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Abstract This paper presents studies on applying the novel weak Galerkin finite element
method (WGFEM) to a two-phase model for subsurface flow, which couples the Darcy
equation for pressure and a transport equation for saturation in a nonlinear manner. The
coupled problem is solved in the framework of operator decomposition. Specifically, the
Darcy equation is solved by theWGFEM, whereas the saturation is solved by a finite volume
method. The numerical velocity obtained from solving the Darcy equation by the WGFEM
is locally conservative and has continuous normal components across element interfaces.
This ensures accuracy and robustness of the finite volume solver for the saturation equation.
Numerical experiments on benchmarks demonstrate that the combined methods can handle
very well two-phase flow problems in high-contrast heterogeneous porous media.
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1 Introduction

Mathematically and computationally sophisticated simulators of subsurface flow are in
demand to address some of the most pressing problems faced by society and posed to sci-
entists. For example, as the increasing population places more demand on energy resources,
the society seeks to extract oil held tightly in petroleum reservoirs by forcing water and/or
other chemicals into injection wells and recovering oil from production wells. In this case,
we may forecast initial “breakthrough” times of the mix of the injected water and oil at
production wells in addition to forecasting subsequent fractions of the two-phase flow of oil
and water. Accompanying to the growing consumption of fossil fuel energy is the increas-
ing pressure of carbon emission on the climate. Measures are sought to mitigate effects of
carbon emissions on climate by sequestering carbon dioxide CO2 emissions from fossil fuel
combustion. For CO2 sequestration [14], as a CO2 brine is forced into one or more injec-
tion wells, it is desired to forecast breakthrough times of the brine at monitoring wells,
which could serve simultaneously to recover displaced oil. A more acute situation was
demonstrated in the reactor breach caused by the recent earthquake and ensuing tsunami
in Japan. This places a serious call for monitoring and remediation of subsurface radioactive
contamination.

Developing sophisticated simulators applicable to the aforementioned realworld problems
involves complicated physical, mathematical and computational concepts and tools. Over
the past decade or so, research attention has focused on conditioning simulator forecasts
to data and, to a lesser extent, on characterizing the uncertainty in forecasts, usually with
few data to inform flow simulator parameters. Typically, the commonly used governing
principles fall in the realm of multiphase flow in porous media [7,9–12,16,17], in which the
subsurface flow and transport of multiple components are governed by coupled differential
equations of different type: an elliptic equation for pressure and a sequence of hyperbolic
equations for component concentrations. Further complication arises from the heterogeneous
and multiscale nature presented in the permeability field. Reliable numerical simulators are
desired to handle these physical features accurately and robustly.

Central to numerical simulations of multiphase flow is the Darcy’s law, which relates the
gradient of a phase pressure to permeability and associated velocity [7,12]. In practice, the
pressure information is rarely needed in a direct way. Instead it is almost imperative that the
velocity profiles are available for subsequent transport solvers. As a statement of momentum
conservation, the Darcy’s law takes two different forms and hence there are two different
categories of numerical methods for solving the Darcy’s equation.

The first form has two first-order partial differential equations: one for the pressure, the
other for the velocity. Corresponding to this form is the classical mixed finite element method
(MFEM) and its variants. A finite element pair (one for pressure and the other for velocity)
need to satisfy the well-known inf-sup condition in order to be used in the MFEM. There
are many such admissible choices. A mixed finite element scheme produces a numerical
pressure and a numerical velocity simultaneously, even though the numerical pressure has
rarely subsequent use. It is the numerical velocity that is more important physically and used
in subsequent applications, e.g., transport simulations. The main advantage of the MFEM
is that the numerical flux is locally conservative and has a continuous normal component
across element interfaces. These two desired properties are crucial for the correctness of any
follow-up transport solver that uses the generated numerical flux. An obvious disadvantage
of the MFEM is that the resulting linear system is indefinite, and requires special solvers
such as the Uzawa algorithm.
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The second form is a second order elliptic PDE about the pressure. The corresponding
finite element methods are the continuous Galerkin finite element method (CGFEM) and the
discontinuous Galerkin finite element method (DGFEM). These FEMs solve for a numer-
ical pressure first. Then the gradient of the numerical pressure is taken along with certain
postprocessing to obtain a numerical velocity. The CGFEM usually has a small number of
pressure unknowns and the resulting discrete system is symmetric positive definite, but its
numerical flux is not locally conservative and the normal flux is not continuous across ele-
ment interfaces. Nontrivial postprocessing procedures need to be established [8] to obtain
a numerical flux having the two desired properties. The DGFEM uses discontinuous shape
functions on elements and hence has great flexibility in handling complicated geometry,
even though interior penalty terms have to be introduced to enforce weak continuity across
element interfaces. The numerical flux obtained directly from a DG pressure is locally con-
servative but does not have a continuous normal component across element interfaces [22].
Postprocessing procedures need to be established [3] to obtain a numerical flux having the
two desired properties. Two known drawbacks in the DGFEM are proliferation of unknowns
and problem-dependent penalty factors.

