Let \(V = \mathbb{C}^2 \) with the standard inner product. Let \(T \) be the linear operator defined by \(T\epsilon_1 = (1, -2), T\epsilon_2 = (i, -1) \). Let \(\alpha = (x_1, x_2) \) and find \(T^*\alpha \).

Let \(T \) be the linear operator on \(\mathbb{C}^2 \) defined by \(T\epsilon_1 = (1 + i, 2) \) and \(T\epsilon_2 = (i, i) \). Find the matrix of \(T^* \) in the standard ordered basis. Does \(T \) commute with \(T^* \)?

Show that the range of \(T^* \) is the orthogonal complement of null \(T \), i.e. show \(R = R(T^*) = (\text{null}(T))^\perp = N \).

Let \(V \) be a finite dimensional inner product space (fin dim IPS), and \(T \) a linear operator on \(V \). If \(T \) is invertible, show that \(T^* \) is invertible and that \((T^*)^{-1} = (T^{-1})^* \).

Show that the product of 2 self-adjoint operators is self-adjoint iff the two operators commute.

Let \(V \) be a fin dim IPS over \(\mathbb{C} \). Let \(E \) be a projection operator / an idempotent operator on \(V \). Prove \(E \) is self-adjoint iff \(E \) is normal, i.e. \(E = E^* \) iff \(E^*E = EE^* \).

Let \(V \) be a fin dim IPS over \(\mathbb{C} \). Let \(T \) be a linear operator on \(V \). Show that \(T \) is self-adjoint iff \((Tx|x) \) is real for all \(x \in V \).

For each matrix \(A \), find a real orthogonal matrix \(P \) such that \(P^TAP \) is diagonal.

Is a complex symmetric matrix self-adjoint? Is it normal?

Give an example of a \(2 \times 2 \) matrix \(A \) such that \(A^2 \) is normal but \(A \) is not normal.

Prove that a real symmetric matrix has a real symmetric cube root.

Prove that a normal and nilpotent operator is the zero operator.

If \(T \) is a normal operator, prove that characteristic vectors for \(T \) which are associated with distinct characteristic values are orthogonal.

Let \(T \) be a normal operator on \(V \) a fin dim IPS over \(\mathbb{C} \). Prove that there is a polynomial \(f \in \mathbb{C}[x] \) such that \(T^* = f(T) \).

If two normal operators commute, prove that their product is normal.