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Skew Symmetric Bundle Maps on Space-time

Daniel Henry Gottlieb

Abstract. We study the “Lie Algebra” of the group of Gauge Transforma-
tions of Space-time. We obtain topological invariants arising from this Lie
Algebra. Our methods give us fresh mathematical points of view on Lorentz
Transformations, orientation conventions, the Doppler shift, Pauli matrices,
Electro-Magnetic Duality Rotation, Poynting vectors, and the Energy Mo-
mentum Tensor T .

1. Introduction

LetM be a space-time and T (M) its tangent bundle. ThusM is a 4-dimensional
manifold with a nondegenerate inner product 〈 , 〉 on T (M) of index −+ ++. We
study the space of bundle maps F : T (M)→ T (M) which are skew symmetric with
respect to the metric, i.e. 〈Fv, v〉 = 0 for all v ∈ Tx(M) and all x ∈M .

A skew symmetric F has invariant planes and eigenvector lines in each Tx(M).
We give necessary and sufficient conditions as to when these plane systems and line
systems form subbundles in Theorem 7.3. Also we determine the space of those F
which give the same underlying structure. This is done by introducing the bundle
map TF = F ◦F − 1

4 (tr F 2)I : T (M)→ T (M). Then the space of skew symmetric
F which give rise to the same T is homeomorphic to Map(M,S1), the space of
maps of M into the circle S1. (See Theorem 7.11.)

We also show that the space of skew symmetric F has a natural complexifica-
tion. (see Propositions 2.2 and 2.3) This leads to an equivalence between the F
and vector fields on the complexified tangent bundle T (M)⊗ C. The complexified
study leads to several beautiful relations which link our subject matter to Clifford
Algebras and Quaternions. (See Corollaries 4.6 and 4.7 and Theorem 4.8.) We
naturally find many points of contact with Physics, especially classical electromag-
netism. These considerations frequently govern our choice of notation. The physical
motivations and remarks will be explored in the Scholia; and the mathematical mo-
tivations and links will be found in the Remarks.

Scholium 1.1. Physical connections.
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a) Each skew symmetric F corresponds to a two-form F̂ . The electro-magnetic
tensor is a two form. In the classical theory it satisfies Maxwell’s equations. The
symmetric bundle map TF corresponds to the energy-momentum tensor of the
electro-magnetic field. The homotopy invariants arising from the existence of sub-
bundles must give physical information if there is any physical content in Classical
Electro-Magnetism. We show that the invariants distinguish the two main cases; a
classical free electron and a classical electron in a magnetic field.

b) We give formulas in terms of E and B for the eigenvectors of F . Changing
observers gives the same eigenvector multiplied by a factor. For “radiative” F ,
this factor reduces to the Doppler shift. One wonders if the more general shift for
non-radiative F has any physical meaning.

c) The space of skew symmetric F has a canonical splitting of space and time.
It is mapped isomorphically onto T (M) ⊗ C by a choice of a field of observers.
Thus any complex tangent vector field corresponds to a skew-symmetric F . So, for
example, if the solutions of the Dirac equation have any physical content, then the
homotopy invariants of the corresponding F must have physical import.

Remark 1.2. Mathematical Motivation.

The mathematical point of view of this work stems from the author’s study
of the space of bundle equivalences in [G1], [G2], [G3]. These bundle equivalences
form spaces which later became popular known as groups of gauge transformations.
The main result of these papers is that the classifying space of these groups of gauge
transformations is the space of maps of the base space into the classifying space of
the fibration in question.

This theorem has played an important role, at least in the mathematical part
of of Gauge Theory. It entered into the theory via Proposition 2.4 of [AB]. But the
point of view of these works concerned spaces of connections, instead of spaces of
bundle equivalences. The original point of view was furthered in papers by Booth,
Heath and Piccinini among others, see for example [BP].

In this present work, we study other types of bundle maps. The “Lie Algebras”
of “Gauge Transformation Groups” seems to be a natural class to study. The
skew-symmetric bundle maps of space-time are the “Lie Algebra” of the group of
isometries on T (M), i.e. bundle maps Q : T (M) → T (M) so that 〈Qv,Qw〉 =
〈v, w〉.

Scholium 1.3. Physical Point of View.

Galileo’s famous quote that the Laws of Nature are written in the language of
geometry should be revised in view of the development of Topology in this century.
As topology underlies geometry, one would expect that some Laws of Nature would
be expressed in terms of the elementary homotopy invariants of topology. Among
these are the degrees of maps and the index of vector fields.

Our method for discovering these laws follows Galileo. To the argument that
no one had seen an object travel at a constant velocity forever along a straight line,
Galileo replies: Let us assume it is true, derive its mathematical consequences, and
see if they relate to what is observed. Thus we begin by studying infinitesimal rigid
motions F on space-time M , and observe connections with electromagnetism, etc.
The idea of separating the physical from the mathematical arguments via Scholia
is borrowed from Newton’s Principia.
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Remark 1.4. Levels of notation.

We proceed by adding layers of notation to our space-time. We descend one
level for every choice we estimate we make. We begin at Level –1 with the inner
product and continue by choosing an orientation at Level –2. By Level –10 we have
chosen an orthonormal basis for the tangent space of M . We eventually end at
Level –16, which are the standard coordinates for Minkowski Space.

This approach permits us to understand that choosing an orientation is like
taking a complex conjugate. It also allows a clear view of Lorentz Transformations
at the various levels. The major technique of computation in this paper is given by
a Level –10 block matrix which allows Level –10 calculations to produce Level -2
statements.

Acknowledgements.

I have had very productive conversations with Barrett O’Neill, Stephen Par-
rot, and Solomon Gartenhaus. Gartenhaus gave me a key example which forced
me to think more deeply at the beginning of this work. Barrett O’Neill gave me
many ideas. The best one is the definition of the complexification map c. Barrett
O’Neill’s book Semi-Riemannian Manifolds [O] exposes space-time in a rigorous
mathematical manner. Stephen Parrott’s book [P] provided great stimulation and
guidance.

2. Notation and Preliminaries

A space-timeM is a smooth 4-dimensional orientable manifold with a Lorentzian
metric 〈 , 〉 defined on the tangent bundle T (M) and a nonzero future pointing time-
like vector field. If x ∈M , then Tx = Tx(M) will denote the 4-dimensional tangent
space over x. The space of vectors orthogonal to a vector u ∈ Tx will be denoted
by T ux .

A skew symmetric bundle map is a map F : T (M) → T (M) which covers the
identity on the base, is a vector bundle map, and is skew symmetric that is,

F (αvx + βwx) = αF (vx) + βF (wx) ∈ Tx (1)

and 〈F (vx), wx〉 = 〈vx,−F (wx)〉. (2)

Let ` be the vector bundle over M whose fibre `x is the vector space of skew
symmetric linear transformation Fx : Tx → Tx. Then the space of cross-sections
Γ(`) to ` corresponds to the space of bundle maps in the usual manner. Let Λ2(M)
be the bundle of two forms over M . Thus the fibre Λ2(M)x are bilinear antisym-

metric maps F̂x : Tx × Tx → R. Any two-form is a cross-section to Λ2(M).

Now ` is bundle equivalent to Λ2(M). Let ρ : ` → Λ2(M) so that ρ(Fx) = F̂x
where

F̂x(vx, wx) = 〈vx, Fx(wx)〉. (3)

The non-degeneracy of 〈 , 〉 implies that ρ is an isomorphism on each fibre, thus `
sets up a bijection between two-forms and bundle maps.

Level −1. Lorentz inner product.

