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FIBERING SUSPENSIONS
Daniel Henry Gottlieb*

{. Introduction. Let the term compact fibration denote a Hurewicz fibration
¥ A E P, B such that B and F are homotopy equivalent to finite connected CW
complexes. We are concerned with the following question: Under what circumstances
is # suspension, X, the total space of a “non trivial” compact fibration? (A trivial
fibration is one in which either F or B is contractible.)

This is a natural qﬁestion to ask, since the universal fibration for a connected Lie
group is a direct limit of compact fibrations whose total spaces are suspensions. The
same is true for finite H-spaces. Thus compact fibrations of suspensions play an
important role in topology and especially in the study of finite H-spaces.

Work on compact fibrations where ZX is a sphere was begun by A. Borel [4] and
FEckmann, Samelson, and G. W. Whitehead [7] as well as others. Finally, W. Browder
in [5] virtually solved the problem by showing that the fibre F is the homotopy type
of 8! or S3 or S/. Browder’s argument depended upon the fact that the fibre inclusion
¥ ;* S is inessential. This then implies that F is an H-space and then Browder used
the Bockstein Spectral Sequence to show that F is a sphere.

Browder’s theorem, in conjunction with the universal fibration examples, hints
that for a compact fibration F = ZX — B the fibre F should always be a finite H-space.
However in 8§2c we produce a compact fibration of a suspension whose fibre is a
Moore space and not an H-space. On the other hand we show that a mild condition on
the base (ﬁ*(QB;Q) # 0) implies that F must have many properties in common with
an H-space.

The main tool is a generalization of the Bott-Samelson theorem which states that
the Pontrajagin ring H,(02B;Q) contains a free tensor algeBra which is isomorphic to

H,(22ZX;Q). (See Theorem 3.) This quickly leads to results such as x(F) = 0.
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In §2, we give three different methods for constructing compact fibrations of
suspensions. The first two are closely related and are generalizations of the original
Hopf fibration sl 5 83 5 §2. The third method 'i;lvolves Moore spaces and gives rise
to the example mentioned above with the essential fibre inclusion. These families of
examples are the only ones known at tﬁis time.

In §3 we study the main tool of this paper, the generalized Wang exact sequence.
This leads to the Main Theorem which states that for almost all compact fibrations
F->xX 2, B, the homomorphism (£2p),: H,(2ZX;K) > H,(2B;K) is injective for
K a field of coefficients. A corollary of the proof is the Bott-Samelson theorem.

In §4 we use the main theorem to find numberous conditions implied by the
- existence of a compact fibration of a suspension. For example, in almost all cases,
f H,(QB) = H (QZX) ® H,(F) as groups with fields of coefficients.

We may ask the following question: Which compact CW complexes are “‘prime”?
That is, for which X is there no nontrivial compact fibration F—> X - B which
“factors” the total space. Browder, [4], shows that even dimensional spheres are
primes. In §4 we show that any compact simply connected X is prime if x(ZX)# 0
and H,(ZX;Z) has no torsion.
In §4 we study compact fibrations of the form XY - ZX - B and show that ZY
. must be an odd dimensional sphere. Also compact fibrations of the form F - ZX - S!
:xist only when ZX = S3, s7or s!5.
In §5 we consider the case of a compact fibration of a suspension F—l—>
£X -5 B where the map w: XX~ B is an evaluation map. By an evaluation map we
" mean a map which factors through the identity component of BB and the map from
BB given by evaluating at a base point. The Hopf fibration sl >s3-552isan
:xample of a compact fibration of a suspension whose projection is an evaluation map.
We will show that it is the only non-trivial example. This has the following immediate
sorollary which expresses the oppositness of suspensions and H-spaces: Any map from'
"1 suspension to a finite H-space cannot have a compact connected homotopy theoretic
ibre, uniess the fibre is contractible.
§2. Examples. There are three known classes of examples. The first two are

; :losely related and depend upon the fact that the join, X * Y, is homotopy equivalent
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to Z(XAY).
A. Suppose that G is an Hspace with multiplication p: G X G ~ G. The Hopf
¢onstruction m: G * G = ZG given by m({g,t,h)) = {t,u(g,h)) gives rise to.a fibration

i m
G—G*xG—2ZG

called the Hopf fibration, or the Sugawara fibration, for (G,u). (see [18], or Stasheff
{17], page 3, or Rutter [15].) For G homotopy equivalent to a connected finite CW
complex, .a coﬁpact fibration results.

