Supplementary Problems # 2

1. **Page 44**: # 4, 5(c)(d)(e), 6.

2. Sketch the vector fields corresponding to these complex functions

 (a) \(f(z) = \frac{z}{|z|} \)
 (b) \(g(z) = -iz \)
 (c) \(h(z) = \frac{\bar{z}}{|z|} \)

3. **Page 45**: # 13 (Electric fields and equilibrium points)

4. **Page 49**: # 5, 9(d)(f).

5. **Page 57**: # 14, 15.

6. **Page 62**: # 1(c), 6, 15

7. The \(z \) and \(\bar{z} \) derivatives of a function \(f(z) = u(x, y) + iv(x, y) \) are defined as follows:

 \[
 \frac{\partial f}{\partial z} \equiv \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right)
 \]

 \[
 \frac{\partial f}{\partial \bar{z}} \equiv \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right)
 \]

 (a) Show that the CR equations are equivalent to the single equation \(\frac{\partial f}{\partial \bar{z}} = 0 \).

 (b) Show that if \(H(x, y) \) is real-valued and \(H_{xy} = H_{yx} \), then \(\Delta H = 4 \frac{\partial^2 H}{\partial z \partial \bar{z}} \).

 (c) Find a real-valued solution \(H(x, y) \) to the Poisson Equation \(\Delta H(x, y) = 16x \).

8. **Page 68**: # 3(c), 10.

9. Find a harmonic conjugate for \(\phi(x, y) = \Re\{z^{10}\} \).

10. Find a harmonic conjugate for \(\psi(x, y) = \Im\{z^{10}\} \).

11. Sketch level curves for \(u \) and \(v \) corresponding to the function \(f(z) = z^2 - 2z \).