Notation plays an important role in Mathematics and Physics. It is a powerful
aid to calculation. But notation can blur distinctions and confuse reasoning. For
that reason we will introduce notation in Levels. Each improvement of notation is
based on more and more choices. The above notation is called Level −1. As we add
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choices of frame fields and coordinates we descend eventually to Level −16, which
is the canonical coordinates of Minkowski Space-time. The number describing the
Levels approximates the number of choices made to introduce the notation. We
have already made one choice in Level −1 by assuming that 〈 , 〉 has signature
−+ ++, we could have assumed signature +−−−. Level 0 then has innerproduct
ε〈 , 〉 where ε is ±1. The geometry does not change with the change of ε. The
geodesics remain the same and skew-symmetric bundle maps remain the same so
the choice − + ++ does not affect our work. But in comparing our results with
other authors, be aware that the electro-dynamicists usually choose +−−−. Thus
S. Parrott [8] chooses +−−− where as O’Neill [9] chooses −+ ++.

Level −2. Orientation.

Since M is orientable, there is a volume form Ω ∈ Λ4(M). There are two choices
consistent with the metric, ±Ω. We choose Ω as the orientation. We could have
chosen −Ω. Now the Hodge dual is an isomorphism defined on Λ2(M), satisfying
∗(∗η) = −η for η ∈ Λ2(M). Under ρ : ` → Λ2(M) the Hodge dual corresponds to
an operator ∗ on Γ(`). It satisfies

(aF )∗ = aF ∗ and (F +G)∗ = F ∗ +G∗ and F ∗∗ = −F. (4)

Let u ∈ Tx(M) be an observer. That is u is a future pointing time-like vector
such that 〈u, u〉 = −1. Then we define

Eu = Fu and Bu = −F ∗u. (5)

Note that Eu and Bu ∈ T u. If we change the orientation, we obtain a new
∗′. This is related to the old ∗ by F ∗

′
= −F ∗. Thus for change of orientation, Eu

remains the same, but Bu becomes −Bu.

If v and w are space-like vectors in Tx, they span a space-like plane if and only
they are linearly independent and

v2w2 − 〈v,w〉2 > 0. (6a)

If

v2w2 − 〈v,w〉2 = 0, (6b)

they span a light-like plane and if

v2w2 − 〈v,w〉2 < 0 (6c)

they span a space-like plane.
Let u be an observer. We define the dot product and cross product on T um.

Definition 2.1. We define the dot product and the cross product in the space
T um. Let v and w ∈ T um. Define the dot product by

v ·w = v ·u w = 〈v,w〉 (7)

Then v2 = v · v and v ·w = vw cos θ where θ is defined to be the angle between v
and w. Define the cross product in T um by v ×w = v ×u w = the unique vector
orthogonal to v and w in T um of length |vw sin θ| so that Ω(u,v,w,v ×w) ≥ 0.
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This cross product satisfies the usual relations:

v ×w = −w× v

v × (αw + βx) = α(v ×w) + β(v × x)

v ×w = 000 if and only if αv = βw

(u× v) ×w = (w · u)v − (w · v)u

u · (v ×w) = −v · (u×w)

v · (v ×w) = 0

(8)

We use F ∗ to impose a complex structure on `. Define

eiθF = cos θF + sin θF ∗. (9)

Proposition 2.2. The action eiθ on Γ(`)x induces a complex structure.

Proof. Any complex number z = aeiθ, so z · F = eiθ(aF ). We check that

eiθ
′
(eiθF ) = ei(θ+θ

′)F and eiθ · (F + F ′) = eiθ · F + eiθ · F ′. �

Consider T (M)⊗ C. We define the innerproduct 〈 , 〉C on T (M)⊗ C by

〈iu, v〉C = 〈u, iv〉C = i〈u, v〉 when u, v ∈ Tx(M). (10)

If a and b, c and d are in T ux , we define

(a + ib)× (c + id) = (a× c− b× d) + i(b× c + a× d). (11)

Let `C be the bundle of linear maps F : Tx⊗C→ Tx⊗C skew symmetric with
respect to 〈 , 〉C. Let Fx ∈ `x act on Tx ⊗ C by

F (a + ib) = F (a) + iF (b). (12)

Define c : `→ `C and c : `→ `C by

cF = F − iF ∗ and cF = F + iF ∗. (13)

Note that changing the orientation means replacing F ∗ by F ∗
′

:= −F ∗. Hence
the complex structure is changed so that c becomes c = c′.

Proposition 2.3. c is a complex bundle map.

Proof. cFx is skew symmetric on Tx⊗C. Also c commutes with addition and
multiplication. It is complex because

c(eiθ · F ) = eiθ(cF ). (14)

This follows because

eiθ(cF ) = (cos θ + i sin θ)(F − iF ∗)
= cos θF + sin θF ∗ + i(sin θF − cos θF ∗)

= eiθ · F − i(eiθ · F ∗) = eiθ · F − i(eiθF )∗

= c(eiθF ).

�

We will show presently that c is injective.
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Scholium 2.4. Maxwell’s equations and Lorentz’ Law.

a) We chose ρ : `→ Λ2 to be given by (3), F̂ (v, w) = 〈v, F (w)〉, in order to agree
with the standard index conventions of tensor analysis. Parrott’s otherwise careful

book makes the opposite choice, F̂ (v, w) = 〈F (v), w〉, and is thus inconsistent with
his index conventions. This has little import for his book, since he deals mostly
with forms, but it could cause confusion if one is using skew symmetric operators.

b) Electro-magnetic tensors are two-forms. Classically they satisfy Maxwell’s
equations:

dF̂ = 0, d ∗ F̂ = J. (15)

We can write Maxwell’s equations in terms of skew symmetric bundle maps as
follows.

div F = j , div F ∗ = 0 (16)

where j is a one form. We may reduce this to one equation by extending div to the
complex case by div(iF ) = i div(F ). Then F satisfies Maxwell’s equation if and
only if div(cF ) is real.

c) The Lorentz Law: Suppose a particle with charge q is moving in an elec-

tromagnetic field F̂ with 4–velocity u. Then its acceleration is a = qFu where

ρ(F ) = F̂ . This is the reason we chose the symbol E to equal Fu. The charge is
motionless with respect to the u observer, hence its acceleration is given by the elec-
tric field E as seen by that observer. Also B = −F ∗u corresponds to the magnetic
field, as will be seen shortly.

Level −9. Orthonormal Bases. We may choose orthonormal vector fields
e0, e1, e2, e3, so

〈e0, e0〉 = −1 and 〈ei, ej〉 = δij . (17)

Already this notation restricts the topology of the M . It must be parallelizable
for such a basis to exist. Fortunately we can find local regions which admits these
orthogonal frame fields. Now F (ei) =

∑
Fijej . So 〈F (ei), ej〉 = Fij〈ej, ej〉. Hence

F is skew symmetric if and only if Fji〈ei, ei〉 = −Fij〈ej , ej〉. So we can represent
F by a matrix of the form

F =


0 E1 E2 E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 where F0i = Fi0 = Ei

and Fij = −Fji = Bk.

(18)

We find it convenient to partition this matrix into blocks. So

F =

(
0 ET

E ×B

)
. (19)

where E =

E1

E2

E3

 and B =

B1

B2

B3

. Here the notation ×B means

(×B)

 v1

v2

v3

 = (v1e1 + v2e2 + v3e3)× (B1e1 +B2e2 +B3e3),

or
(×B)v = v×B (20)
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for short. This assumes that e1 × e2 = e3. If e1 × e2 = −e3, then (×B)v = B× v.

Level −10. Oriented Orthonormal Bases. Same as in Level –9, but
here we require e1 × e2 = e3.