The recently developed weak Galerkin finite element method (WGFEM) [26] is a novel
type of methods that maintain the advantages of the existing finite element methods but
overcome their disadvantages. WGFEM uses degrees of freedom in element interiors and
on mesh skeleton to establish a new type of approximations to differential operators. When
applied to the Darcy equation [19], the WGFEM solves for a numerical pressure that is
defined both inside elements and on element interfaces. The numerical pressure is then
used to generate a discrete weak gradient and then a numerical flux that is both locally
conservative and normally continuous across element interfaces. Compared to the MFEM
[19], the WGFEM has the same number of unknowns but results in a definite system that is
much easier to solve. Compared to the DGFEM, the WGFEM has less unknowns and has
no need for choosing penalty factors. It has been demonstrated in [18] that the WGFEM can
handle heterogeneity and anisotropy in permeability very well. It produces a numerical flux
that has the two properties desired for robust transport simulations.

In this paper, we apply the WGFEM to two-phase flow problems that couple the Darcy
equation and a saturation transport equation in a nonlinear manner. Specifically, the Darcy
equation will be solved by the WGFEM, whereas the saturation equation will be solved by
a finite volume method. Numerical experiments on benchmarks will demonstrate that the
WGFEM is a viable (actually better) alternative to the classical MFEM in terms of solving
the Darcy equation.

The rest of this paper is organized as follows. Section 2 sets up a model problem for
two-phase flow and outline our numerical algorithm that is based on operator splitting. Sec-
tion 3 presents the weak Galerkin finite element method and elaborates on the lowest-order
weak Galerkin method on two-dimensional rectangular meshes. Section 4 presents numeri-
cal results on two benchmark problems to demonstrate the practical usefulness of WGFEM.
Section 5 concludes the paper with some remarks on future work.

2 A Model Problem for Two-Phase Flow and Its Solution Procedure

2.1 A Two-Phase Model

In this section, we focus on the flow and transport in a domain Ω with heterogeneous perme-
ability, governed by an immiscible two-phase system with a wetting phase and a nonwetting
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phase (denoted by w and o, respectively), for example, water and oil. For simplicity of pre-
sentation, capillary pressure and gravity are not included in the model. The Darcy’s law
combined with a statement of conservation of mass are expressed as

∇ · u = q, where u = −λ(S)k(x)∇ p, (2.1)

and
∂S

∂t
+ ∇ · ( f (S)u) = qw, (2.2)

whereu is theDarcy velocity, S is the saturation of thewetting phase, and k is the permeability
coefficient. The total mobility λ(S) and the flux function f (S) are respectively given by

λ(S) = krw(S)

μw

+ kro(S)

μo
, f (S) = krw(S)/μw

λ(S)
, (2.3)

where krα(α = w, o) is the relative permeability of the phase α.

2.2 Solution Procedure

The two-phase system governed by (2.1) and (2.2) is multiphysics and multiscale in nature.
The three unknowns (p,u, S) to be solved depend on one another, as shown in Eq. (2.3).
The dynamics of these unknowns are different from each other in the sense that typically the
pressure and velocity vary on a larger time scale, compared to the saturation. Moreover, the
spatial profiles of these unknowns are strongly affected by the permeability, whose values
can span several orders of magnitude.

