Section 4.9 Rank of a Matrix

Definition Let

\[
A = \begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix}
\]

be an \(m \times n \) matrix.

- The rows of \(A \),

- The columns of \(A \),

Remark If \(A \) and \(B \) are row equivalent matrices, then
We can use this remark to find a basis for a subspace spanned by a given set of vectors.

Example 1. Find a basis for the subspace V of \mathbb{R}_5 that is spanned by $S = \{v_1, v_2, v_3, v_4\}$ where

$$v_1 = [1, -2, 0, 3, -4], \quad v_2 = [3, 2, 8, 1, 4], \quad v_3 = [2, 3, 7, 2, 3], \quad v_4 = [-1, 2, 0, 4, 3],$$

Example 2. Let V be the subspace of Example 1. Given that the vector $v = [5, 4, 14, 6, 3]$ is in V, write v as a linear combinations of the base determined by Example 1.
Definition The dimension of the row (column) space of A is called

Remark If A and B are row equivalent,

Example 3. *Compute the row rank of A given by*

\[
A = \begin{bmatrix}
1 & -2 & 0 & 3 & -4 \\
3 & 2 & 8 & 1 & 4 \\
2 & 3 & 7 & 2 & 3 \\
-1 & 2 & 0 & 4 & -3 \\
\end{bmatrix}
\]
Example 4. Compute the column rank of A in Example 3.

Theorem Let A be an $m \times n$ matrix. Then