2.1 Let p be a prime integer and let $F = \mathbb{Z}/(p)$ be the field with p elements. Let V be the $F[x]$-module $V = \frac{F[x]}{(x^3)} \oplus \frac{F[x]}{(x^2)}$.

(a) How many cyclic $F[x]$-module of order p^3 does V have?
(b) How many cyclic $F[x]$-submodules of order p^2 does V have?
(c) How many of the cyclic $F[x]$-submodules of V of order p^2 are direct summands of V?

2.2 Let V be an abelian group with generators (v_1, v_2, v_3) that has the matrix $\begin{pmatrix} 2 & 0 & 6 \\ 6 & 12 & 0 \end{pmatrix}$ as a relation matrix. Express V as a direct sum of cyclic groups.

2.3 Let V be a 3-dimensional vector space over the field \mathbb{Q} and let $T : V \to V$ be a linear operator having minimal polynomial $p(x) = (x - 2)^3$.

(a) How many one-dimensional T-invariant subspaces does V have? Justify your answer.
(b) How many two-dimensional T-invariant subspaces does V have? Justify your answer.

2.4 Let $A \in \mathbb{C}^{5 \times 5}$ be a diagonal matrix with exactly four distinct entries on its main diagonal.

(a) What is the dimension of the vector space over \mathbb{C} of matrices that are polynomials in A.
(b) What is the dimension of the vector space over \mathbb{C} of matrices $B \in \mathbb{C}^{5 \times 5}$ such that $AB = BA$?
(c) If $B \in \mathbb{C}^{5 \times 5}$ is a diagonal matrix with exactly four distinct entries on its main diagonal, is B similar to a polynomial in A? Justify your answer.

2.5 Let A and B in $\mathbb{Q}^{n \times n}$ be $n \times n$ matrices and let $I \in \mathbb{Q}^{n \times n}$ denote the identity matrix. (a) State true or false and justify: If A and B are similar over an extension field F of \mathbb{Q}, then A and B are similar over \mathbb{Q}.
(b) Let M and N be $n \times n$ matrices over the polynomial ring $\mathbb{Q}[x]$. Define “M and N are equivalent over $\mathbb{Q}[x]$”.
(c) State true or false and justify: If $\det(xI - A) = \det(xI - B)$, then $xI - A$ and $xI - B$ are equivalent.
(d) State true or false and justify: If $xI - A$ and $xI - B$ are equivalent over $\mathbb{Q}[x]$, then A and B are similar over \mathbb{Q}.

2.6 Classify up to similarity all matrices $A \in \mathbb{C}^{3 \times 3}$ such that $A^3 = I$, where I is the identity matrix, i.e., write down all possibilities for the Jordan form of A.

2.7 Let V be a finite-dimensional vector space over a field F, let $T : V \to V$ be a linear operator, and let $p(x) \in F[x]$ be the minimal polynomial of T. Assume that $p(x) = p_1^{r_1} \cdots p_k^{r_k}$, where $p_i \in F[x]$ are distinct monic irreducible polynomials, $i = 1, \ldots, k$, and r_i are positive integers. Let $W_i = \{ v \in V | p_i(T)^r_i(v) = 0 \}$. Describe how to get linear operators $E_i : V \to V$, $i = 1, \ldots, k$, such that $E_i(V) = W_i$, $E_i^2 = E_i$ for each i, $E_iE_j = 0$ if $i \neq j$, and $E_1 + \ldots + E_k = I$ is the identity operator on V.

2.8 Let V be a finite-dimensional vector space over an infinite field F and let $T : V \to V$ be a linear operator. Give to V the structure of a module over the polynomial ring $F[x]$ by defining $x\alpha = T(\alpha)$ for each $\alpha \in V$.

(a) Outline a proof that V is a direct sum of cyclic $F[x]$-modules.
(b) In terms of the expression for V as a direct sum of cyclic $F[x]$-modules, what are necessary and sufficient conditions in order that V have only finitely many T-invariant F-subspaces? Explain.