Section 5.1 Length and Direction in \mathbb{R}^2 and \mathbb{R}^3

Length of Vectors in \mathbb{R}^2

Let $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ be a vector in \mathbb{R}^2. The _________ or _________ of \mathbf{v}, denoted by $\|\mathbf{v}\|$, is

The distance between vectors \mathbf{u} and \mathbf{v} is defined as

Length of Vectors in \mathbb{R}^3

Let $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ be a vector in \mathbb{R}^3. The length of \mathbf{v} is defined as

The distance between vectors \mathbf{u} and \mathbf{v} is defined as
Direction

We consider the angle θ, $0 \leq \theta \leq \pi$ between two vectors.

In \mathbb{R}^2, we plot the angle of two vectors u and v:

By law of cosines:

we have

Similarly, if u and v are vectors in \mathbb{R}^3, the angle between vectors u and v is

Example 1. Let $u = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ and $v = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$. Find the angle θ between these vectors.
The inner product, or dot product of vectors \(u \) and \(v \) on \(\mathbb{R}^2 \) (or \(\mathbb{R}^3 \)) are defined by

Remark

-
-
-

Definition Two vectors \(u \) and \(v \) in \(\mathbb{R}^2 \) or \(\mathbb{R}^3 \) are called

Example 2. The vectors \(u = \begin{bmatrix} 2 \\ -4 \end{bmatrix} \) and \(v = \begin{bmatrix} 4 \\ 2 \end{bmatrix} \) are orthogonal.

Let \(u \), \(v \) and \(w \) be vectors in \(\mathbb{R}^2 \) or \(\mathbb{R}^3 \), and \(c \) be a scalar. The inner product satisfies:

1.
2.
3.
4.
Unit Vector

A vector in \mathbb{R}^2 or \mathbb{R}^3 whose length is 1 is called

If \mathbf{v} is any nonzero vector, then a unit vector in the direction of \mathbf{v} is

Example 3. Let $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}$. Find a unit vector in \mathbb{R}^3 which

1. is in the same direction as \mathbf{v}
2. is in the opposite direction as \mathbf{v}
3. is orthogonal to \mathbf{v}
4. has an angle of 60° between \mathbf{v}.