, \frac{z}{1 - \cos z}, \sin \tan z \).
6. Evaluate the integral
\[\int_{|z|=15} \frac{z^3 dz}{z^5 - z + 1}. \]

7. Find all solutions of the equation
\[\sin z = 5i \]
and sketch them in the complex plane.

8. For functions \(f(z) = \sum_{n=0}^{\infty} a_n z^n \), analytic in the unit disc \(|z| < 1 \), prove
a) that \(f \) is even, if and only if \(a_n = 0 \) for all odd integers \(n \).
b) if \(f(x) \) is real for all \(x \in (-1,1) \), then \(f(z) = \overline{f(z)} \), for all \(z \) in the unit disc.

9. Suppose that \(f \) is an analytic function in the whole complex plane, which satisfies \(f(z + 1) \equiv f(z) \), and \(f(z + i) \equiv f(z) \). Prove that this \(f \) is constant.

10. Let \(u \) be a non-constant harmonic function in the whole complex plane. Prove that the set \(\{ z : u(z) = 0 \} \) is unbounded.

11. Which of the following interpolation problems are solvable for analytic functions in \(|z| < 2 \)? Here \(n = 1, 2, 3, \ldots \)
a) \(f(1/n) = (-1)^n \).
b) \(f(1/n) = (-1)^n / n \).
c) \(f(1/n) = (-1)^n n^{-2} \).
d) \(f(1/n) = n / (n + 1) \).

12. Prove that any two disjoint circles on the Riemann sphere can be mapped onto concentric circles by a fractional-linear transformation.