B. Suppose that G E— B and G-~ E' - B’ are principal G-bundles. Then G
acts diagonally on E # E’ and we obtain a principal G bundle G~ E * E' - (E * E")/G.
If both the original bundles were compact fibrations the join construction usually
gives rise to a compact fibration. Note that if G is homotopy equivalent to a compact
connected CW complex, the universal bundle G- E; = Bg; is the direct limit of
¢compact fibrations of suspensions.

The third family of examples are made out of Moore spaces. A Moore space
M(G,n) is a connected complex such that }i(M(G,n);Z) =0 for i#n and
ﬁn(M(G,n);Z) = G. We will need the fact that Z(M(G,n)) = M(G,n+1).

' C. Now suppose that G and G’ are both finite abelian groups and the order of G
is relatively prime to the order of G'. Let n >1. Then M(G,n) and M(G',n) are
compact CW complexes and M(G e G',;n) is homotopy equivalent to M(G,n) X

M(G',n), which can readily be seen from the Kiinneth formula. Thus

Projection

M(G,n) - M(G,n) X M(G',n) M(G',n)

is a compact fibration of a suspension.

Note that examples A and B have the property that the fibre inclusions are
inessential, and that the fibres are Hspaces. Example C has an essential fibre inclusion
and a fibre which is not an H-space, in fact the Euler—Poincarevnumber of the fibre
equals 1, and the rétional homology groups of the base and fibre are trivial.

§3. The Wang exact sequence and the main theorem. The main tool of this
paper is the generalized Wang exact sequence for a fibration F —1> E L, ZXovera
suspe_nsion. A good account of this may be found in Spanier, [16, page 455]. We shall
recall it here.

Any fibration over a suspension is classified by its clutching map
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4 XX F>F.

The Wang exact sequence arises out of ?he following diagrarg
iy Jx

+ <> Hy(F) —— Hy(E) —— H(E,F) H;_y(F) =
» excision o~
H(CX X F,X X F) P
X1
H, (X X F)

We begin by observing a fact about clutching maps Qf principal fibrations. From
this and the Wang exact sequence we obtain the Main Theorem, and the
Bott-Samelson theorem.

We let m: 2B X QB— QB be loop multiplication and p: X~ QXX be the
adjoint of the identity map.

THEOREM 1. Given a principal fibration QB ~ E —~ ZX with classifying map
k: £X — B, the clutching map i: X X SuB > B is given by

A 1 Qk)X1 m
w X X QB L (QZX) X (2B) uﬁ (2B) X (2B) — QB.

PROOQOF. Consider the commutative diagram.

QX 2k QB SIB
P(2X) E P(JB)
X X B

Now p represents 9[1], the image of IEX under the homomorphism
3: [ZX,ZX] - [X,QZX].
Hence d[k] = [(£k)¢p]l. But a{k] is the homotopy class of the adjoint of the

clutching map ;f (see [121, Proposition 1.3, for example).
THEQOREM 2. (Bott-Samielson)Let X be connected. The Pontrajagin ring of

H(QZX,K) is isomorphic to a free tensor algebra with a unit, generated by a basis for
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HUAXK).

REMARK. The original proof used the Serre spectral sequence. Other proofs
have been published by Rutter [14] and Berstein [3].

Qur proof uses the generalized Wang exact sequence. Although this proof is

‘ published for the first time here, it was essentially known to M. Barrett and S. Gitler.

PROOF. Consider the path fibration QZX - P~ ZX. From the Wang exact

sequence and the fact that H,(P;K) is trivial, we easily see that
i Hy(XGK) ® Hy(QEXK) - H (QEXK)

j= un isomorphism. Since the clutching map ;z\ = m(pX1) by Theorem 1, we see that
#, is injective and hence ﬁ*(X;K) may be identified with its image under p, in
H(QX:K). Hence we may regard ﬁ* as m, restricted to ﬁ*(X;K) ® H, (RZXK),
which is contained in H, (QZX;K) ® H,(Q2XX;K). Now the fact that /:z\*: ﬁ*(X;K) (<
H(2ZXK) > H (QZXK) is an isomorphism is equivalent to the fact that
HLS2ZXK) is a free tensor algebra with unit on the generators of ﬁ(X;K) under the
ring multiplication given by m,. Note that in proving this isomorphism it is necessary
to assume that X is connected, so that ﬁO(X;K) =0.

