-1

1 s o w8 s e =

ROBOTS AND FIBRE BUNDLES

by Daniel H. GOTTLIEB

Dedicated to Professor Guy HIRSCH

Abstract. — An account of some topological insights in the designing of robot
arms.

Topologists are unaccustomed to consulting on practical problems.
Our discipline appears so removed from the applied branches of mathe-
matics that it is always a surprise when a result plays a role in a
non-theoretical environment. One day, William Fisher, an engineering
doctoral student of Richard P. Paul at Purdue University asked me to
participate on his oral exam committee. I agreed, and he explained his
problem: Build a more flexible robot arm. It became clear that a
topological viewpoint fit quite naturally into his problem and resulted in
some interesting insights. After I discussed this application of topology
with several colleagues, some encouraged me to write this paper. With
that apology I begin. .

A robot arm consists of links attached serially, one to the next. Two
kinds of links are used, a prismatic link and a revolving link. The prismatic
link moves in a straight line while the revolving link rotates about an axis.
The straight lines and axes depend upon the configuration of the preceed-
ing links in the arm. An example is shown of two links. The first rotates
about its central axis. The second, hooked on to the first by a hinge, rotates
about an axis through the hinge perpendicular to the plane formed by the
two links. '

Thus, each link’s position relative to the preceeding link is given by one
parameter, an angle in the case of a revolving link and a distance in the
case of a prismatic link. Links made with more than one parameter, like
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a universal ball joint, are not used because of considerations of mechanical
power and control. ‘

The problem is to design an arm which can track a moving frame
through space. In other words, imagine a coordinate frame attached to the
end of the arm. We want to program the arm to move so the coordinate
frame follows any continuous path through space taking into account the
orientation of the coordinate frame.

Robot arms with six links have been built. Six dimensions specify a
coordinate frame in space, three for the origin and three for the orienta-
tion, thus the six linked arm should be able to position and orient itself
into any coordinate frame desired in its work space. But the six-linked arm
can move into certain singular positions so that there are nearby orien-
tations which cannot be reached by a small adjustment of angles. Also the
links of the arm spin around at great speeds and time is lost in the tracking.

We may explain what is occurring through topology. The position of
an arm made of six revolving links is specified by six angles (6, 6,, 64, 0,
s, 05 ). Think of each angle as a point on a circle. The positions of the arm
correspond to points on the six dimensional torus, T¢, which is the product
of six circles S' x S' x §' x S* x S$' x S'. The coordinate frame at the
end of the arm at any given position represents a point in the space
R* x SO(3), where R is three dimensional Euclidean space and SO(3) is
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the space of rotations. This is the space of orthogonal 3 x 3 matrices of
determinant + . The correspondence from the position of the arm
specified by (0,, 6,, 6, 8,, 05, 6) to the coordinate frame at the end of
the arm is a smooth map f from T° - R* x SO(3).

Now f induces the derivative map, f,, from the tangent bundle of T¢
to the tangent bundle of R*> x SO(3). Restricted to the fibre over b, f, is
a linear transformation between the two six dimensional vectorspaces
over b and over f(b). Most of the time it is an isomorphism, but
sometimes, at singular points b, the Jacobian of f does not have maximal
rank or equivalently f, over b is not onto the fibre over f(b). Since the
tangent space at f(b) is an approximation to a nearby neighborhood of
f(b), we see that slight changes of b will not give us all the coordinate
frames near f(b), at least not without infinite acceleration.

Fisher’s idea was to add a seventh link to the arm. Then he would use
the first three links to establish the origin and the last four links to get the
orientation of the frame. Thus we have a map f: T* — SO(3). Unfortu-
nately this map has singularities. In fact no matter how many links are
used, there are still singularities, because every smooth map f: T —
SO(3) must have singularities.

We call a map between two manifolds a submersion if there are no
singular points. That is if its Jacobian always has maximal rank. A
theorem of Ehresmann states that any submersion between two closed
manifolds must be the projection of a fibre bundle [1]. Thus f: T” - SO(3)
must be a fibre bundle if f has no singular points. But this is impossible.

To see that f: T* — SO(3) cannot be a fibre bundle we consider the
universal covering p: R” — T” Then fo p: R* - SO(3) is a fibre bundle.
If F denotes a fibre of this bundle, then F must be a finite dimensional
submanifold of R™. But since R” is contractible, F is homotopy equivalent
to the loop space QSO(3), which has homology in infinite dimensions.

So since singular points cannot be eliminated, they must be avoided.
The extra dimension f: T* — SO(3) provided by the fourth link should
give us some room to try and avoid the set of singular points S. We would
like to have a procedure which will calculate angles 6 = (6,, 65, 65, 6,)
for every orientation R so the arm with angles g will orient its coordinate
frame in orientation R. Thus we want a function 8: SO(3) — T* so that
f(B(R)) = R, and we want 8 to be continuous. But this is impossible, for
6 would be a cross-section to f: T* — SO(3), and such a cross-section
cannot exist because the fundamental group ,(T) =2 Z @ Z P Z D Z
and n,(SO(3)) = Z, and f,: n,(T*) - n,(SO(3)) cannot admit a cross-
section.

We can try another tack. For every position of the arm 6 which is not
singular,i.e. 8 € T — S, thereis the orientation of the frame f (0) We would
like to calculate, for every nearby orientation (f( 0)) a @ close to 6 so
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that f ((5’ )=f ((5)’ , that is a small change in the position of the arm which
will result in the new orientation. ~

This can always be done. The pair (8, (f(8)")) can be approximated by
the pair (6, ¥) where Vis a vector in the tangent space of SO(3) at the point
f(8). Denote the set of all such pairs by f*E and denote the total space
of the tangent bundle of SO(3) by E. Then f*E is the pullback of E over
T - Sby f: T — S - SO(3). If D represents the total space of the tangent
bundle of T — S we have the following commutative -diagram

f:D—2% g L)
}p lp 2
1 f
T-S »T-S— SO(3)

where the p represent bundle projections and a and f are bundle maps
whose composition fo a = £, is the derivative map induced by f. What we
want is a cross-section to «, call it g: f*E — D, so we would have a¢og
= identity. We can find an infinite number of such g because f+ is onto
each fibre (because we removed the singular set S) and hence a is onto.
The kernel of f, is thus a one dimensional bundle and so f*E is a direct
summand of D.

Now the problem becomes one of choosing g so that g(¥) is not in the
singular set for any small enough tangent vector . Fisher in [2] addresses
this problem.

In connection with these considerations it is useful to calculate the axis
of any rotation R. Every rotation in R? has a unique axis of rotation, except
for the identity rotation I of course. Richard P. Paul has a method which
unfortunately involves two different cases. So one must first apply one
formula to R and if that doesn’t work one must apply a second formula.
Fisher spent two months trying to find a single formula which would do
the job. Unfortunately there cannot be such a formula. If there were, a
continuous map would exist which took a rotation R into an equation
Ax + By + Cz = 0 where the numbers (A, B,C) would be uniquely deter-
mined. Then the map p from SO(3) — I to the space of lines through the
origin, RP?, would factor through R* — 0. But p: SO(3) - I - RP? is a
homotopy equivalence and hence induces an isomorphism on the funda-

mental group z,(SO(3) - I) L4 7, (RP?) = Z,. Since n,(R* — 0) = 0, this

is impossible.
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