Now in Level –9 we have

F =

(
0 ET

E ×B

)
and F ∗ =

(
0 −BT

−B ×E

)
. (21)

Then

cF =

(
0 AT

A ×(−iA)

)
where A = E + iB (22)

Note that any matrix of the form

(
0 ET

E ×B

)
represents a skew symmetric

linear map.

Scholium 2.5. Lorentz transformation at level −2.

Let u and u′ be observers. Then

u′ =
1√

1− w2
(u+ w) (23)

where w is space-like in T ux . We call w the velocity of u′ relative to u. There is a
symmetric formula

u =
1√

1− w′2
(u′ + w′)

But note that w′ does not lie in the same subspace as w. However w = w′ and w
and w′ both lie in the u, u′ plane. Now if a particle moves along u′ as seen by u,
then

a = qFu′ =
q√

1− w2

(
0 ET

E ×B

)(
1
w

)
= q [(E ·w)u+ E + w ×B] /

√
1− w2.

(24)
This is a more familiar form of the Lorentz Law.

The block matrix of Level –10 gives a very effective way of discovering facts
about F . Most of the time we will use Level –2 proofs or Level –10 proofs. But
what are definitely superior are Level –2 statements.

Now from the block matrices of Level –10 we quickly find several facts.

Proposition 2.6. a) dimR `x = 6, so dimC `x = 3.
b) For a given observer field u, there is an F for every pair of vector fields E

and B in T u.
c) The map c : ` → `C is injective, since the map φu : ` → T u ⊗ C is a vector

bundle equivalence where

φu(F ) = cFu = Fu− iF ∗u = E + iB (25)

3. Key Relations

Using the notation of Level –10 we obtain the following facts by straight forward
calculation.
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Lemma 3.1. Let the commutator be denoted by [x, y] = xy − yx.
a) (×B)(×A) = ABT − (A ·B)I
where I is the 3× 3 identity matrix and all vectors are column vectors.
b) [(×B), (×B′)] = ×(B′ ×B).

c) E′ET −EE
′T = ×(E′ ×E).

d) ×(B + B′) = ×B +×B′.
e) (×B)T = ×(−B) = −(×B)
f) vT (×B) = (B× v)T

Proof of f).

vT (×B) = [(×B)Tv]T = [×(−B)v]T

= [v× (−B)]T = [B× v]T .

�

A key result is the following

Theorem 3.2.

FF ∗ = F ∗F = −(E ·B)I.

Proof. Use (21) and multiply out using Lemma 3.1a.

Corollary 3.3. 〈Fv, F ∗v〉 = (E·B)〈v, v〉 for any v ∈ T (M). Hence Eu·Bu =
Eu′ ·Bu′ for any two observers.

Proof.

〈Fv, F ∗v〉 = −〈F ∗Fv, v〉 = −〈−(E ·B)v, v〉
= E ·B〈v, v〉.

Thus Eu′ · (−Bu′) = E ·B(−1). �

Corollary 3.4. −E · B = λFλF∗ where λF is the eigenvalue for an eigen-
vector s of F and λF∗ is the eigenvalue of s for F ∗.

Proof. Since F and F ∗ commute, they have a common eigenvector s. Then

λF∗λF s = F ∗Fs = −(E ·B)s.

�

Corollary 3.5. F 2 − F ∗2 = (E2 −B2)I.

Proof. Apply Theorem 3.2 to (F + F ∗)(F + F ∗)∗. So

(F + F ∗)(F + F ∗)∗ = −〈(F + F ∗)u,−(F + F ∗)∗u〉I
−(F 2 − F ∗2) = −(E−B) · (B + E)I

F 2 − F ∗2 = (E2 −B2)I.

The second equation follows from (4) and the definition of E and B. �

Corollary 3.6. E2
u −B2

u = E2
u′ −B2

u′ .

Corollary 3.7. λ2
F − λ2

F∗ = E2 −B2.
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Definition 3.8. Let TF = 1
2 (F 2 + F ∗2). Thus TF is a bundle map which is

symmetric with respect to 〈 , 〉.

Proposition 3.9. TF = F 2 − (E2−B2)
2 I.

Proof. Use Corollary 3.5.

Proposition 3.10.

TF =

[
E2+B2

2 −(E×B)T

E×B EET + BBT − E2+B2

2 I

]
.

Proof. Compare [P], p.117, equation (28). Use equations Lemma 3.1a and
Proposition 3.9. �

Corollary 3.11. Trace (TF ) = 0.

Corollary 3.12. Trace (F 2) = 2(E2 −B2), hence

TF = F 2 − 1

4
tr(F 2)I.

Proof. Use Corollary 3.11 and Proposition 3.9.

Scholium 3.13. Energy-Momentum tensor.

a) Physically TF is a multiple of the energy-momentum tensor. See [P], p.116,
equation (20).

b) The Poynting 4-vector as seen by observer u is

Tu =
E2 +B2

2
u+ E×B. (26)

Thus E2+B2

2 is interpreted as the energy of the electromagnetic field F , and E×B
is interpreted as the 3-momentum per unit volume of the field F .

4. The Complex Structure and Commutators

Using the commutator relations Lemma 3.1b and c and matrix multiplication,
we obtain the following key result for commutators [F1, F2] = F1F2 − F2F1.

Theorem 4.1.

[F1, F2] =

[
0 (−E1 ×B2 −B1 ×E2)T

(−E1 ×B2 −B1 ×E2) ×(E1 ×E2 −B1 ×B2)

]
In other words

[F ′, F ]u = −E′ ×B−B′ ×E

−[F ′, F ]∗u = E′ ×E−B′ ×B.

We remark that this result also holds for complex F1 and F2 since the argument is
just formal.
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Corollary 4.2.

[F1, F2]∗ = [F1, F
∗
2 ] = [F ∗1 , F2]. (27)

Hence

ei(θ+φ) · [F1, F2] = [eiθ · F1 , eiφ · F2]. (28)

Proof. (27) follows from (Theorem 4.1) and (28) follows from (27).

Hence the complexification of Γ(`) commutes with the Lie algebra structure of
Γ(`).

Theorem 4.3.

[cF, cG] = 2c([F,G]).

Proof.

[cF, cG] = (F − iF ∗)(G− iG∗)− (G− iG∗)(F − iF ∗)
= FG− F ∗G∗ − i(FG∗ + F ∗G)−GF +G∗F − i(−GF ∗ −G∗F )

= [F,G] + [G∗, F ∗]− i([F,G∗] + [F ∗, G])

= [F,G] + [G,F ]∗∗ − i([F,G] + [F,G])∗

= 2([F,G]− i[F,G]∗) = 2c[F,G].

where the last equality comes from the definition of c, and the previous two equal-
ities come from (27) and (4). �

Corollary 4.4.

(c[F1, F2])u = i(E1 + iB1)× (E2 + iB2)

for observer u.

Proof. c[F1, F2] = 1
2 [cF1, cF2] by Theorem 4.3. Now cF1 =

(
0 AT

1

A1 ×(−iA1)

)
where A1 = E1 + iB1 and similarly for cF2. Now by Theorem 4.1 for complex F ,
we have

[cF1, cF2]u = −A1 × (−iA2)− (−i(A1)×A2)

= 2iA1 ×A2 = 2i(E1 + iB1)× (E2 + iB2).

�

Theorem 4.5. Let F =

(
0 AT

A ×C

)
where A and C are complex 3-vectors.

Then F2 = kI if and only if k = A ·A and C = ±iA.