One widely adopted approach in the reservoir simulation community for solving a two-
phase system is to employ the implicit pressure explicit saturation (IMPES) scheme [2].
Mathematically, this is an operator decomposition technique with which the pressure equa-
tion (2.1) is decoupled from the saturation equation (2.2) by lagging one time step behind
calculations of the total mobility. This allows for solving (2.1) implicitly that gives (p,u).
Then the velocity u is used to solve the saturation equation (2.2) explicitly. The IMPES
scheme is illustrated in Fig. 1.

A stable discretization of the saturation equation relies crucially on the numerical approx-
imation of u satisfying the local conservation property. To be specific, given uh ≈ u, it is
desirable to have ∫

∂E
uh · n ds =

∫
E
q dE . (2.4)

pre
vio

us
val
ues

Pressure

Transport

new values
(pn−1,un−1, Sn−1)

Sn−1 (pn,un)

(Sn−1,un) Sn (pn,un, Sn)

Fig. 1 A solution procedure for the two-phase flow model problem based on operator decomposition
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In our setting, E is a finite element in a mesh for the domainΩ . A finite volume discretization
of the saturation equation yields the following algebraic equations

|E |(Sc,n − Sc,n−1) + Δt
∫

∂E
uh · n f (Sc,n−1) ds =

∫
E
qw dE,

where

Sc,n ≈ 1

|E |
∫
E
S(x, tn) dE

is the saturation average on element E at time tn .
The explicit nature of the system is evident from the term

∫
∂E uh · n f (Sc,n−1)ds. In our

numerical experiments, we use an upwinding scheme for this term [24].

3 Weak Galerkin Finite Element Method for the Darcy Equation

In this section, we present a weak Galerkin finite element scheme for solving the Darcy
equation (2.1). This scheme furnishes a numerical velocity that is locally conservative and
has continuous normal components across element interfaces. Topresent the idea,we consider⎧⎨

⎩
∇ · (−K∇ p) = q in Ω ⊂ R

2

p = pD on �D

(−K∇ p) · n = gN on �N

(3.1)

withDirichlet andNeumann boundary conditions given by pD, gN, respectively, and a forcing
term q . Here K = λk(x) and λ has been calculated from the saturation at the previous time
step, see the algorithm illustrated Fig. 1.

As discussed in the Introduction,many finite elementmethods solve for the primal variable
pressure first and then produce velocity and flux, e.g., the CGFEMs, DGFEMs, and the
WGFEMs to be presented. All these finite element methods are based on the variational
formation ∫

Ω

K∇ p · ∇φ =
∫

Ω

qφ. (3.2)

Two common issues for CG, DG, WG are

– How will the gradient in (3.2) be approximated?
– Where are the degrees of freedom (DOFs) placed?

For CG, the DOFs are placed at mesh nodes and on edges and inside elements (depending
on the order of the finite elements). Then the classical gradients of the polynomial shape
functions are used to approximate the gradient in (3.2).

For DG, all DOFs are inside element interiors, the classical gradients of the polynomial
shape functions are used along with penalty terms for approximation of the gradient in (3.2).

For WG, DOFs are placed in element interiors and on element interfaces. They are com-
bined through integration by parts to produce discrete weak gradients, which are used to
approximate the gradient in (3.2).

The weak Galerkin finite element method was first introduced in [26] based on a family of
novel concepts such as weak functions, discrete weak functions, weak gradient, and discrete
weak gradients. Generally speaking, the WGFEM provides a new framework that allows us
to design new types of finite elements and use discrete weak gradients to approximate the
classical gradient in (3.2).
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For theWGFEMapplied to (3.1), the introduction of pressure unknowns in element interior
and on element interfaces offers both elementwise locality and connection among adjacent
elements. This lays out the foundation for the local conservation and normal continuity of
the numerical flux, which is computed using permeability and the discrete weak gradient of
the numerical pressure.

