11) Let \(T \) be the linear operator on \(F^2 \) which is represented in the standard ordered basis by the matrix \[
\begin{pmatrix}
0 & 0 \\
1 & 0
\end{pmatrix}
\]. Let \(a_1 = (0, 1) \). Show that \(F^2 \neq Z(a_1, T) \) and that there is no non-zero vector \(a_2 \) in \(F^2 \) such that \(Z(a_2, T) \) is disjoint from \(Z(a_1, T) \).

11) Let \(T \) be a linear operator on \(V \) an \(n \)-dimensional vectorspace and let \(R = T(V) \) be the range of \(T \).
 (a) Prove that \(R \) has a complementary \(T \)-invariant subspace iff \(R \) is independent of \(N = \text{null} T \).
 (b) If \(R \) and \(N \) are independent, prove that \(N \) is the unique \(T \)-invariant subspace complementary to \(R \).

11) Let \(T \) be the linear operator on \(\mathbb{R}^3 \) which is represented by the matrix \[
\begin{pmatrix}
2 & 0 & 0 \\
1 & 2 & 0 \\
0 & 0 & 3
\end{pmatrix}
\]. Let \(W \) be the null space of \(T - 2I \). Prove that \(W \) has no complementary \(T \)-invariant subspace.

11) Let \(T \) be the linear operator on \(F^4 \) which is represented by the matrix \[
\begin{pmatrix}
c & 0 & 0 & 0 \\
0 & c & 0 & 0 \\
0 & 1 & c & 0 \\
0 & 0 & 1 & c
\end{pmatrix}
\] and let \(W \) be the nullspace of \(T - cI \).
 (a) Prove that \(W \) is the subspace spanned by \(e_4 = (1, 0, 0, 0) \).
 (b) Find the monic generators of the ideals \(S(e_4; W), S(e_3; W), S(e_2; W), S(e_1; W) \) where \(S(v, W) \) is the \(T \)-conductor of \(v \) into \(W \), i.e. the ideal of polynomials \(g(x) \) such that \(g(T)v \in W \).

11) Let \(T \) be a linear operator over a subfield of \(\mathbb{C} \) with matrix representation \[
\begin{pmatrix}
2 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 \\
0 & a & 2 & 0 \\
0 & 0 & b & 2
\end{pmatrix}
\]. Find the characteristic polynomial of \(T \). Find the minimal polynomial of \(T \) and vectors satisfying theorem 3 in each of these cases: \(a = 1 = b \); \(a = 0 = b \); \(a = 0, b = 1 \).

11) For \(A, B \in F^{3 \times 3} \), show that \(A B \) iff the characteristic and minimal polynomials of \(A \) are the same as those of \(B \).

11) Let \(F \) be a subfield of \(\mathbb{C} \) and let \(A \) and \(B \) be \(n \times n \) matrices over \(F \). Prove that if \(A \) and \(B \) are similar over \(\mathbb{C} \) then they are similar over \(F \).

11) Let \(A \) be an \(n \times n \) matrix over \(\mathbb{C} \). Prove that if every characteristic value of \(A \) is real then \(A \) is similar to a matrix with real entries.

11) Let \(T \) be a linear operator on the finite-dimensional vectorspace \(V \). Prove that there exists a vector \(v \) in \(V \) such that if \(f \) is a polynomial and \(f(T)v = 0 \) then \(f(T) = 0 \) (this is called a separating vector). When \(T \) has a cyclic vector give a direct proof that any cyclic vector is a separating vector for \(T \).

11) Let \(F \) be a subfield of \(\mathbb{C} \) and let \(A \) be an \(n \times n \) matrix of \(F \). Let \(p \) be the minimal polynomial for \(A \). If we regard \(A \) as a matrix over \(\mathbb{C} \), then \(A \) has a minimal polynomial \(f \) as an \(n \times n \) matrix over \(\mathbb{C} \). Show that \(p = f \) (using “a theorem on linear equations”). Can you prove it using the cyclic decomposition theorem?

11) Let \(T \) be a linear operator on an \(n \)-dimensional vectorspace \(V \) over \(F \). Show that if the minimal polynomial for \(T \) is a power of an irreducible polynomial and the minimal polynomial is equal to the characteristic polynomial then no non-trivial \(T \)-invariant subspace has a complementary \(T \)-invariant subspace.

11) Show that if \(T \) is a diagonalizable linear operator on \(V \) then every \(T \)-invariant subspace of \(V \) has a complementary \(T \)-invariant subspace.

11) Let \(T \) be a linear operator on the \(n \)-dimensional vectorspace \(V \). Prove that \(T \) has a cyclic vector iff every linear operator \(U \) which commutes with \(T \) is a polynomial in \(T \).

11) Let \(V \) be an \(n \)-dimensional vectorspace over the field \(F \) and let \(T \) be a linear operator on \(V \). Prove that every nonzero vector in \(V \) is a cyclic vector for \(T \) iff the characteristic polynomial for \(T \) is irreducible over \(F \).
Let A be an $n \times n$ matrix over \mathbb{R}. Let T be the linear operator on \mathbb{R}^n represented by A, and let U be the linear operator on \mathbb{C}^n which is represented by A. Use 20 to prove that if the only subspaces invariant under T are \mathbb{R}^n and 0 then U is diagonalizable.