Proof. Assume F2 = kI. Then F2w = kw for any vector w. For w =


1
0
0
0


we get A · A = k and A × C = 0. Thus C = sA for some s ∈ C. Hence

F =

(
0 AT

A ×(sA)

)
and F2 = (A · A)I. Apply

(
0
v

)
to this last equation. We

obtain

(v ·A)A + (v × sA)× (sA) = (A ·A)v.
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Using the third and fourth equations of (8) and rearranging terms we get

(1 + s2)(A · v)A = (1 + s2)(A ·A)v

for arbitrary v. Thus 1 + s2 = 0. Hence s = ±i.
For the converse, first suppose s = −i, so F =

(
0 AT

A ×(−iA)

)
. Then F =

F − iF ∗ = cF where cFu = E + iB = A. Then

F2 = (cF )2 = (F − iF ∗)2 = F 2 − F ∗2 − i(FF ∗ + F ∗F )

= (E2 −B2)I − 2i(−E ·B)I

= (E2 −B2 + 2E ·B)i)I

= (E + iB) · (E + iB)I = (A ·A)I.

Similarly if s = i, F2 = (A ·A)I implies F2 = (A ·A)I. �

Corollary 4.6.

(cF )2 = (A ·A)I = λ2
cF I

(cF )2 = λ2
cF I.

Proof. The inner equality of the first line was proved above. Apply this
equation to an eigenvector s to get the last equality of the first line. The second
equality follows from complex conjugation.

Corollary 4.7. cF1cF2 + cF2cF1 = 2(A1 ·A2)I.

Proof.

cF1cF2 + cF2cF1 = (cF1 + cF2)2 − cF 2
1 − cF 2

2

= [(A1 + A2) · (A1 + A2)− (A1 ·A1 −A2 ·A2]I = 2(A1 ·A2)I.

�

Theorem 4.8. cF1cF 2 = cF 2cF1.

Proof. We must show that [cF1, cF 2] = 0. Apply theorem 4.1 where Ej = Aj

and Bj = (−1)jiAj for j = 1, 2. Then all cross products must be zero in Theorem
4.1 and we obtain the desired result. �

Remark 4.9. Clifford Algebras.

According to the first proposition of [LM], Corollary 4.6 is a clue that c :
`x → C(4) involves representations of Clifford modules. Here C(4) is the space of
linear maps on Tx⊗C, a 16 dimensional space which is a complex Clifford Algebra.
The image of c in C(4) generates the Quaternions tensored with C. The complex
conjugate c generates another complex representation of the Quaternions in C(4).
The two representations commute, and they generate all of C(4) under composition.
This probably has something to do with the fact that so(4) ' so(3) × so(3)? But
it might be that this particular representation by means of F − iF ∗ is new.
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Scholium 4.10. Pauli Matrices.

The Pauli matrices of physics play an important role in quantum mechanics.
The relations among their products are their key features, the actual form of the
matrices is not important. Thus we have σσσx, σσσy, σσσz so that {σσσi,σσσj} = 2δijI and
[σσσx,σσσy] = 2iσσσz, [F, III, 11-4]. We get the same relations using cF as follows. Let
Ex, Ey, Ez be the F with zero B field and with unit E fields pointing along the

x, y, z axes, respectively, of Minkowski space. So for example Ex =

(
0 ex
ex 0

)
.

Denote σσσx = cEx, σσσy = cEy and σσσz = cEz . Then σσσx, σσσy, σσσz satisfy the Pauli
matrix relations. In addition, σσσx, σσσy, σσσz commute with the σσσ’s and satisfy the
Pauli relations among themselves except that σσσxσσσy = −iσσσz . Also σσσx, σσσy, σσσx, σσσy
generate the Clifford algebra C(4). This can be shown by brute force.

5. Eigenvectors

Recall our notation in which cF = cF and λcF = λcF .

Proposition 5.1. cF ◦ cF = 2TF . Hence λcFλcF = 2λT .

Proof. cF ◦ cF = (F − iF ∗)(F + iF ∗) = F 2 + F ∗2 since FF ∗ = F ∗F . Now
apply the definition of TF , (Definition 3.8).

Corollary 5.2.

Teiθ·F = TF .

Proof.

Teiθ·F =
1

2
c(eiθ · F ) ◦ c(eiθ · F )

=
1

2
(eiθcF ) ◦ e−iθcF =

1

2
cFcF = TF .

�

Corollary 5.3. T 2 = λ2
T I where λT is an eigenvalue of T .

Proof. T 2 = 1
4 ((cF )(cF ))2 = 1

4 (cF )2(cF )2 = 1
4 λ

2
cFλ

2

cF I by Theorem 4.8. So
T 2 = λ2

T I.

Theorem 5.4. Let F ∈ Γ(`) and let λF be an eigenvalue of F and λT be an
eigenvalue of TF .

a) λT =

√
(
E2 −B2

2
)2 + (E ·B)2

b) λF = ±
√
λT +

(E2 −B2)

2
, λF∗ = ±

√
λT − (E2−B2)

2 .

c) λ4 − (E2 −B2)λ2 − (E ·B)2 , or equivalently,
λ4 − (λ2

F − λ2
F∗)λ

2 − (λFλF∗)
2, is the characteristic polynomial of F .

Proof. Corollaries 3.4 and 3.7 gives the equations λFλF∗ = −E ·B (Corollary
3.4) and λ2

F − λ2
F∗ = E2 − B2 (Corollary 3.7). Eliminating λF∗ from (Corollary

3.4) and (Corollary 3.7) gives λ4
F − (E2 − B2)λ2

F − (E · B)2 = 0. Solving gives

b). Then a) follows from λT = λ2
F −

(E2−B2)
2 which follows from Corollary 3.7. To

be absolutely certain that c) is the characteristic polynomial, one must calculate
det(F − λI) for F represented as a matrix in (18). �
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Proposition 5.5. If s is an eigenvector of F ∈ `x, then λF 〈s, s〉 = 0. So if
λF 6= 0, then s is a null vector. Both λF and λF∗ are zero if and only if λT = 0.

In that case s is a multiple of E2+B2

2 u+ E×B, which is null.

Proof. λF 〈s, s〉 = 〈λF s, s〉 = 〈Fs, s〉 = −〈s, Fs〉 = −λF 〈s, s〉. The same
argument holds for the complex cF , so λcF 〈s, s〉 = 0. Since λT = 1

2 λcFλcF , we get
the second sentence. Now λT = 0 if and only if E = B and E ·B = 0. Under those

conditions, use (19) to show that E2+B2

2 u+ E×B is an eigenvector and is a null
vector. �

Scholium 5.6. The Null and non null cases.

The null and non-null cases are when λT = 0 and λT 6= 0 respectively. If λT = 0
then E = B and E ·B = 0. This is called the null case mathematically. Physicists
identify an electro-magnetic field with E = B and E · B = 0 as the radiative or
wave-like case. In the null case λF = λF∗ = λT = λcF = 0. The characteristic
polynomial is λ4, T = F 2, F 2u is the eigenvector of F 2.

Proof. F 2(F 2u) = F 4u = T 2u = 0. So s = F 2u = Tu = E2+B2

2 u+ E×B.
(The Poynting 4-vector). Now s is null, i.e. 〈s, s〉 = 0. Since 〈s, s〉 = 〈Ts, T s〉 =
〈T 2s, s〉 = 〈0, s〉 = 0. So image (T 2) = span s. Then dim ker T = 3. �

Now consider the non-null case. Then λT 6= 0. Hence λcF 6= 0, so one of λF or
λF∗ is not zero. Hence there are two real null eigenvectors of cF , s for λcF and s−
for −λcF . Both s and s− are linearly independent. Since T = 1

2 cFcF , s and s−
are both eigenvectors of T with eigenvalue λT > 0.