3.1 Discrete Weak Gradients

Let E be a triangular or rectangular element with interior E◦ and boundary ∂E .
Let l,m be nonnegative integers, Pl(E◦) be the space of polynomials on E◦ with degree

≤ l, and Pm(∂E) be the space of polynomials on ∂E with degree ≤ m. A discrete weak
function is a pair of scale-valued functions v = {v◦, v∂ } such that v◦ ∈ Pl(E◦) and v∂ ∈
Pm(∂E). A discrete weak function space on E is defined as

W (E, l,m) =
{
v = {v◦, v∂ } : v◦ ∈ Pl(E◦), v∂ ∈ Pm(∂E)

}
. (3.3)

Let n ≥ 0 be any integer, Pn(E)2 be the space of vector-valued polynomials with degree
≤ n. Let V (E, n) be a subspace of Pn(E)2. For any v ∈ W (E, l,m), its discrete weak
gradient ∇w,dv ∈ V (E, n) is so defined that it is the unique solution of

∫
E

∇w,dv · wdE =
∫

∂E
v∂(w · n)ds −

∫
E

v◦(∇ · w)dE, ∀w ∈ V (E, n). (3.4)

There could be many choices for Pl(E◦), Pm(∂E), V (E, n). But certain admissible con-
ditions or properties shall be satisfied so that the discrete weak gradient operator ∇w,d offers
a Galerkin-type approximation of the classical gradient operator [26]. Furthermore, a pro-
jection operator Qh = (Q◦

h, Q
∂
h) into a discrete weak function space can be defined, where

Q◦
h is the L2-projection into the polynomial space Pl(E◦) and Q∂

h is the L2-projection into
the polynomial space on Pm(∂E). Similarly, Rh is defined as the local (elementwise) L2

projection from L2(E)2 to V (E, n).

3.2 Weak Galerkin Elements (Q0, P0, RT[0]) on Rectangular Meshes

As discussed in [18], there are a variety of choices for weak Galerkin (WG) finite elements
that can be used for solving the Darcy equation. However, we concentrate on the lowest order
WG elements for the Darcy equation in subsurface flow. This is mainly because the pressure
solution usually possesses low regularity in this situation, and thus higher order WG finite
elements do not result in additional gains. In this subsection, we further focus on the lowest
order WG elements on rectangular meshes.

Let E = [x1, x2] × [y1, y2] be a typical rectangular element and (xc, yc) be its center.
The divergence form of the Darcy equation (3.1) suggests that V (E, n) should be chosen as
H(div)-conforming. Therefore, the lowest orderRaviart–Thomas space RT[0](E) is undoubt-
edly a good candidate. It is known that dim(RT[0](E)) = 4. We choose normalized basis
functions [20] for RT[0](E) as follows

w1 =
[
1
0

]
, w2 =

[
0
1

]
, w3 =

[
X
0

]
, w4 =

[
0
Y

]
,

123



J Sci Comput (2016) 66:225–239 231

Fig. 2 Five basis functions for a
WG (Q0, P0, RT[0]) rectangular
element: one constant basis
function in the interior of the
rectangle and one constant basis
function for each of the four
edges. Their discrete weak
gradients are defined in RT[0] Q0(E◦)

P0(∂E)

(x1, y1)

(x2, y2)

(xc, yc)

where we have set X = x − xc, Y = y − yc for convenience. An obvious advantage of using
the normalized basis is that the Gram matrix is diagonal

GM = diag

(
|E |, |E |, 1

12
(x2 − x1)

2|E |, 1

12
(y2 − y1)

2|E |
)

,

where |E | is the area of the element. It is then trivial to invert the Gram matrix, which is
needed for calculating the discrete weak gradients of the WG basis functions.

For WG basis functions, we choose l = 0,m = 0 respectively for Pl(E◦), Pm(∂E). So
we have one constant basis function φ◦ in the element interior E◦ and one constant basis
function φ∂

i (i = 1, 2, 3, 4) on each of the four edges (together forming ∂E) of the rectangle,
as shown in Fig. 2. Their discrete weak gradients, actually the coefficients in the above
RT[0](E) basis functions, can be calculated by employing the definition formula (3.4). The
results are as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇w,dφ
◦ = 0w1 + 0w2 + −12

(x2 − x1)2
w3 + −12

(y2 − y1)2
w4,

∇w,dφ
∂
1 = 0w1 + −1

y2 − y1
w2 + 0w3 + 6

(y2 − y1)2
w4,

∇w,dφ
∂
2 = 1

x2 − x1
w1 + 0w2 + 6

(x2 − x1)2
w3 + 0w4,

∇w,dφ
∂
3 = 0w1 + 1

y2 − y1
w2 + 0w3 + 6

(y2 − y1)2
w4,

∇w,dφ
∂
4 = −1

x2 − x1
w1 + 0w2 + 6

(x2 − x1)2
w3 + 0w4.