THEOREM 3. (The Main Theorem). Let X and F be path connected. Suppose
thut

p

FY—3sx—253B

is a fibration and suppose that H{F;K) # 0 for only a finite number of i’s. Suppose
that H{QB;K) # 0 for infinitely many i’s, then (2p); H QX X;K)~> H (QB;K) is
infective.

PROOF. From the usual sequence we obtain the principal fibration

g .
QB——>F——3X
with clutching map
N X1
pxx o —22L, onx x B EXL op v o™ . gB

as in Theorem 1.

Consider the Wang exact sequence as given above. This is, in our notation here,
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*

> H,y(2B) —> H,(F) 25— H,(CX,X) ® H,(2B)

1003 X 1)

H*'_I(QB) —_ s e
where the coefficients of H, are understood to be a field K. If i is large enough then
H;(F) = H;_{(F) =0 and
ﬁ*o(a X1): Zj+k=iHj(CX,X) ® Hy(2B) =, H;_1(2B).

Thus for some nonzero b € Hy(§2B) for large enough i, we se¢-that ﬂ*(x ® b) # 0 for
all nonzero x € ﬁ*(X). Hence m (((£2p),0(p,)(x)) & b)#* 0. Hence (2p),.0p, is
injective. Now by the Bott-Samelson theorem H, (2ZX) is a free algebra on the
generators of ﬁ*(X), so an induction argument, based on the length of the product
X1Xp "Xy, € H(QZX) and on the associativity of the Pontrajagin ring H,(2B),
establishes that (£2p),, is injective.

Let us consider the case where X is not connected. Then n{(Z£X) = Free group of
rank c -1 where c is the number of path-components of X. The conclusion of the
Bott-Samelson theorem does not hold in this case, thus blocking the previous
argument from applying here, however, we do get the following analogue of the main
theorem. '

THEOREM 4. Let F and B be connected finite dimensional CW complexes.
Suppose that HZ(QB;K) #* 0 for infinitely many i’s. Let F>ZX LB be a fibration.
Then p . w(ZX) = wy(B) is an isomorphism.

PROOF. p, is onto by the homotopy exact sequence and the fact that F is
connected.

Now let E be the universal covering of B. Then E is not contractible since
;li(QE;K) # 0 for some i > 0. Hence Hi(SZE;K) # 0 for infinitely many i > 0, since E

is finite dimensional. Consider the pullback
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Now, (1) E is a covering of ZX corresponding to the subgroup of m{(ZX) which is the
kernel of p,. Also (2), any covering of a space which is homotopy equivalent to a
suspension, is itself homotopy equivalent to a suspension. So E = £Y. Now a path
wmponent Y, of Y gives rise to a generator y, € ﬁO(Y;K). Since p,: 71(2Y) =
ti(i‘gl =0 is trivial, y, ® 1 maps to §a =0 under [./;*Z ﬁ*(Y;K) Y H*(Qﬁ;K) -
H(QBK).

Now let 0% b€ HN(Q,E;K) where N is greater than the maximum of the
dimensions of B and F. Then ﬁ*(ya ® b) =y, *b=0. But ,3* is an isomorphismin
dimension N, so y,, ® b=0 which implies that yo, = 0. Thus Ho(YK)=0 and Y is
enpnected so 7 (2Y) = 0 so ker p, = 0.

The following example shows this theorem is false if the condition on H, (2BK)
i not met. Let X be three points. Let F be the free group on two generators. Then
EX#® K(Fpl1). Let p:ZX- slx sl=B be induced by the projection
homomorphism Fy > Fo/[Fy,Fy] = Z ® Z. The fibre of p will be a K(7,1) where 7 =
{¥4,F4] is a free group. Hence the fibre has the homotopy type of a 1-dimensional
vonnected complex. But p,: w1 (ZX) = m(B) is clearly not injective.

§4. Applications of the main theorem. In this section we shall always assume
that ¥ - EX—p—> B is a compact fibration, that is F and B will always be compact
¢onnected CW complexes. _

THEOREM 5. Suppose that F LN X L)B is a compact fibration with the
assumptions that X is co_n;’lected and Hi( QUB;K) # 0 for infinitely many i’s. Then

() HJQBK)=HJ(FK) ®HJ/QEXK).

(i) dy HJQBK)~> H*@(F;K) is onto where d: QB — F is the connecting
map.