Let Π+ be the space of eigenvectors of T in Tx(M) corresponding to λT and
let Π− be the space of eigenvectors corresponding to −λT . Then Π+ = image (Φ+)
and Π− = image (Φ−) where Φ+ = λT I + T and Φ− = −λT I + T . Now Φ± are
symmetric with respect to 〈 , 〉. Note that Φ2

± = ±2λTΦ± and Φ+Φ− = Φ−Φ+ = 0,
all because of the fact that T 2 = λ2

T I. From this we obtain:

Proposition 5.7. Let F be non null.
a) Π+ is orthogonal to Π−.
b) Π+ is time-like and Π− is space like.
c) dim Π+ = dim Π− = 2.
d) F (Π±) ⊂ (Π±), i.e. Π± are invariant subspaces of F .

Proof. The following two lemmas prove a), b) and c). And d) follows since
for v ∈ Π± we have ±λTF (v) = F (±λT v) = F (T (v)) = T (F (v)). So F (v) ∈ Π±.�

Lemma 5.8. Suppose Q : Tx → Tx is symmetric with respect to 〈 , 〉. If Q has
a time-like eigenvector, then Q has an orthonormal frame of eigenvectors.

Proof. Let u be a time-like eigenvector of Q. We may assume that 〈u, u〉 =
−1. Consider T ux , the space of vectors orthogonal to u. Then Q : T ux → T ux since
〈u,Qv〉 = 〈Qu, v〉 = λQ〈u, v〉 = 0 if v ∈ T ux . Hence Q : T u → T u. But T u is
space-like and 〈 , 〉 on T u is positive definite and Q is symmetric. Hence there is an
orthonormal set of eigenvectors on T u by a famous theorem. Call them e1, e2, e3.
Then u, e1, e2, e3 is the desired frame. �
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Lemma 5.9. Let Q : Tx → Tx be a linear map which is
a) symmetric with respect to 〈 , 〉, i.e. 〈Qv,w〉 = 〈v,Qw〉.
b) Q2 = λ2I.
c) Trace (Q) = 0.
d) 〈u,Qu〉 < 0 for some future timelike u.

Then if λ = 0, there is a null eigenvector s so that image (Q) = span s. If
λ 6= 0, then the set of all eigenvectors corresponding to ±λ form two 2 dimensional
subspaces Π±, and Π+ is orthogonal to Π−, and Π+ is time-like and Π− is space
like.

Proof. Suppose λ = 0. Then 〈Qv,Qv〉 = 〈Q2v, v〉 = 0 for all v ∈ Tx. So the
image of Q consists of null-vectors. Since 〈u,Qu〉 < 0 for some time-like u, we see
that Qu 6= 0 and that Q(Qu) = 0. So Qu is the desired s.

Suppose λ 6= 0. Let 〈u,Qu〉 < 0 for observer u. Consider λu + Qu. Then
〈λu + Qu, λu + Qu〉 = −2λ2 + 2λ〈u,Qu〉 < 0. So λu + Qu is time like. But
Q(λu+Qu) = λQu+Q2u = λ(λu+Qu). So λu+Qu is a time-like eigenvector. Thus
by Lemma 5.8, there is an orthonormal eigenvector frame. Since trace (Q) = 0,
two of the vectors of the frame correspond to λ and generate a time-like plane Π+

and the orthogonal two generate Π− and are space-like. �

Corollary 5.10. If Q : Tx → Tx is as in the theorem above, there is an
antisymmetric F : Tx → Tx so that TF = Q.

Proof. If λ 6= 0, Π+ intersects the light cone in two null-subspaces generated

by, say, s+ and s− respectively. Let λF =
√

2λ. Define Fs+ = λF s+ and Fs− =
−λF s−. Let F (v) = 0 for all v in Π− so we are defining λF∗ = 0. Then there is a
unique linear map which satisfies these conditions and Q = F 2 − λ2

F I. Note F is
antisymmetric on Π− since it is trivial and on Π+ since

〈αs+ + βs−, F (αs+ + βs−)〉 = 〈αs+ + βs−, αλF s+ − βλF s−〉 = 0,

since s+ and s− are null.
If λ = 0, choose observer u and let s = Qu. Choose E and B ∈ T u so that

s,E,B are in the kernel of Q and are mutually orthogonal and of sufficient length
so that s = E2u + E × E where B = E. Then let Fu = E, F (B) = 0, F (s) = 0
and F (E) = s. Then F is determined and F 2 = Q. �

Remark 5.11.

The question is, given Q over TM , does there exist an F so that Q = TF ?

6. Complex Eigenvectors

Let φ+ = λcF I + cF and φ− = −λcF I + cF . Let φ+ = λcF I + cF and

φ− = −λcF I + cF . Since cF 2 = λ2
cF I and cFcF = cFcF , we obtain the following

facts.

Theorem 6.1. Let cF : Tx ⊗ C→ Tx ⊗ C and cF 6= 0.
a) The image of (φ±) equals the ±λcF eigenspace of cF and the image of (φ±)

equals the ±λcF eigenspace of cF .
b) The kernel of (φ±) equals the ∓λcF eigenspace of cF , and the kernel of (φ±)

equals the ∓λcF eigenspace of cF .
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c) The eigenspaces of cF and cF consist of null vectors.
d) The eigenspaces of cF and cF have dimension 2.

Proof.

We easily see that

cFφ± = ±λcF φ±, cF φ± = ±λcF φ± (29)

φ±φ∓ = 0, φ± φ∓ = 0 (30)

〈φ±v, w〉 = 〈v, φ∓w〉 (31)

a) follows from (29)
b) follows from (30) and a)
c) follows from a) and (31).
d) For an observer u, the vectors φ+φ+u and φ+φ−u are eigenvectors of cF by

(29).
Now φ+φ+u is an eigenvector of cF corresponding to λcF as well as an eigen-

vector of cF corresponding to λcF . On the other hand φ+φ−u is an eigenvector of

cF corresponding to λcF and also an eigenvector of cF corresponding to −λcF . If
φ+φ+u is linear dependent on φ+φ−u, then −λcF = λcF , hence λcF = 0, hence F

is null. Thus if F is nonnull, φ+φ+u and φ+φ−u are linearly independent eigen-
vectors. If F is null, then F 2u = E2u + E × B and cFu = E + iB are linearly
independent eigenvectors of the eigenspace. Hence dim(image(φ+)) ≥ 2 and simi-
larly dim(ker(φ+)) ≥ 2. Therefore d) is proved. �

Lemma 6.2. Suppose a and b are real vectors in Tx. Then a+ ib ∈ Tx ⊗ C is
null if and only if either a and b are linear dependent null vectors, or a and b are
both space–like and have the same length and are orthogonal.

Proof. Let v = a + ib. Now 〈v, v〉 = 0 if and only if 〈a, a〉 = 〈b, b〉 and
〈a, b〉 = 0. If a or b is null, so is the other. Since they are orthogonal null vectors,
they must be linearly dependent.

On the other hand, if one of a or b is space–like, so is the other and they have
equal lengths and are orthogonal. Neither a or b can be time–like, since if one were,
they both would be. But no two time–like vectors are orthogonal. �

Lemma 6.3. Let a and b be space–like in Tx. Then a and b span a space–
like plane if and only if a2b2 − 〈a,b〉2 > 0. Thus if a and b are orthogonal and
space–like, they span a space–like plane.

Proof. 〈αa+βb, αb+βb〉 is greater than zero if and only if the determinant
of (

a2 〈a, b〉
〈a, b〉 b2

)
is greater than zero.

Lemma 6.4. Any null subspace of Tx⊗C has a degenerate inner product. That
is any two vectors in a subspace of null vectors are orthogonal.

Proof. Suppose s and s′ are null vectors in a null subspace V . Then s+ s′ is
in V . Hence 〈s+ s′, s+ s′〉 = 0. Expanding the left side yields 〈s, s′〉 = 0.