In summary, we have WG shape functions that are in Q0 inside rectangular elements
(interiors) and P0 on edges (element interfaces) and their discrete weak gradients are in
RT[0]. This type of WG elements are referred as (Q0, P0, RT[0]).

3.3 A Weak Galerkin Finite Element Scheme for the Darcy Equation

Let Eh be a family of quasi-uniform rectangular meshes on a two-dimensional rectangular
domain Ω . Let l,m be nonnegative integers. We define weak Galerkin finite element spaces
on Eh as follows

Sh(Eh, l,m) =
{
v = {v◦, v∂ } : v|E ∈ W (E, l,m) ∀E ∈ Eh

}
, (3.5)

S0h (Eh, l,m) =
{
v = {v◦, v∂ } ∈ Sh(l,m), v∂ |∂E∩�D = 0 ∀E ∈ Eh

}
. (3.6)
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A weak Galerkin finite element scheme for (3.1) reads as: Seek ph = {p◦
h, p

∂
h} ∈

Sh(Eh, l,m) such that p∂
h |�D = Q∂

h pD and

Ah(ph, φ) = Fh(φ), ∀φ = {φ◦, φ∂ } ∈ S0h (Eh, l,m), (3.7)

where

Ah(ph, φ) :=
∑
E∈Eh

∫
E
K∇w,d ph · ∇w,d φ dE, (3.8)

Fh(φ) :=
∑
E∈Eh

∫
E
qφ◦dE −

∑
γ⊂�N,h

∫
γ

gNφ∂ds. (3.9)

After a numerical pressure ph is obtained, one calculates its discrete weak gradient and
then the numerical velocity as follows

uh = Rh(−K∇w,d ph), (3.10)

where Rh is the local L2 projection onto V (E, n)mentioned earlier. However, note that when
K = KE I2 and KE is a constant scalar on each element, the local L2 projection in (3.10) is
not needed. It is proved theoretically in [26] and demonstrated numerically in our recent work
[18] that the WGFEM produces a numerical flux thats is locally conservative elementwise
as expressed in (2.4) and has continuous normal components across element interfaces.

A salient feature of theWGfinite element scheme for theDarcy equation is that the discrete
linear system is symmetric positive-definite, which can be solved by, e.g., the conjugate
gradientmethod. This is an obvious advantage over the classicalmixed finite elementmethod,
which results in indefinite linear systems and special solvers, e.g., the Uzawa algorithm, need
to be used. WGFEM holds also advantages over the discontinuous Galerkin finite element
method [19], which proliferates in number of unknowns and involves problem-dependent
penalty factors.

3.4 Other Numerical Methods for the Darcy Equation

This subsection briefly discusses other related finite element methods for the Darcy equation
(3.1), mainly the continuous Galerkin finite element method and the mixed finite element
method.

3.4.1 CGFEM for Darcy

The CGFEM [4] is probably the simplest finite element method one can use for the Darcy
equation (3.1). Here we briefly explain that the method does not produce a numerical velocity
that is locally conservative and has normal components across element interfaces.

For simplicity, assume CG Q1 elements are used on a rectangular mesh Eh . Let E ∈ Eh .
Without loss of generality, assume the numerical pressure takes the form

ph |E = a + bx + cy + dxy.

Then one has a numerical velocity

uh = −KE

[
b + dy
c + dx

]
.
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Assume KE is a scalar constant on E , it is clear that

∇ · uh = 0.

So in general ∫
E
qdE �= 0 =

∫
E
(∇ · uh)dE =

∫
∂E

uh · nds,
Therefore, the local conservation property is not satisfied by the CG numerical velocity.

