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Given any space-time M without singularities and any event 0, there is a natural 
continuous mapping f of a two-dimensional sphere into any spacelike slice T not 
containing 0. The set of future null geodesics (or the set of past null geodesics) 
form a two-sphere S2 and the map f sends a point in S2 to the point in T which is 
the intersection of the corresponding geodesic with T. Considering the f for each 
point of a world-line W  gives us a map F: S2 X W-+ T. The local degree of F at a 
regular value y in T has the same parity as the number of null geodesics from W  
to y. 

1. INTRODUCTION 
Since 1979 astronomers have been looking for an odd number of images in gravitational 

lensing events. There have been many discoveries since the first event in 1979. In most cases only 
an even number of discrete images have been found. Some of the topological arguments for an 
odd number of images are very persuasive, even though they are based on a Euclidean space- 
time. 

In 1980 Dyer and Roeder’ predicted an odd number of images for a spherical symmetric 
transparent lens (i.e., Galaxy). In 1981 Burke2 claimed that there must be an odd number of 
images for any bounded transparent lens subject to an assumption that the bending of light rays 
decreases as the light rays are far from the lens. The argument constructed a vector field on the 
plane of the lens and showed the index had to be 1. So then, assuming the local index of each zero 
was + 1, the number of zeros had to be odd to add up to the global index of 1. Each zero 
corresponds to light rays. 

In 1985 McKenzie3 wrote down an argument using the degree of a map between two two- 
dimensional spheres which asserted that there were an odd number of images. This argument 
needed no assumptions on the amount of bending and obviously improved Burke’s approach. This 
argument was widely known among astronomers and is very convincing. However it is done in 
three-space and not in four-dimensional space-time. McKenzie notes this and then provides an 
argument using Morse theory on four-dimensional space-time, applying correctly Karen Uhlen- 
beck’s version of Morse theory for Lorentzian manifolds.4 It is widely believed today that the 
necessity of an odd number of images has been precisely established and that the contradictory 
evidence is a result of difficulties of finding the third image,5 although on page 176 of Ref. 6 they 
state that McKenzie’s conditions are physically obscure. 

In this article we translate the degree argument directly into four-dimensional space-time and 
we give a necessary and sufficient condition for an odd number of images. 

We give two examples of four-dimensional Lorentzian manifolds for which this condition is 
false: the first one because of the topology and the second one because of the geometry. Then we 
argue that the conditions under which McKenzie’s Morse theory argument would apply are ex- 
tremely restrictive. 

II. GLOBAL LENSING IN LORENTZIAN SPACE-TIME 
We reproduce the topological argument given by McKenzie on page 1592 of Ref. 3 which 

establishes the odd image result for Euclidean space. Then we try to reproduce the argument in 
Lorentzian space-time. 
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FIG. 1. A  galaxy G is located somewhere between a light-source S  and an observer 0. Because of the gravitational field 
of the galaxy there may be more than one light ray from S  to 0. f maps the sphere A onto the sphere B. If x is on A then 
f(x) is defined to be the point on B  where the ray through 0 and x intersects B. 

“There is a relatively simple demonstration of why there are an odd number of images. 
Although it seems to be well known among astronomers it does not appear to have been published 
before and so is given here. Consider the situation shown in Fig. 1. A light source is located at S 
and an observer at 0. There is a transparent galaxy G somewhere between S and 0. A map f from 
the small sphere A to the sphere B is defined as follows. The map f maps a point x on A to the 
point on B where the light ray through 0 and x intersects B. The number of images of S seen by 
0 is the number of points on A mapped onto S. 

Suppose g: M+N is a smooth map between manifolds of the same dimension and that M  is 
compact. If y is a regular value of g then we define 

dedga)= c sgn dg,, xEg-‘(y) 
where sgn dg, = + 1(- 1) if dg, : T,(M) -+ Ty( N) preserves (reverses) orientations. It turns out that 
deg(g,y) is the same for all regular y; it is called the degree of g andtdenoted deg(g). 

In an actual physical situation it is reasonable to assume that there will be a pointy on B such 
that f- ‘(y) is a single point, i.e., there is only one ray from 0 to y . Thus, deg(f) = 1. 

Let n +(n - ,) be the number of points x in f-‘(S) such that sgn df,= + I(- 1). Thus, 
n +(n - ,) is the number of images of S, seen by 0, which have the same (opposite) orientation as 
the source, and 

n+-n-=deg(f,S)=deg(f)= 1. 
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Thus, if 0 sees n=n+- n - images of S then n = 2n, and so n is odd, and the demonstration is 
complete.” 