16 DANIEL HENRY GOTTLIEB

Remark 6.5. Null planes.

Suppose E + iB ∈ T ux ⊗ C is a null vector in the rest space of an observer u.
Then s = E2u+E×uB is a real null vector. Now s and E+iB span a null plane V ,
which is the image of cF where F is a null skew symmetric operator with Fu = E
and F ∗u = −B.

Also s− = E2u−E×B is a real null vector. Again s− and E + iB span a null
plane V ′, which is the image of cG for a null G so that Gu = E and G∗u = B.

Thus we have two kinds of null planes, those which are the images of null cF
and those which are the images of null cF .

We can think of these null planes from a geometric point of view. Suppose
E + iB is a space–like null vector. Then E and B span a space–like plane Πs ⊂ Tx,
by Lemma 6.3. Let Πt be the time–like plane orthogonal to Πs. Then Πt intersects
the light cone in two one–dimensional null lines. One of these real null lines and
E+ iB spans a null plane and the other line and E+ iB spans the “conjugate” null
plane containing E + iB.

Thus given a space–like null vector v, there are exactly two null planes contain-
ing v. We say these two planes are ∗–conjugate with respect to v. If V is a null plane
and contains a light–like null vector v, then we say that V is ∗–conjugate to V with
respect to v. The planes which are the image of a null cF are called ∗–consistent
null planes and those which are the image of a null cF are called ∗–inconsistent.

Lemma 6.6. In Tx ⊗ C
a) Every null plane contains a real null vector
b) The eigenspaces of cF are ∗–consistent planes. The eigenspaces of cF are ∗–

inconsistent planes.
c) The intersection of a ∗–consistent and a ∗–inconsistent plane is one dimen-

sional.

Proof. a) Choose an appropriate basis and use analysis to obtain the condi-
tions for a null–plane.
b) By continuity and connectivity of `x ⊕ C.
c) Let V be the null plane spanned by A = E + iB and s = E2u+ E×B for u an

observer orthogonal to E and B. Then V is both the image and kernel of a null
cF such that cFu = A, since cF 2 = 0. Let W be a ∗–inconsistent null plane.
It is the image of some null cG. Now W 6= V since W is ∗–inconsistent, so
cF (W ) 6= 0. Since cF and cG commute by Theorem 4.8, we see that W∩V 6= 0.
So W ∩ V is one dimensional. �

Theorem 6.7. Let F and G be skew symmetric bundle maps. Let φ = λcF I+
cF and γ = λcGI+ cG. Note that the choice of which of the two eigenvectors ±λcF
is not reflected in the notation.
a) φγ = γφ.
b) The image of (φγ) is one dimensional and is generated by a null vector which

is an eigenvector of both cF and cG with associated eigenvalues λcF and λcG
respectively.

c) The image of (φφ) is generated by a real null vector s which is an eigenvector
of cF corresponding to λcF .

Proof.

b) From (a), the image of φγ is the one dimensional sub space ( image (φ)) ∩
( image (γ)).
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c) Let γ = φ and apply (b).

Corollary 6.8. The eigenvector s for a skew symmetric bundle map satisfies
the following equation in terms of Eu and Bu,

s = 2(λTu+
E2 +B2

2
u+ E×B + λFE− λF∗B).

Proof. Recall s = φφu where φγ = γφ. Expand that equation and use
equations (5), (13), and (26) and Proposition 5.1. �

Define Ψ : ` ⊕ C ⊕ T (M) −→ T (M) ⊗ C by Ψ(F, α, v) = (αI + cF )v. Let
Ψv : `⊕ C −→ T (M)⊗ C be defined by

Ψv(F, α) = Ψ(F, α, v).

Theorem 6.9. Ψv : `⊕ C −→ T (M)⊗ C is a bundle equivalence if v is a non
null vector field.

Proof. Both bundles are 4 dimensional and Ψv is a bundle map, so we only
need to show that Ψv has zero kernel. So assume (αI + cF )v = 0. Then v is
an eigenvector of cF , hence by Theorem 6.1c we have, in contradiction to the
hypothesis, that v is a null vector.

7. Eigenbundles

Given a skew symmetric F ∈ Γ(`), we define a map ψF : M −→ C by setting

ψF (m) = λ2
cFm = (E2 −B2) + 2i(E ·B) (32)

evaluated at m.
We define a sequence of open submanifolds M ⊃M0 ⊃M1 based on the given

F .

M0 = {m ∈M | Fm is defined and not identically zero} (33)

M1 = {m ∈M | Fm is not null} (34)

Since Fm is null if and only if λcF = 0, we see that

ψ−1
F (C− 0) = M1. (35)

Definition 7.1. We define the degree of F , denoted deg F , to be the degree
of ψF : M1 −→ C − 0. We define the degree of ψ : M1 −→ C − 0 to be the integer
which corresponds to the generator of the subgroup (image (ψ)) ⊂ H1(C− 0) ∼= Z.

Remark 7.2. The degree of ψ in Definition 7.1 is related to the usual Brouwer
degree of Algebraic Topology. This can be seen in [G4]. Note, the definition of
deg ψ yields a non–negative integer, in contrast to the usual Brouwer degree.

Theorem 7.3. The following are equivalent:
a) degψ is even.
b) There is a line bundle of eigenvectors of F over M1.
c) The invariant plane bundle Π+ is an orientable 2 plane bundle over M1.
d) There is a nonzero vector field of null eigenvectors of F over M0.
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Proof. Consider M̃1, the set of pairs (m,α) where m ∈ M1, and α ∈ C − 0

is equal to either one of the two eigenvalues ±λcFm . Then M̃1 is a double covering

space of M1. If M̃1 is not connected, then it is possible to choose one α at each
m in a continuous way over M1. The choice of the eigenvector corresponding to
α(m) gives the line bundle of eigenvectors. Conversely, a line bundle of eigenvectors

over M1 will select a continuous choice of corresponding eigenvalues, so M̃1 will be
disconnected. Now we have a commutative diagram

M̃
ψ̃−−−−→ C− 0yp ysq

M −−−−→
ψ

C− 0

where p(m,α) = m and ψ̃(m,α) = α and sq(z) = z2. If M̃ is not connected, there

is a cross–section s to p. Then deg ψ = deg (sq ◦ ψ̃ ◦ s) is even since the degree of
sq is 2. This proves that (a) and (b) are equivalent.

For (c), the plane bundle Π+ of time–like invariant planes of F is also the
eigenbundle of TF corresponding to λT > 0. Now we can always choose a nonzero
time–like vector field u over M . Then Φ+(u) = λTu + Tu is a non zero vector
field of eigenvectors of T . Hence there is a trivial line sub–bundle ε in Π+. Hence
Π+ = ε ⊕ ν, where ν is the orthogonal line bundle. If Π+ were orientable, then
ν would be trivial and we could use the direction in ν to choose at each m one of
the two null eigenvector subspaces in (Π+)m. Hence we would get a line bundle η
of eigenvectors of F . Conversely, if the eigenbundle η existed, then Π+ = ε ⊕ η.
Since η is a trivial line bundle (because M is time–oriented) this implies that Π+

is orientable.
Now d) is equivalent to b) because we assumed that M was time orientable.

Thus the line bundle over M0 must be trivial and hence gives a nonzero vector field
over M1. This vector field obviously extends continuously over M0. In fact, the
equation of Corollary 6.8 gives the vector field, the possible ambiguity of the choice
of eigenvectors being eleminated by the fact that the bundle in b) is trivial. The
converse, d) implies b), is obvious. �

Scholium 7.4. The Phase of ψ.