One can easily check the velocity values on two adjacent elements to find out that the
normal component continuity property does not hold for the CG Q1 finite element method.

A considerable amount of effort has been devoted to finding ways for postprocessing
the approximate pressure of the CGFEM to produce a numerical velocity that is locally
conservative and has continuous normal components across element interfaces [5,8,15].
Implementing the CG postprocessing procedure investigated in [8] takes also additional
effort. There are difficulties in formulating the discrete system for the flux traces on the mesh
skeleton, especially choosing a good base for the involved space of jumps.

Another remedy is to enhance the CG finite element space by piecewise constants [23].

3.4.2 MFEM for Darcy

The mixed finite element method has been widely accepted for solving the Darcy’s equation
[18,21]. It is based on the mixed formulation (the first form discussed in Introduction) of the
Darcy’s law. Amain advantage of theMFEM is that numerical flux and pressure are obtained
simultaneously. Its main disadvantage is the need for indefinite discrete linear systems.

There are variants of the classicalMFEM, e.g., hybridization of theMFEM [1,6]. Contrary
to the classical MFEM, the hybridized MFEM results in governing algebraic equations for
the Lagrange multipliers or trace pressures, i.e., pressure values on the element interfaces.
As a consequence, obtaining a velocity profile (as in the classical MFEM, it is still locally
conservative) requires a postprocessing of the trace pressures.

The relationship between theMFEM, the hybridizedMFEM, and theWGFEMis discussed
in [18]. It has been demonstrated in [18,19] that the numerical pressures, velocities obtained
from using the WGFEM and the MFEM have negligible differences, when the permeability
in the Darcy equation is a piecewise constant scalar.

4 Numerical Experiments

This section presents results of numerical experiments that examine the performance of
the proposed methods. The main purpose is to accentuate robustness of the WGFEM in
providing locally conservative velocity field. We measure this by checking the saturation
profiles resulted from solving the transport equation by an upwinding finite volume scheme,
for which the numerical velocity from the WGFEM is an input. A useful indicator is that the
saturation profiles progressing over time should maintain its stability. This would otherwise
be impossible, should the numerical velocity violate the local conservation.

In particular, we test two examples with distinct permeability fields shown in Figs. 3 and 6.
Both examples of permeability exhibit high-contrast features, which can make solving (2.1)
a demanding task. The ratio between the maximum and minimum values of k(x) is related to
the condition number of the resulting linear system for the finite element method for solving
the Darcy equation.
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0.0

0.5

1.0

0 1 2 3 4 5

-3 3 9 15 21

Fig. 3 Example 1: Logarithmic spatial profile of the permeability k(x) exhibiting deterministic channel
(kmax/kmin ≈ 3.966 × 108)

As mentioned earlier, the two-phase flow simulation is conducted using the operator
decomposition procedure described in Sect. 2.1. A coarse scale time step Δtc is used when
dealing with the pressure equation (2.1), which is solved (implicitly) using the weak Galerkin
finite element method. In other words, Eq. (2.1) is solved only for the coarse scale time levels.
The time interval between two consecutive coarse time levels is divided into finer time levels
using a fine scale time step Δtf . Determination of Δtf is controlled by the CFL condition,
which needs to be satisfied tomaintain stability of numerical solutions of first order hyperbolic
equations. On these fine time levels, the saturation equation (2.2) is solved explicitly using an
unwinding scheme. In this scheme, the velocity normal component is frozen at the previous
coarse time level. The frozen normal component of numerical velocity is obtained from
postprocessing of the weak Galerkin finite element solution at the aforementioned coarse
time level.

We note that a standard unwinding scheme does require the input velocity normal compo-
nent to the saturation equation (2.2) being locally conservative at a set of predefined control
volumes. In this case, the said set of control volumes are the actual elements used for the
discretization of the pressure equation (2.1) in the weak Galerkin finite element scheme, see
(2.4) for the mathematical expression of local conservation.

For the physical parameters appearing in (2.1) and (2.2), we use the usual quadratic
expressions for the constitutive relations: krw = S2 and kro = (1 − S)2 with two choices of
viscosity ratio μo/μw: 5 and 20.

