Proof that \(t \mapsto \exp(it) : \mathbb{R} \to \mathbb{T} \) is surjective

Another proof is in Ahlfors, p. 45, or Whittaker-Watson, vol. 1, Appendix. All other authors seem to rely on the facts about trigonometric functions “proved” in high school.

A topological group \(G \) is a set with a group structure and topology, so that the group operations are continuous. This means that the maps \(G \times G \to G, (x, y) \mapsto xy \) and \(G \to G, x \mapsto 1/x \) are continuous (first of them, with respect to product topology). Morphisms of topological groups are defined as continuous homomorphisms. Examples of topological groups are \((\mathbb{Z}, +)\) with discrete topology and \((\mathbb{R}, +), (\mathbb{C}, +), (\mathbb{C}^*, \cdot), \mathbb{T}\) with their natural topologies.

Proposition. If \(G \) is a topological group, and \(H \subset G \) a subgroup, which contains a neighborhood of unity, then \(H \) is open and closed, that is \(H \) is a connected component of \(G \).

Proof. Let \(U \) be this neighborhood of the unity. If \(x \in H \) then \(xU := \{xy : y \in U\} \) is a neighborhood of \(x \), which is contained in \(H \). So \(H \) is open. Now suppose that \(x \in \overline{H} \). Then \(xU \cap H \neq \emptyset \), and we choose an element \(y \in xU \cap H \). Then \(x = yz^{-1} \) for some \(z \in U \subset H \), thus \(x \in H \). This shows that \(H \) is closed. \(\square \)

In the second lecture we defined a morphism of topological groups \((\mathbb{R}, +) \to \mathbb{T}, \ t \mapsto \exp(it)\). If \(H \subset \mathbb{T} \) is the image of this morphism, then \(H \) is a topological subgroup of \(\mathbb{T} \). We are going to prove that \(H = \mathbb{T} \).

Lemma. There is a neighborhood \(U \) of \(1 \) in \(\mathbb{T} \), such that the map \(U \to \mathbb{R}, z \mapsto \Im z \), is a homeomorphism onto its image.

Proof. The equation of the unit circle in \(\mathbb{R}^2 \) is \(x^2 + y^2 = 1 \). For each \(|y| < 1/2 \) this equation, with respect to \(x \), has exactly one positive solution. Thus we can take \(U = \{z \in \mathbb{T} : \Re z > 0, |\Im z| < 1/2\} \). \(\square \)

Let \(V \) be the component of \(\exp^{-1}(U) \), which contains the origin. The map \(V \to \mathbb{R}, t \mapsto \Im \exp(it) = \sin t \) is differentiable with positive derivative at \(0 \). So there exists a neighborhood \(V' \) of \(0 \) in \(\mathbb{R} \), such that the restriction \(\sin : V' \to \mathbb{R} \) is a homeomorphism onto its image. It follows that \(t \mapsto \exp(it) : V' \to \mathbb{T} \) is a homeomorphism onto the image, thus the image \(U' \) is a neighborhood of \(1 \) in \(\mathbb{T} \).

We have seen, that the subgroup \(H \subset \mathbb{T} \) contains a neighborhood of the unity, namely \(U' \). Thus by the Proposition \(H = \mathbb{T} \), because \(\mathbb{T} \) is connected.