(iil) iy HAFK)— H(ZX;K) is trivial.

PROOF. Consider the sequence of fibrations,

Q d i
c > aex SR op F sX—2 B,

Since (§2p),. is injective, we know that (£2p)*: H*(2B;K) > H*(QZX;K) is onto.
Hence the spectral sequence for the fibration

Qp) . d
asx—), op

F

collapses. As a éonsequence (i) and (ii) are true. Then (iii) follows since d,, is onto and
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i,d,=0.

COROLLARY 6. Let F— 2X—p>B be_ a compact fibration such that X is
connected and I?:,{B;Q) # 0. Then either F is céﬁtractible or X(F) = 0.

PROOF. Assume that x(F)#0. Since X is connected, m{(£X)=0. Hence
d: m(B) = 7w{(F) is onto. But since x(F)#0, the image of d must be zero (this
follows from Theorem IV.1 of [8] and the fact that d factors through the induced
homomorphism of an evaluation map). Thus 7{(F) = 0.

Next we shall show that H,(F;Z) = 0. Since H,(B;Q) # 0 and B is compact, we
see that ﬁ*(B;K)io for every field K, and then by applying the Serre spectral
sequence to the path fibration Q2B — P~ B, we see that H;(2B;K) # 0 for infinitely
many i’s. Thus d,: H,(Q2B:K)~> H,(F;K) is onto by Theorem 5. But by a result of
[2], reproduced here as Theorem 12, we see that x(F)d, = 0. Hence for K= Q, this
implies that ﬁ*(F;Q)ZO. Hence x(F)=1. Then d, =0 for every field K, hence
ﬁ*(F;K)=O for every field X. Since F is a finite CW complex, this implies that
ﬁ*(F;Z) = (0. Hence F is contractible.

We say that a connected finite CW complex is prime if it can never be the total

space of a non trivial compact fibration. There has been recent interest in compiling a

list of prime CW complexes. Some primes are RP2, CP21, QP! for n > 1, S21, the
Cayley plane, and U(4)/U(2) X U(2). The techniques used are the tranfer for
fibrations as in [6] and more recently, the use of Sullivan’s minimum models by S.
Halperin, ‘“Rational fibrations, minimal models, and Fiberings of homogeneous
spaces” to appear in the Transactions of the American Mathematical Society. The
following result gives an easy method for constructing Prime CW complexes.
COROLLARY 7. Let X be a connected finite CW complex. Suppose that
I?JX;Q)% 0. Then if X(ZX)#0, it follows that X is prime provided one of the
following conditions are true: '
(1) X(ZX)is relatively prime to the torsion of H(XX;Z).
(i) HZX;Z) has no torsion,
(iii) The smallest positive integer & such that Hy(ZX;Q) # 0 is e&d:ie‘
PROOF. Let F i> EXgB be a nontrivial compact fibration such that
ITI*(EX;Q)#EO and x(ZX)#0 where X is connected. We shall investigate this
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situation,

Since 0 % x(£X) = x(Fyx(B), we see by Corollary 6 that ﬁ*(B;Z) is torsion. Also
i) = m(EX)=m(B)= 0 as in the proof of Corollary 6. Let B be k-1 connected.
Fiwn for some prime p, we have Hk(B;Zp) # 0. The Serre spectral sequence for the
fibration F > X — B then reveals that H(2X;Z) must have an element of p-torsion.
Mow Hi(QB'Zp) #0 for infinitely many i’s. Hence Theorem 5 tells us that d,:
H (28,2 ) -+ H, (F;Z ) is onto. But by Theorem 12 below, x(F)d = (. The fact that
H*(B Q) =0 implies that H*(F Q) = H «(ZX;Q) #0. Thus H*(F Zp) # 0. Hence p
wiuist divide x(F) = x(EX) thus proving (i).

Since 2B —d—> F LN X is a principal fibration, there is an act1on” d F X
{18~ F. An element x € H*(F;Zp) is said to be decomposable if x = d*(Exi ® ;)
where the dimensions of the y; are greater than zero. From the argument of Theorem
¥ of [10] and the fact that x(F) # 0, we know that the image of d,, does not contain
atty odd dimensional indecomposable elements. Since d, is onto, H*(F;Zp) does not
contain any odd dimensional indecomposable elements.

