5 Let \(T \) be the linear operator on \(\mathbb{R}^3 \) defined by \(T(x, y, z) = (x, z, -2y - z) \). Let \(f \) be the polynomial over \(\mathbb{R} \) defined by \(f = -x^3 + 2 \). Find \(f(T) \).

5 Let \(A \) be an \(n \times n \) diagonal matrix over the field \(F \). Let \(f \) be the polynomial over \(F \) defined by \(f = (x - A_{11}) \cdots (x - A_{nn}) \). What is the matrix \(f(A) \)?

5 For \(a, b \in F \) a field and \(a \neq 0 \) show that \(B = \{1, ax + b, (ax + b)^2, (ax + b)^3, \cdots \} \) is a basis for \(F[X] \).

5 If \(F \) is a field and \(h \in F[X] \) of degree \(\geq 1 \) show that the mapping \(f \mapsto f(h) \) is a one-to-one linear transformation of \(F[X] \) into \(F[X] \). Show that this transformation is an isomorphism iff \(\deg h = 1 \).

5 Use Lagrange Interpolation to find \(f \) such that \(\deg f \leq 3 \) satisfying
\[
\begin{align*}
f(-1) &= -6; f(0) = 2; f(1) = -2; f(2) = 6.
\end{align*}
\]

5 Let \(L \) be a linear functional on \(F[X] \) such that \(L(fg) = L(f)L(g) \) for all \(f, g \in F[X] \). Show that either \(L = 0 \) or there is a \(t \) in \(F \) such that \(L(f) = f(t) \) for all \(f \) in \(F[X] \).

5 If \(A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 1 & 0 \end{bmatrix} \), find the monic polynomial that generates the ideal of all polynomials \(f \in F[X] \) such that \(f(A) = 0 \).

5 Assuming the fundamental theorem of algebra, prove that if \(f \) and \(g \) are polynomials over \(\mathbb{C} \), then \(\gcd(f, g) = 1 \) iff \(f \) and \(g \) have no common root.

5 Let \(D \) be the differentiation operator. Assuming the fundamental theorem of algebra, show that for a polynomial \(f \) over \(\mathbb{C} \) we have \(f \) has no repeated roots iff \(\gcd(f, Df) = 1 \).

5 In which of these cases is \(D \) a 3-linear function?
 (a) \(D(A) = A_{11} + A_{22} + A_{33} \) 2nd row are unchanged, but \(sD(A) + D(A') = sA_{11} + sA_{22} + sA_{33} + A_{11}' + A_{22}' + A_{33}' \), which is clearly not the same for all matrices \(A \).
 (b) \(D(A) = (A_{11})^2 + 3A_{11}A_{22} \)
 (c) \(D(A) = A_{11}A_{12}A_{33} \)
 (d) \(D(A) = A_{13}A_{22}A_{32} + 5A_{12}A_{22}A_{32} \)
 (e) \(D(A) = 0 \)
 (f) \(D(A) = 1 \)

5 Let \(K \) be a subfield of \(\mathbb{C} \) and \(n \in \mathbb{N} \). Let \(j_1, \cdots, j_n \) and \(k_1, \cdots, k_n \) be positive integers not exceeding \(n \) (i.e. they can each represent a row number of an \(n \times n \) matrix over \(K \)). Let \(A \in K^{n \times n} \) and defined \(D(A) = A(j_1, k_1) \cdots A(j_n, k_n) \). Prove that \(D \) is \(n \)-linear iff the integers \(j_1, \cdots, j_n \) are distinct.

5 Let \(F \) be a field and \(D \) be a function on \(F^{n \times n} \). Suppose \(D(AB) = D(A)D(B) \) for all \(A, B \in F^{n \times n} \). Show that either \(D(A) = 0 \) for all \(A \), or \(D(I) = 1 \).