MA 301 Practice Questions for Test 3, Fall 2004

You should bring a calculator to the test to be able to do
problems such as Problem 10

(1) State the “official” definition of “\(\lim_{x \to a} f(x) = L \).”

(2) Prove, using well labeled diagrams, the following version of
Theorem 2 in the text. Be careful to bring in the role of the
Bounded Increasing Theorem and the decreasing nature of \(f \)
into your proof. (The proof is given at the end of this review
sheet.)

Theorem (2’). Suppose \(a_n > 0 \) for all \(n \) and \(f(x) \) is an
integrable, decreasing function on \([0, \infty)\) such that \(a_n = f(n) \)
for all \(n \in \mathbb{N} \). Then \(s = \sum_{n=1}^{\infty} a_n \) exists if

\[
\int_0^{\infty} f(x) \, dx < \infty
\]

(3) Prove, using well labeled diagrams, the following version of
Theorem 4 in the text. Be careful to bring in the role of the
decreasing nature of \(f \) into your proof. (The proof is given
at the end of this review sheet.)

Theorem (4’). Suppose \(a_n > 0 \) for all \(n \) and \(f(x) \) is an
integrable, decreasing function on \([0, \infty)\) such that \(a_n = f(n) \)
for all \(n \in \mathbb{N} \). Then

\[
s_n \geq \int_1^{n+1} f(x) \, dx
\]

(4) **Use the integral test** to prove that the following series
converges. Then write a sum that expresses \(s \) to within
\(\pm 10^{-5} \). **Hint:** To evaluate the integral, make the substitution \(u = x^4 + 5 \).

\[
s = \sum_{n=1}^{\infty} \frac{4n^3}{(n^4 + 5)^2}
\]

(5) Prove, using \(M \), that the following series diverges.

\[
\sum_{n=1}^{\infty} \frac{1}{n^{1/3}}
\]
(6) Classify each of the following series as either (a) conditionally convergent or (b) absolutely convergent or (c) divergent. Prove your answers.

(a) \[\sum_{1}^{\infty} \frac{(-1)^n(\sqrt{3n} + 2)}{n^3 + 5n + 5} \]

(b) \[\sum_{1}^{\infty} \frac{(-1)^n7^n}{(7.1)^n + n} \]

(c) \[\sum_{1}^{\infty} \frac{(-1)^nn^27^n}{8^n + n} \]

(d) \[\sum_{1}^{\infty} \frac{(-1)^nn^2}{\sqrt{n^3} + 3} \]

(e) \[\sum_{1}^{\infty} \frac{(-1)^n(3n + 1)}{\sqrt{n^5} + 3} \]

(7) Prove that the following series converges.

\[\sum_{1}^{\infty} \frac{n(\ln n)^2}{n^3 + 3} \]

(8) Let

\[s = \sum_{1}^{\infty} \frac{n^2 + \sqrt{\ln n + 1}}{n^4 + 3n + 7} \]

(a) Prove that this series converges.
(b) Write a sum which computes \(s \) to within \(\pm 10^{-3} \).

(9) Prove that \(Z = 1/(3\pi + 5) \) is irrational. You may assume that \(\pi \) is irrational. You MAY NOT use Proposition 1 from Chapter 9.

(10) Find

(a) an \textit{explicit} irrational number \(Z \) satisfying \(17/13 < Z < 18/13 \). You need not prove that \(Z \) is irrational.
(b) an \textit{explicit} rational number \(Z \) satisfying \(\pi < Z < 22/7 \).

(11) Find an explicit one-to-one correspondence between the sets \(A \) and \(B \) where:

(a) \(A = (-1, 3) \) and \(B = (0, 1) \).
(b) \(A \) is the set of even natural numbers and \(B \) is the set of odd natural numbers.
(c) A is the set of natural numbers which are multiples of 2 and B is the set of natural numbers which are multiples of 3.

Various Results from the Text

Theorem (2'). Suppose $a_n > 0$ for all n and $f(x)$ is an integrable, decreasing function on $[0, \infty)$ such that $a_n = f(n)$ for all $n \in \mathbb{N}$. Then $s = \sum_{1}^{\infty} a_n$ exists if $\int_{0}^{\infty} f(x) \, dx < \infty$.

Proof Each a_n is the length of a line segment drawn from the point $(n, 0)$ on the x-axis to the graph of $y = f(x)$ as in Figure 1.

![Figure 1. Theorems 2' and 4'](image)

The area of a rectangle of width one having this line segment as its right edge is a_n. (See Figure 2). This rectangle also lies entirely below the graph of $y = f(x)$ since this graph is decreasing. Since the left side of the first rectangle extends to $x = 0$,

\begin{equation}
(1) \quad s_n = a_1 + a_2 + \cdots + a_n \leq \int_{0}^{n} f(x) \, dx \leq \int_{0}^{\infty} f(x) \, dx.
\end{equation}

Finally, since the a_n are all positive, s_n is an increasing sequence. From the Bounded Increasing Theorem, $\lim s_n$ either exists or equals ∞. Formula (1) proves that the limit is not ∞. Hence the limit exists, proving the convergence of the sum. \qed

Theorem (4'). Suppose $a_n > 0$ for all n and $f(x)$ is an integrable, decreasing function on $[0, \infty)$ such that $a_n = f(n)$ for all $n \in \mathbb{N}$. Then

$$s_n \geq \int_{1}^{n+1} f(x) \, dx$$
Proof Each a_n is the length of a line segment drawn from the point $(n, 0)$ on the x-axis to the graph of $y = f(x)$ as in Figure 1. The area of a rectangle of width one having this line segment as its left edge is a_n. (See Figure 3). This rectangle also lies entirely above the graph of $y = f(x)$ since this graph is decreasing.

Since the right side of the nth rectangle extends to $x = n + 1$,

(2) \[s_n = a_1 + a_2 + \cdots + a_n \geq \int_1^{n+1} f(x) \, dx. \]

proving Theorem 4’.