Now if € is the smallest positive integer such that HQ(F;ZP) # 0, then any X €
Hu(F ;Zp) is indecomposible. Furthermore, if x arises from a tprsion element in
Hel F12), then there is an element y € HQ+1(F;Zp) related to x. It follows from the
Rockstein spectral sequence that y is indecomposable. Since either x or y is odd
dimensional, it follows that Ho(F;Z) is not all torsion and that £ is even. Since
H (F:Q)= H(ZTX;Q), it follows that & is the -smallest dimension such that
H( £X:Q) # 0, thus proving (iti).

Note that Example C of §2 shows that the condition ﬁ*(EX;Q) # ( is necessary.
Whether conditions (i) or (ii) or (iii) are necessary is unknown at this time. As an
example of the result above, we propose the following fact: Suppose X is a closed
surface, then TX is not prime if and only if X is Sz.

COROLLARY 8. Suppose F- XX - B is a fibration which admits a
cross-section. If F is a finite CW complex and 1;1( QB;K) # 0 for all fields K, and some
{ >0, then the fibration is trivial.

PROOF. Assume that B is not contractible. We must show that F is contractible.

The cross-section s: B~ £X pives rise to a cross-section (§1s): 1B - U ZX). Hence
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(Qp),: H (QZXK) > H,(2B;K) is onto for all fields K, and thus d,: H,(2B;K) ~
H,(F;K) is trivial. Also note that the existence of tﬁe cross-section implies that F is
connected. k

Now the pullback fibration F—> ZY — E induced by the covering projection
’];—> B satisfies the hypotheses of Theorem 5. Hence d, is onto. Since 'd, = 0, we see
that ﬁ*(F;K) =0 for every field K, and since F is compact, ﬁ*(F;Z) = (. Hence Fis
contractible since (F) = 0, as may easily be seen from Theorem 4.

COROLLARY 9. If - ZX ~ S™ has a compact homotopy theoretic fibre, then
either f is a homotopy equivalence or n= 1,2,4,8 and X = SJ, S3, S7, si5
respectively.

PROOF. Suppose F—i> ZXL S™. Then by Theorem 3 Q) ﬁ*(QEX)*
ﬁ*(ﬂsn) is 1-1 for any field of coefficients. Hence H,(22ZX) is a subring of
H*(QSn)= polynomial algebra on A, ;. Hence H,(2£X) must be a polynomial
algebra on one generator. Hence H,(2X) must have one generator. This implies that
ZX is homotopy equivalent to a sphere. The only non-trivial fibrations of a sphere by
a theorem of Browder [5], are sl S3 - Sz, S3 87> S4 and S7 - S15 - SS, ora
covering map p: sl sl

COROLLARY 10. Let EYL) zX —LB be a fibration where XY is a compact
CW complex. Suppose that for every primé p there is an i> (0 such that
Hf SZB;Zp) # 0. Then ZY is homotopy equivalent to an odd dimensional sphere.

PROOF. As usual we may assume that B is simply-connected, since if not we
could look at the pullback over ]~3’—>_ B. Then by Theorem 5, d,: H,(2B;K)~>
H,(2Y;K) is onto. By Theorem 5 of {10], if d, # 0, then XY is an odd dimensional
rational-homology sphere and a Zp-homology sphere for all primes p. Since 2Y is
compact, this implies that Y is a homology sphere. If we consider m{(£Y), we easily
see that NI(EY) =0 or WI(EY) = Z. Then a standard argument results in the fact that
ZY is homotopy equivalent to an odd dimensional sphere if nj(XY)=0. If
7 (2Y) = Z, then Y has two path components Y/ and Y,. Since ﬁ*(EY) =~ 7, we see
that £Y; and Y, have trivial homology and hence are contractible. Hence XY is
homotopy equivalent to sl

85. Suspensions and the evaluation map. By an evaluation map we mean a map

RNV
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A

w. XY such that w: X X *—> X X Y —>Y for some “affiliated” map & where
::)i* XY= ly. In other words, w: X = (YY,l) &) Y, that is w maps through the
space of self homotopy equivalences of Y and then is followed by the evaluation at
e base point, w,(f) = f(*). Any such map will always be denoted by “w” in the
sgme manner as “i” almost always denotes an inclusion map.

Examples of evaluation maps are

(i) Fibre inclusion i: G - E in a principal fibration G -~ E - B.

(ii) . The connecting map B d, F in the Puppe sequence of a fibration
F->E-B.