We may write ψF (m) = λ2
cFm

= 2λTme
iα for some angle α, which we will call

the phase of ψ. Suppose we have two paths in space–time from A to B which do not
pass over radiation. If we measure the difference of the phase after having traveled
from point A to point B along the two paths, we will find that they differ by a
multiple n of 2π. If n is not zero, then the two paths linked wave-like regions. If n
is even, then the continuous extension of the same eigenvector at A along the two
paths result in the same eigenvector at B.

Corollary 7.5. Let F be a skew symmetric bundle map. There is a plane
sub–eigen–bundle η of T (M0)⊗ C if and only if degψF is even.

Proof. If deg ψF is even, then we can choose continuously one λcFm out of
the two possible. Thus φ = λcF I + cF is a well–defined bundle map since there is
no ambiguity with λcF . Now over M0, the image of (φm) is always a two plane by
Theorem 6.1d. The unambiguous choice of λF gives a bundle map φ whose image
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is a plane bundle η. Conversely, if η is a plane eigenbundle, it selects the eigenvalue
λcFm at each m which correspond to the plane ηm.

Scholium 7.6. A new electro-magnetic invariant.

First note that from Corollary 6.8, that for any observer the vectors of the form

E×B + λFE− λF∗B (36)

can never be zero as long as F is defined and not identically equal to zero. Now if
deg ψF is even, then (36) gives rise to a vector field which is nonzero over M0. The
index of that vector field on any closed compact space-like manifold whose boundry
is contained in M0 must be an invariant of the field, independent of the observer
field. The index is defined in [G5], for example.

Corollary 7.7. Let F ∈ Γ(`) and suppose that E · B = 0 for all m ∈ M0.
Then degψF = 0 and ker(F ) is a plane sub–bundle of T (M0).

Corollary 7.8. If 0 ∈ C is a regular value of ψF , then degψF = 1.

Proof. If 0 is a regular value of ψF we can find a small circle about 0 which
lifts to M1. Thus 1 ∈ Z ∼= H1(C− 0; Z) is the image of ψ∗.

Scholium 7.9. Electrons.

a) A classical free electron at rest in Minkowski space M can be represented by

an F such that E(r, t) = − r

r3
and B(r, t) = 0. Thus M0 = M1 = M− (the

time axis). The deg of the free electron is zero by Corollary 7.7.
b) A classical electron at rest in a constant magnetic field will be represented by

an F such that E(r, t) = − r

r3
and B = ex. Then M0 = M− (the time axis)

and M1 = M0 − S where S in each space slice is a circle of radius 1 in the yz
plane centered on the electron. The deg of the election in a constant magnetic
field is 1 by Corollary 7.8.

c) An assembly of point charges at rest in a constant magnetic field will have
odd degree if the number of charged points is odd. This follows from the
considerations of Scholium 7.6: If the degree were even, then (36) gives a
nonzero space-like vector field everywhere except at the charged points. The
vector field near a charged point points outward if the point has positive charge
and inward if the point has negative charge, as can be seen by the equations of
Theorem 5.4 where E is much larger than B. Thus the index of each singularity
contributes a positive or negative 1 to the index of the vector field, the sign of
the 1 depending upon the sign of the charge times the sign of the eigenvalue
λF . Since the number of charges is odd, the index of the vector field cannot
be zero by the summation equation (8) of [G5]. Hence the index is not zero by
hypothesis. On the other hand the index of the vector field must be zero (by
the existance of defects, property (8) of [G5]), since far away from the points
it looks like the constant B field (seen by using theorem 5.4 for B much larger
than E). Thus the vector field cannot exist, so the degree must be odd.

Scholium 7.10. Electro–Magnetic Duality Rotation.

Equation (9) is called the Electro–Magnetic Duality Rotation by Physicists.
We noted that TeiθF = TF in Corollary 5.2. Thus for any map ϕ : M0 −→ S1, the
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skew symmetric bundle map ϕ · F defined by (ϕ · F )m = ϕ(m)Fm gives rise to the
same T as does F .

On the other hand, suppose F ′ = ϕF . Then ψF ′ = ϕ2ψF . So ψ′∗ = (2ϕ∗ +ψ∗)
on the first homology groups. Thus deg ψ′ = deg ψ + 2k for some k. So deg (ϕF )
has the same parity as deg (F ).

Theorem 7.11. The space of skew symmetric operators over M0 which gives
rise to the same T is homeomorphic to the space of maps ϕ : M0 −→ S1. The path
components of map (M0, S

1) correspond to the elements of H1(M0;Z).

Proof. We only need show that given F ′m and Fm with the same T , there is
a θ such that F ′m = eiθFm. Now F ′m and Fm must have the same invariant planes
and the same eigenvectors. Also λ2

F +λ2
F∗ = 2λT and the same holds for F ′. So we

can rotate F until λF = λF ′ and λF∗ = λF ′∗ . So F and F ′ agree on Π+. Similarly
they agree on Π−. For null F and F ′, the E and B must have the same length and
same E×B, so one can rotate into the other.

Scholium 7.12. Electron “States” for the same Energy Momen-

tum.

a) For the free electron F of 7.10, H1(M0;Z) ∼= 0. So all the “states” eiθF are
homotopic to one another. All of them have eigenvector bundles.

b) For the electron in a constant magnetic field, F , there are infinitely many
homotopy classes of “states” giving rise to the same energy momentum TF .
Since H1(M1;Z) ∼= Z, these states correspond to the integers. Each state has
odd degree. Thus there is no eigenvector line bundle over M1 for any state.

8. Lorentz Transformations

Lorentz Transformations play an important role in Physics. They are an artifact
of Level−16, the standard coordinates of Minkowski space. As we move up through
the levels of notation they seem to dwindle in importance. That is because one of
their main functions, relating different choices of systems of notation, is eliminated
as the choices are eliminated. What remains are two things, changes of observers in
Level −2 as mentioned in Scholium 2.5, and the Gauge group of bundle isometries of
Level 0. At these levels we obtain a fresh perception of the Lorentz Transformation.

Level −16. Minkowski Space–time.

At Level −10 we have coordinates for the tangent space, but not for the man-
ifold. A choice of 4 functions coordinatizes M . We need to tie in our bases of
the tangent bundle with the gradients of the coordinate functions. We can use the
gradients as a basis, but usually they will not be orthonormal. Or, we can use the
Gram Schmidt process on them to get a more complicated orthonormal basis. The
best thing would be to find coordinates whose gradients are orthonormal. That is
what is done for Minkowski space.

So let M = R4. Put coordinates t, x, y, z on M with orthonormal gradients
∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z
. We could choose another such coordinate system t′, x′, y′, z′. The

formulas relating them are called the Lorentz transformation. See [F], page I - 15
- 3.
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Scholium 8.1. Lorentz Transformations of Electro-Magnetism.

Feynman in [F],( Vol. II, Table 26.4), carries out the Lorentz transformation
in Level −16, and then tries to express the results in notation at Level −2. Calling
E′ and B′ the transformed version of the original E and B, he relates them by the
formula

E′‖ = E‖

E′⊥ =
(E + w ×B)⊥√

1− w2

B′‖ = B‖

B′⊥ =
(B−w ×E)⊥√

1− w2
.

(37)

Here E′‖ means the component of E′ parallel to the relative velocity w of the two

coordinate frames and E′⊥ means the component of E′ orthogonal to w. This
formula is both correct and meaningless.

