1. (20 points) Y is the present value random variable for a whole life annuity due to (x) with annual payments of 1.

You are given that:

i. $1000A_x = 700$

ii. $1000\left[2A_x\right] = 530$

iii. $\text{Var}[Y] = 4$

iv. Deaths are uniformly distributed between integer ages.

Calculate \bar{a}_x.

Solutions:

$$\text{Var}[Y] = \frac{2A_x - (A_x)^2}{d^2} = 4 \implies \frac{0.530 - (0.7)^2}{d^2} = 4 \implies d = \sqrt{\frac{0.4 - 0.04}{4}} = 0.1$$

$$i = \frac{d}{1 - d} = \frac{0.1}{0.9} = \frac{1}{9}$$

$$\bar{a}_x = \frac{1 - \bar{A}_x}{\delta} = \frac{1 - \frac{i}{\delta}A_x}{\delta} = \frac{1 - \frac{1/9}{\ln(1+1/9)}(0.7)}{\ln(1+1/9)} = 2.4847$$
2. (10 points) I would like to receive 10 points for putting my name on the cover of this quiz. (Circle the correct answer.)

True or False
1. (20 points) A life annuity due payable to (70) pays annual payments of 1000.

You are given:

i. Mortality follows the Illustrative Life Table.
ii. \(i = 6\% \)
iii. \(Y \) is the present value random variable for this annuity.

Calculate the probability that \(Y \) will be greater than the expected value of \(Y \) plus the standard deviation of \(Y \).

Solution:

\[
E[Y] = 1000 \ddot{a}_{70} = 1000(8.5693) = 8569.30
\]

\[
Var[Y] = (1000)^2 \left[\frac{2A_{70} - (A_{70})^2}{d^2} \right] = (1000)^2 \left[\frac{0.30642 - (0.51495)^2}{(0.05660)^2} \right] = (1000)^2(12.8752)
\]

\[
SD = \sqrt{(1000)^2(12.8752)} = 3588.20
\]

\[
Pr[1000Y > 8569.30 + 3588.20] = Pr[Y > 12.1575] = Pr\left[\frac{1 - v^{K+1}}{d} > 12.1575 \right] =
\]

\[
Pr[v^{K+1} < 1 - 12.1575(d)] = Pr\left[K_x > \frac{\ln(1 - 12.1575(0.05660(1 - 0.1936)))}{\ln(1.06^{-1})} - 1 \right] =
\]

\[
Pr[K_x > 18.99] = \frac{l_{89}}{l_{70}} = \frac{1,281,083}{6,616,155} = 0.1936
\]
2. (10 points) I would like to receive 10 points for putting my name on the cover of this quiz. (Circle the correct answer.)

True or False