Now we consider this argument in Lorentzian space-time, M. Let y be the observer in a 
spacelike slice T and let the source follow the world-line W. Then there is an odd number of 
images at y if and only if the local degree of F at y is odd. If T is Euclidean three-space then the 
local degree is equal to the winding number of the image of the boundary of S* X W with respect 
to y . In mild regimes where the pencils of geodesics intersect T in singular surfaces approximating 
spheres, this winding number is one. 

III. TWO EXAMPLES 

We give two examples of space-times which do not have the property that pencils of null 
geodesics intersect spacelike slices in two-spheres. Many more examples can be constructed using 
Barrett O’Neill’s book,7 Corollary 57 on page 89 and warped products on pages 207-209. 

(a) Let M = S’ X S’ X S’ XR. The universal covering space is 16 =R4. Let k be Minkowski 
space, so it has the Minkowski metric. It induces the same metric on M. The geodesics of fi are 
straight lines and their images are the geodesics of M. Pencils of null geodesics do not intersect 
spacelike slices in spheres in this M. 

(b) Let M=R4=R2XR2. Let the second R2 have the Minkowski metric. We will put a Rie- 
mannian metric on the first R* and then we take the product metric. We note that a geodesic of the 
first R* factor coupled with a timelike line in the second factor is a null geodesic in M, (i.e., if a: 
R-+R2 is a geodesic of the first factor and p: R-R* is a timelike geodesic of the second factor 
with the same speed as (Y, then aX/3:W -+ R2 is a null geodesic of M). So if we produce an R2 so 
that the exponential map of geodesics emanating from a point x carries some circle in the tangent 
plane at x into a set in R* which is not a topological circle, then the pencil of null geodesics 
intersecting a spacelike slice in M is not a two-sphere. 

One can visualize a metric on R* by embedding it as a surface T in Euclidean three-space. The 
geodesics are characterized as those paths in T whose acceleration is orthogonal to the surface T. 
Now it is easy to construct examples with the desired property. 

One that works is the following. Take an arc of a circle whose length exceeds a half circle. 
Extend the ends of this arc by the tangent lines at the ends of the arc. The lines intersect in a point 
A. Now take a small interval perpendicular to the plane in which the curve just constructed, y, lies. 
Move this interval along y so that it is perpendicular to the plane over the arc and so that it lies in 
the plane along most of the two extended lines including their intersection A. The interval should 
be twisted in moving from the ends of the arc so that the interval sweeps out a smooth surface with 
two boundary components. Then extend this “old fashioned men’s collar” to a surface T in R3. 

Let 0 be the midpoint of the circular arc on T. Then the geodesics of fixed length greater than 
OA on T near y clearly do not end in a circle. 

We can adjust this example so that the nonflat part of TXW is bounded in any space-like slice 
TXRXsCR2XRXR=M. The technique for the adjustment is the warped product construction, 
which can be found in Ref. 7. 

IV. MORSE THEORY 

McKenzie in Ref. 3 studies the odd image result by applying Uhlenbeck’s version of Morse 
theory of Lorentzian manifolds4 The relevant theorems are Theorem 4 (which he calls the local 
theorem) and Theorem 5 (the global theorem). The global theorem is less relevant to the study of 
gravitational lensing than the local theorem according to McKenzie. This is the case both for 
practical considerations of how observations are made, and because the hypotheses of the global 
theorem do not hold in realistic space-time models. 

The statement of the local theorem is difficult to understand since McKenzie does not make 
clear how the points 4 and r and set B are related to the history of the source T and the observer 
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FIG. 2. Old fashioned men’s collar with geodesic y. 

p. The most reasonable interpretation is that a( T,p)C is a deformation retract of Q( T,p) which he 
assumes is contractible. This is a wordy way of assuming that a( T,p)’ is contractible. Now as c 
varies, fi(T,p)” will not be contractible in general since every time c passes through a critical 
value of T, the topology of C4(T,p)’ is altered by attaching a cell (which corresponds to a new 
geodesic from T to p). But it is impossible to attach only one cell to a contractible space and still 
have it be contractible. Thus for “most” c the hypothesis is not true unless there are pairs of 
geodesics from T to p for each critical value for c. 

V. DISCUSSION 

The argument in Sec. II has a flaw beyond its Euclidean setting. It depends on an unstated 
steady feature, unstated because it is impossible to make precise in the Euclidean picture. Trans- 
lating this into Lorentzian space-time we see that F should be a map from S2 X W+ T, where W 
is the world line of the Source. Then the parity of the number of images of F at YET is equal to 
the local degree of F at y. In general this degree need not be odd. In the regimes considered in 
Ref. 7, however, the degree can be shown to be one. More details will appear in my article in the 
Proceedings of the 7th Marcel Grossman Conference. 
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