Let us give a Level −2 derivation of (37). Let E = Fu and B = −F ∗u. Let

u′ =
1√

1− w2
(u+ w). Then E′ = Fu′ and B′ = −F ∗u′. Substituting (21) and

(23) into these formulas results in

E′ =
E ·w√
1− w2

(
u+

w

w2

)
+

1√
1− w2

(
E− E ·w

w2
w + w×u B

)
(38)

B′ =
B ·w√
1− w2

(
u+

w

w2

)
+

1√
1− w2

(
B− B ·w

w2
w + w ×u E

)
(39)

Each of the four terms on the right hand sides of the above equations are orthogonal
to u′ and hence lie in T u

′
. The last terms in each equation are orthogonal to w and

lies in a plane orthogonal to the u, u′ plane. These are E′⊥ and B′⊥ respectively.
The first terms in each equation are the parallel components

E′‖ =
(E ·w)√
1− w2

(
u+

w

w2

)
and B′‖ =

(B ·w)√
1− w2

(
u+

w

w2

)
(40)

But E‖ =
E ·w
w

w and B‖ =
B ·w
w

w. So E′‖ 6= E‖ and B′‖ 6= B‖ contrary to

the assertion in (37). However they are both in the u,w plane and E′‖ = E‖ and

B′‖ = B‖.

Proof.

E′‖ ·E′‖ =
(E ·w)2

1− w2
〈
(
u+

w

w2

)
,
(
u+

w

w2

)
〉

=
(E ·w)2

1− w2

(
−1 +

w2

w4

)
=

=
(
E · w

w

)2

= E2
‖

Similarly for B′‖ = B‖.

Scholium 8.2. The Doppler Shift.

Let su be an eigenvector of F corresponding to λF as seen by an observer u.
Suppose

u′ =
1√

1− w2
(u+ w) (41)
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is another observer. Then u′ sees a different eigenvector su′ . But su′ must be a
multiple of su since they are eigenvectors. So the question is, what is the multiple
in terms of E,B and w? The answer is:

su′ =
1√

1− w2

1 +
−(E×B) ·w + λFE ·w − λF∗B ·w

λT +
E2 +B2

2

 su. (42)

Proof. Define

ϕ(v) =
〈v, s−〉
〈u, s−〉

su (43)

where s− is an eigenvector corresponding to −λF . Then ϕ is a linear map whose
image is the span of su and whose kernel is the space of vectors orthogonal to s−.
Now ϕ(u) = su.

Now Φ := (λcF I+cF )◦(λcF I+cF ) has the same properties and let Φ(u) := su.
Then Φ = ϕ. Let s− = Φ−(u) = (−λcF I + cF ) ◦ (−λcF I + cF )u. Now

su = 2

(
λTu+

E2 +B2

2
u+ E×B + λFE− λF∗B

)
(44)

and

s− = 2

(
λTu+

E2 +B2

2
u+ E×B− λFE + λF∗B

)
(45)

from Corollary 6.8 and s− is the same with the signs changed on λF and λF∗ .

Now su′ = ϕ(u′) =
〈u′, s−〉
〈u, s−〉

su. Substituting (41) into this equation yields

su′ =
1√

1− w2

(
1 +
〈w, s−〉
〈u, s−〉

)
su. (46)

Now

〈u, s−〉 = −2

(
λT +

E2 +B2

2

)
(47)

using (45). Then using (45) to calculate 〈w, s−〉 and substituting this into (46) we
obtain (42). �

Now (42) holds for all F ∈ Γ(`). If we restrict to null F we should see (42)
reduce to a simpler form. In the null case λF = λF∗ = 0 and E = B. So equation
(42) reduces to

su′ =
1√

1− w2

(
1−w · (E×B)

E2

)
su. (48)

Now w · (E×B)

E2
is the component along the E×B direction. If we assume that

w = wr, that is w is pointing in the radial direction, then

su′ =

√
1− wr
1 + wr

su. (49)

Here

√
1− wr
1 + wr

is the Doppler shift ratio. This suggests that null F propagate along

null geodesics by parallel translation.
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Scholium 8.3. Eliminating E×B.

In the non–null case there is a Lorentz transformation so that E′×B′ = 0. We
may see this clearly using Level −2 methods. Suppose u′ is an eigenvector of TF .
Then

TFu
′ = λTu

′ =
E2
u′ +B2

u′

2
u′ + Eu′ ×Bu′ . (50)

The second equality shows that Eu′ × Bu′ = 0 and
E2
u′ +B2

u′

2
= λT . Now we

can always find an eigenvector u′ by setting u′ = (λT I + T )u/k. Here k =√
2λT

2 + 2λT (E2 +B2)/2 where the k is the factor which makes u′ an observer.

Thus the relative velocity is

w = (Eu ×Bu)

/(
λT +

E2
u +B2

u

2

)
. (51)

At Level−10, the Lorentz transformations become equations relating the choice
of orthonormal bases e0, e1, e2, e3 and e′0, e

′
1, e
′
2, e
′
3. In the block matrices formalism,

the Lorentz transformation becomes an invertible matrix Λ so that(
0 E′

E′ ×B′

)
= Λ−1

(
0 E
E ×B

)
Λ. (52)

Although we used many Level −10 arguments in this paper, our statements
were usually Level −2. The only choices necessary were of different observers.
The algebraic component of the Lorentz Transformations Λ becomes the bundle
isometries of T (M), that is the group of Gauge Transformations. These can be
thought of at Level 0.

Remark 8.4. The exponential map eF .

The exponential map maps the “Lie Algebra” Γ(`) onto the group of bundle
isometries G of T (M). This exponential map is a diffeomorphism near the identity.
It has a beautiful representation using the eF notation.

eF := I + F +
1

2!
F 2 +

1

3!
F 3 + . . . (53)

where Fn means F composed with itself n–times. For F a bundle map, eF satisfies
several properties.
a) eF is a well–defined bundle map
b) (eF )−1 = e−F if F is skew symmetric
c) 〈eF v, w〉 = 〈v, e−Fw〉 if F is skew symmetric

d) eF+F ′ = eF ◦ eF ′ if FF ′ = F ′F

e)
d

dt
etF
∣∣∣∣
t=0

= F

f) Every isometry Q can be written as Q = eF for a skew symmetric F , at least
locally.

g) If s is an eigenvector of F corresponding to λF , then s is an eigenvector of eF

corresponding to eλF .
h) If F is skew symmetric and null, then since F 3 = 0 we have eF = I+F + 1

2F
2.

Now these properties also hold for F ∈ Γ(` ⊗ C) and eF. So the fact that
(cF )2 = λ2

cF I gives us the following striking result.
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Theorem 8.5. ecF = cosh(λcF )I +
sinh(λcF )

λcF
(cF )

where cosh(x) =
ex + e−x

2

and sinh(x) =
ex − e−x

2
.

Corollary 8.6.

eF =

(
cosh

(
λ

2

)
I +

sinh
(
λ
2

)
λ

cF

)
◦
(

cosh

(
λ

2

)
I +

sinh
(
λ
2

)
λ

cF

)

where λ = λcF .

Proof. eF = e(cF+cF )/2 = ecF/2ecF/2, this last by Remark 8.4d. Then apply
Theorem 8.5.

We leave it as an exercise to the reader to expand Corollary 8.6 and obtain an
equation involving only real quantities.

Corollary 8.7.

e−F (cG)eF = c(e−FGeF ) = e−cF/2(cG)ecF/2.

Proof. First we note the following result.

(e−FGeF )∗ = e−FG∗eF . (54)

This follows from the fact that (e−FGeF )−1 = e−FG−1eF and thatG−1 =
G∗

−( ~E · ~B)

when ~E · ~B 6= 0. The case for ~E · ~B = 0 follows by continuity.
Now c(e−FGeF ) = e−FGeF − i(e−FGeF )∗

= e−FGeF − ie−FG∗eF

= e−F (cG)eF

= e−cF/2(cG)ecF/2.

The last equality follows from subsituting eF = e(cF+cF )/2 = ecF/2ecF/2 and the
fact that cF , and hence ecF/2, commutes with cG. �
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