(iti) The coset map of a group G and a closed subgroup H, p: G - G/H.

(iv) Any map f'such that f = w- g for some evaluation map .

The purpose of this section is the study of compact fibrations, F — EX—w—> B,
where the projection map is an -evaluation map. There is a nontrivial example of this
phenomenon, namely the Hopf fibration sl >3- 2, s2=g3 /Sl. We shall show that
thiy 1s the only non-trivial example.

The motivation behind this result is amusing and instructive. We have the
{ollowing pair of theorem, both the consequence of the transfer for fibrations:

THEOREM 11. [6]. Let F— EX—a>B be a compact fibration, where
i;;(B.'Q) # 0. Then [a] has infinite order in the group [ZX.B].

THEOREM 12. [2]. Suppose w: X = B where Xisa finite dimensional and B is
4 compact CW complex. Then x(B){w} = 0 in the group {X,B} of stable maps.

If we combine Théorem 11 and Theorem 12, we see that [w] € [ZX,B] has
mfinite order and {w} € {£X,B} has finite order if x(B) # 0. Thus one finds, for the
Hopf fibration, the well-known fact that [p] € 773(82) has infinite order and 2 {o } =
0 € my(S3).

It is natural to ask for more non-trivial examples of this phenomenon. What the
following theorem shows is that there are none. First we need some lemmas.

LEMMA 13. Let w: X - Y be an evaluation map. Then (w),: H(QX)~>
I A 2Y) maps the Pontrajagin ring of H (X) into the center of the Pontrajagin ring of
HJAY) '

PROOF. By hypothesis there is a map @: X X Y Y such that WX X *=w and
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c,:)l* X Y = identity. Now (Q&): QXX Y)= QX)X Q(Y)— QY induces a ring
homomorphism on the homology groups. )

Let x € H,(£2X) and y € H,(£2Y). Then x Xy €EH (X X 2Y) may be written
in the following forms: x X y = (x X 1)*(1 X y) = #(1 X y)-(x X 1) where+ denotes
multiplication in the Pontrajagin ring H, (22X X QY).

Now (Q0),(x X ¥)= (R@)y((x X D+(1 X y)= (Q),(x X 1)-(Re),(1 X
)= ((w)(x))y and also (Q&)*(X X y)= i(ﬂcrn)*((l X y)x X 1))=
1y - ((R2w) 4(x)). Hence 1y «((Q2w),(x)) = ((2w)4(x)) v holds for all y. Thus (2w).(x)
is in the center of H.(Y). )

LEMMA 14. Suppose F ; X “, B is a compact fibration. Then H{ QB.K)
is nonzero for infinitely many i’s and some field K if and only if B is not aspherical.
(We do not need a compact F, but F must be connected.)

PROOF. Suppose that B is a K(w,1). Then B has the homotopy type of a
discrete set of points, hence Hi(S'lB ;K) = 0is zero for all i > 0.

Now assume that B is not a K(w,1). Then 7ri(B) # 0 for some i >0. Since w,:
m(2X) = m1(B) is onto, B is strongly simple in the sense of Spanier ([16], Example
18 on page 510). Thus by ([16], Theorem 20 on page 510), since B is a finite CW
complex and is strongly simple, the homotopy groups ;(B) are finitely generated.
Thus the homotopy groups, m,.(£2B), are finitely generated. Again by Theorem 20 of
[16] and the fact that H:spaces are strongly-simple, the integral homology group of
the constant componeént of 2B are finitely generated. The constant component of 2B

is homeomorphic to 2B where B is the universal covering of B. Thus there is, for some

i, a finitely generated Hi(SZB;Z) # 0. Hence for some field K, Hi,(QB;K);&O. Now’

applying the Serre spectral sequence to the fibration .Q’];—> P—>§ and using the fact
that E is finite dimensional and that ﬁ*(E;Z) # 0 and is finitely generated, and hence
that ﬁ*(’ﬁ;K) # 0, we see that Hi(\QE;K) # 0 for infinitely many i’s. Hence Hi(QB;K)
is not zero for infinitely many i’s. .
LEMMA 15. If F—> EX& B is a compact fibration and if Hl-(SZB;K) +0 for
infinitely many i’s, then
H,(EXK) =K.

