MA 265 Lecture 15

Section 4.3 Subspaces (cont)

Definition of Linear Combination
Let \(v_1, v_2, \ldots, v_k \) be vectors in a vector space \(V \).

Example 1. Every polynomial of degree \(\leq 2 \) is a linear combination of \(t^2, t, 1 \).

Example 2. Show that the set of all vectors in \(\mathbb{R}^3 \) of the form \(
\begin{bmatrix}
 a \\
 b \\
 a + b
\end{bmatrix}
\) is a linear combination of \(v_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \) and \(v_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \).
Example 3. In \mathbb{R}^3, let

\[\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \]

Verify that the vector

\[\mathbf{v} = \begin{bmatrix} 2 \\ 1 \\ 5 \end{bmatrix} \]

is a linear combination of \mathbf{v}_1, \mathbf{v}_2, and \mathbf{v}_3.
Example 4. Consider the homogeneous system

$$Ax = 0$$

where A is an $m \times n$ matrix. The set W of solutions is a subset of \mathbb{R}^n. Verify that W is a subspace of \mathbb{R}^n (called solution space).

Remark The set of all solutions of the linear system $Ax = b$, with $b \neq 0$, is