Recall: Thm: For any m×n matrix \(A \), the non-zero rows of any echelon form \(R \) of \(A \) form a basis for the row space of \(A \).

Ex: We can use this to determine bases for subspaces. Find a basis for the subspace \(W \) of \(\mathbb{R}^5 \) spanned by

\[
\begin{align*}
Y_1 &= \begin{bmatrix} 3 \\ 2 \\ -1 \\ -5 \\ 1 \end{bmatrix}, \\
Y_2 &= \begin{bmatrix} 2 \\ -1 \\ 4 \\ -3 \\ 1 \end{bmatrix}, \\
Y_3 &= \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \\
Y_4 &= \begin{bmatrix} 5 \\ -3 \\ 11 \\ -3 \\ 0 \end{bmatrix}, \\
Y_5 &= \begin{bmatrix} -2 \\ -3 \\ -8 \\ 5 \\ 4 \end{bmatrix}
\end{align*}
\]

\[
A = \begin{bmatrix} 3 & 2 & -1 & -1 & -5 \\ 2 & -1 & 4 & -3 & 3 \\ 1 & -1 & 0 & 1 & 0 \\ -3 & 5 & -1 & 11 & 0 \\ -2 & 3 & -8 & 5 & 4 \end{bmatrix}
\]

Gaussian Elimination:

\[
\begin{bmatrix} 1 & 1 & -1 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 & -5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
\]

So

\[
Y_1 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}, \\
Y_2 = \begin{bmatrix} 0 \\ 1 \\ -2 \\ 1 \end{bmatrix}, \\
Y_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}
\]

is a basis for \(W \).

Theorem 2: (Rank Theorem) For any m×n matrix \(A \), the column space and row space have the same dimension, namely \(\text{rank}(A) \).

Proof: Let \(R \) be an echelon form of \(A \). By non-zero rows theorem, the non-zero rows of \(R \) form a basis for the row space of \(A \). By definition \(\text{rank}(A) \) is the number of non-zero rows of \(R \). So the row space has dimension equal to \(\text{rank}(A) \).

On the other hand, the pivot columns of \(A \) form a basis for the column space. Since there is one pivot in each non-zero row of \(R \), there are \(\text{rank}(A) \) pivot columns.

So the column space of \(A \) has dimension \(\text{rank}(A) \). QED

Theorem 3: For any m×n matrix \(A \),

\[
\text{rank}(A^t) = \text{rank}(A^t).
\]

Proof: The rows of \(A^t \) are the columns of \(A \).

So the row space of \(A^t \) is the column space of \(A \).
So \(\text{rank } A = \text{rank } A^T \) by Rank Theorem.

Example:
\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 7 \\
-1 & 0 & 4 & 2 & 1 \\
3 & 1 & & & -1 & \Pi
\end{bmatrix} = A
\]

\[
A^T = \begin{bmatrix}
1 & -1 & 3 & 7 \\
2 & 0 & 4 & 6 \\
3 & 1 & 2 & -1 \\
4 & 1 & 1 & \Pi
\end{bmatrix}
\]

The columns of \(A \) are linearly independent if and only if \(\text{rank } A = n \). The rows of \(A \) are linearly independent if and only if \(\text{rank } A = n \).

Theorem 4: Let \(A \) be an \(m \times n \) matrix.

The columns of \(A \) are linearly independent if and only if \(\text{rank } A = n \). The rows of \(A \) are linearly independent if and only if \(\text{rank } A = m \).

Theorem 5: Let \(A \) be an \(m \times n \) matrix.

The equation \(A X = B \) is solvable for every \(B \in \mathbb{R}^m \) if and only if \(\text{rank } A = m \).

Proof:
Recall \(A X = B \) is solvable \(\iff \) \(B \) lies in the column space of \(A \). So \(A X = B \) is solvable for all \(B \in \mathbb{R}^m \) \(\iff \) the column space of \(A \) is all of \(\mathbb{R}^m \). So if \(A X = B \) is solvable for all \(B \), then \(\text{rank } A = m \).

Conversely, if \(\text{rank } A = m \) then by the Rank Theorem, the column space of \(A \) is \(m \)-dimensional. So \(A \) has \(m \) linearly independent columns, which then must be a basis for \(\mathbb{R}^m \). So for every \(B \in \mathbb{R}^m \), \(B \) lies in the column space of \(A \), so \(A X = B \) is solvable.

Definition: For an \(m \times n \) matrix \(A \), the dimension of the null space is called the nullity of \(A \), denoted \(\text{null } A \) or \(\text{null } (A) \).
Theorem 6: (Rank and Nullity) For any $m \times n$ matrix A, $\text{rank } A + \text{null } A = n$.

Proof: The nullspace of A is the solution set to $A\mathbf{x} = \mathbf{0}$. The number of non-pivot columns is the number of free variables in this solution set. Therefore, $\text{null } A$ is this number of non-pivot columns. On the other hand, the pivot columns form a basis for the column space, and there are $\text{rank } A$ such columns (Rank Theorem). Every column is either a pivot or non-pivot column. So the number of all columns is the sum of the number of these two types, i.e. $n = \text{rank } A + \text{null } A$. \square

Theorem 7: Let A be an $m \times n$ matrix. The equation $A\mathbf{x} = \mathbf{B}$ has at most one solution if and only if $\text{rank } A = n$.

Proof: We proved there is at most one solution if and only if the nullspace of A is $\{\mathbf{0}\}$, so if and only if $\text{null } A = 0 \iff \text{rank } A = n$, by Rank and Nullity Theorem. \square