PROOF. First assume X is connected. By Theorem 3, (2w),: H (QZXK) -

L L AU T AT ST
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HQBK) is injective. By Lemma 13 the image of (Q2w), lies in the center of the
Pontrajagin ring H, (QB;K) as a subring. Thus H,(2ZX;K) is an abelian ring. By
Fheorem 2, the Bott-Samelson theorem, H, (QZX;K) is the free tensor algebra on the
wenerators of ﬁ*(X;K), so the requirement that H, (QXX;K) is abelian implies that
;'l‘( X:K) = K. Now if X is not conrlected, then as in Theorem 4, we have the pullback
of the universal covering F—> ZY p—>§, and XY is the universal cover of ZX. Now
(S’ZF),: H(QZYK)~> H*(QE;K) is injective by the main theorem. Since QE is
liomeomorphic to the constant path component of B for any universal covering, we
may regard H (Q2Y;K) and H*(QE;K) as subrings of H (Q2ZX;K) and H,(2B;K)
esxpectively and (QS)* as the restriction of (w), to H (QXXK). Hence H (2ZY;K)
must be an abelian ring since it is mapped injectively into the center of H*(QE;K) C
HL(2B,K). Hence ;I*(Y;K) has only one generator at most.

By Theorem 4, w,: 7 (£X) = m1(B) is an isomorphism. However the image of
wi, lies in the center of 71(B), hence m{(ZX) is isomorphic to Z. Thus X consists of
two path components. Now Y must be the one point union of infinitely many copies
of Xy and X2, the path components of X. Since ﬁ*(ZY;K) == K or 0, this implies that
H, (X :K) 2 H, (X, K) = 0, so Hy(EX;K) = K and Hy(ZXK) = 0 fori >1.

THEOREM 16. Consider a fibration F L, X % B where w is an evaluation
wuip and F and B are compact connected CW 'complexes. Then either

(a) B is contractible; or

(b) Fis contractible and ZX is either
slors3 or S7;or

() F=S!, B=52and sx = .

PROOF. Let K be a field. This proof will have nine cases to track dow;l.

A. Assume that H, (2B;K) # 0 for only a finite number of i.Then by Lemma 14
we know that B is an as;)herical space. Now 7 {(ZX) is a finitely generated free group,
way of rank r. _

Ay. Assume 1= 0. Then 71(ZX)=0 and hence m1(B) =0 by the homotopy
vxact sequence. Since B is aspherical, it must be contractible, thus we have conclusion
(i), -

Ay. Assume r=1. Then nl(EX) =~ 7. Since B is é compact K(n,1), m1(B) is
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torsion free. Thus from the fibre homotopy exact sequence we see that 1r1>(F) =0and
that F is homotopy equivalent to the universal covering space of ZX. Since
Hj(ZX) = Z, we see that X is the disjoint unio;l of two connected spaces X and X,.
Now if H;(¥£Xy,Z) #0 for i >0, then the universal covering, F, of 2X would have
infinitely generated homology and hence could not be a compact CW complex. Thus
the intéger homology of ZX;, and similarly £X,, must be trivial. Hence £X; and
ZX4 are both contractible, hence ZX is homotopy equivalent to S!. Then it follows
that F is contractible and we have arrived at conclusion (b).

As. Assume that r> 1, so that 7{(ZX) is a free group of rankr > 1. Since Bis a
compact aspherical CW complex, 7((B) has no torsion. Also, since w,: 71(ZX)~>
1r1(B) is onto and since the image of 'w* is in the center of m;(B), we know that 7T1(B)
is abelian. Thus 7{(B) is a finitely generated free abelian group. Hence m1(F) cannot

be finitely generated and so F cannot be a finite CW complex. It is easy to see that
7rl(F) is not finitely generated. The exact sequence
0= m(F) > 7 (ZX)>7(B)~>0
gives rise to a fibration of K(r,1)’s,
K(my (F),1) = K(m(£X),1) = K(m1(B),1).

Now K(m{(ZX),1) is homotopy equivalent to the one point union of r circles, since
w1 (ZX) is free of rank r, which has Euler Poincare number equal to l-r. Also
K(m((B),1) is homotopy equivalent to a torus if #{(B)s*0 and hence has Euler
Poincare number equal to 0. (if m;(B) =0 then B would be contractible since B is
aspherical and we would reach conclusion (a).) The product formula for the Euler
Poincare numbers for compact fibrations tells us that 0# 1 - r= x(F)- 0 which is
impossible. Hence K(m((F),1) cannot be homotopy equivaleﬁt to a‘compact Ccw
complex. But 7{(F) is a subgroup of a free group and hence is a free group, so it must
have infinite rank.

B. Assume that Hi(QB;K)#: 0 for infinitely many i. Now by Lemma 15,
H,(ZX,K) =K. v

By. Now assume that ﬁ*(EX;Q) = 0. Then m(ZX) = 0 and also x(ZX) = 1 and

hence x(F) and x(B) are * 1. Since x(Y)w, =0 for all evaluation maps onto compact
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{'W complexes Y, we see that Wyt ﬁ*(EX;Z) - ﬁ*(B;Z) and d,: ﬁ*(QB;Z) -
f},(!-';’!.) are both trivial homomorphisms. Now let k be the smallest positive integer
such that Hi(B;Z) # 0. Note that k > 1 since 71(B) = 0 in this case since T(ZX) = 0.
Then the Serre exact sequence of the fibration applies and gives us

H(SX;Z) —2— H(BZ) —— Hy_| (F2).
Now w, =0 and t = 0 since the transgression t must factor through dy, [11; Theorem
4} and d, =0. Hence Hk(B;Z) = 0. Thus ﬁ*(B;Z) =0 and so B is contractible since
#(B) = 0. This is conclusion (a).

B, We assume that ﬁ*(EX;Q) # 0. Then X must be a Q-homology sphere and
F !.p-homology sphere for all prime p. Since 2X is a finite CW complex, H, (£X;Z) is
finitely generated so 2X must be a Z-homology sphere. A standard argument shows
that ¥ X is actually homotopy equivalent to a sphere S™. Since Corollary 6 implies that
x{&X) = 0, we see that S is actually an odd dimensional sphere.

Now W. Browder [5] proved that every fibration of a sphere with F connected
snd B not contractible must have fibre either a point, or S1 or S3 or S7.

By,. Suppose F is contractible. Then the fact that «»: S" — S0 is an evaluation
map and a homotopy equivalence implies that S™ is an H-space, and hence by [ 11 ZX
i either Sl, 3 or s7. This is conclusion (b).

Byy,. Suppose F is not contractible and =X is an odd sphere not of dimension 1,
Y or 7. Then the Whitehead product [Ln,Ln] # 0, since otherwise S™ would be an
H-space. Now i: F—> §1 js homotopic to a constant map, so from the homotopy e;(act
seguence wy: ni(Sn)—> mi(B) is injective. Thus 0 Wl ty]) = [w,w]. But the
Whitehead product of any element Qf m(B) with an element in the irﬁage of an
vviluation map must vanish, [9], which is a contradiétion.

B.. Suppose that F is not contractible and $X has the homotopy type of s7.
Fhen F is Sl or §3 or 7. Now F = s7 implies that B is contractible by Browder [5].

Bs.j- Suppose F = S!. Then by [5] we are considering sl > g7 L CP3. Now
from the fibre homotopy exact sequence [w] & 1r7(CP3 ) = Z is a generator. It follows
from [13] that {w}€E 7r§(CP3) =Zysisa generator.v Hence {w} has order 24. But
0= x(CP){w} =4 {w) by Theorem 12,

Byeij- Suppose that F = S3. Then we have a fibration of the form
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$3 57554
Now 7r7(S4) 2 7® Zy,. Let  generate Z and 7 generate Z,. Then [w] =kn+

2r for some integers k and 2 Let h be the Hurewicz homomorphism, and j: s7 >

(S7,S3 ) the inclusion. We have the following commutative diagram

h
78Ty ————Hy(8")

Jx = | s

= h :
202y = ny(sh ——— ny(s7,83) —— HysT ) = Z

A diagram chase yields-

[w] =1y + &7,

Since the suspension homomorphism E: 1r7(S4) X 20 Zjg>Zy= 178(85) is onto
[19], we see that E(n) is a generator of Zyy and E(r) € Z5C 224. Hence {w} =
{tn + % }must have order 24. Since

2{aw} =x(8?) {w} = 0,

we have a contradiction.

Bygq. If 2X= S3, fhen by Browder’s result we must have a fibration of the form
sl > 83 9, 52 Thus [w] = +n, the Hopf fibration. Since S! - §3 2> §3/s1 = 52
where p is the coset map, the fibration S! - 83 2> §2 is the only nontrivial example
of F>32X B,

Bye. Finally if 3X=S! the only compact fibration with connected fibre F

occurs when F is contractible.
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