For both examples, the pressure boundary condition is set to 1 on the left boundary of Ω

and 0 on the right boundary of the domain. The bottom and top boundaries of Ω are closed
to flow at all times. No source or sink is present in the domain. The saturation boundary
condition is set to 1 on the left boundary of Ω . The saturation at initial time is 0.

Example 1 The domain is Ω = [0, 5] × [0, 1]. The permeability field, as shown in Fig. 3,
is posed on a 100 × 100 rectangular mesh. Here kmax/kmin is approximately 3.966 × 108.
Clearly, we have a high-contrast coefficient with abrupt transitions between regions of low
and high permeability.

Within the framework of operator splitting, we use a coarse time step Δtc = 5× 10−3 and a
fine time step Δtf = 10−4.

For the case the viscosity ratioμo/μw = 5, the saturation profiles at several timemoments
are shown in Fig. 4. It can be observed that the preferential transport of the water saturation is
predominantly regulated by the high contrast feature of the permeability field. The saturation
profiles in Fig. 4 shows that the saturation do not exceed 1 and are always nonnegative. This
is an indication that the local conservation property is numerically represented. It would be
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Fig. 4 Example 1: Saturation profiles obtained by using MGFEM+FVM: t = 2.5 (bottom), t = 5 (middle),
and t = 10 (top). The viscosity ratio μo/μw is 5

Fig. 5 Example 1: Small
differences in the saturations
obtained by using
WGFEM+FVM and
MFEM+FVM at 20 coarse time
steps
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otherwise impossible tomaintain, should the numerical velocity violate the local conservation
property.

It was explained in [18] that there exists certain equivalence between the WGFEM and
the MFEM when the permeability in the Darcy equation is a piecewise constant scalar. It
has been demonstrated in [18,19] that the numerical pressures, velocities obtained from
using the WGFEM and the MFEM have negligible differences. Here in this paper, for a
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Fig. 6 Example 2: Logarithmic spatial profile of the permeability exhibiting random channel (with
kmax/kmin ≈ 4.075 × 109)
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Fig. 7 Example 2: Saturation profiles with k(x) using the randomly generated permeability: at t = 0.025
(bottom), t = 0.05 (middle), and t = 0.1 (top). The viscosity ratio μo/μw is 5

two-phase problem that couples the Darcy equation and a transport equation, we can observe
similar phenomena. The two-phase problem (2.1)–(2.3) is solved respectively by WGFEM
(Q0, P0, RT[0]) for Darcy plus FVM for transport and MFEM (RT[0], Q0) for Darcy plus
FVM for transport. Note that the numerical fluxes obtained from solving (2.1) byWGFEMor
MFEM are fed into the FVM solver for (2.2), which produces saturations. These saturations
are fed into (2.3) to produce numerical permeabilities to be used in (2.1). Figure 5 shows
the small differences between the saturation values for these two sets of numerical methods,
even though the fluxes and saturations have been coupled nonlinearly in many steps of the
numerical simulations. This evidence supports our statement that the WGFEM is a viable
alternative of the MFEM for solving the Darcy equation.
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Fig. 8 Example 2: Saturation profiles with k(x) using the randomly generated permeability: at t = 0.025
(bottom), t = 0.05 (middle), and t = 0.1 (top). The viscosity ratio μo/μw is 20

Example 2 The domain is still Ω = [0, 5] × [0, 1], the permeability field is shown in Fig. 6.
It is actually a single realization of a random, channelized permeability that is posed on a
120 × 120 rectangular mesh.

For the case the viscosity ratio μo/μw = 5, the saturation profiles sampled at several
time moments are shown in Fig. 7. Here the coarse time step for flow is Δtc = 5 × 10−5

whereas the fine time step for transport is Δtf = 10−6. As observed in the simulation results,
the preferential transport is mainly governed by the channel feature of the permeability field
albeit with irregular configuration.

For the case the viscosity ratio μo/μw = 20, Fig. 8 shows the saturation profiles at the
same time moments.

Both figures exhibit the expected correct behavior in that the profiles maintain necessary
stability. A slower transport is observed for the case of a viscosity ratio 20, compared to the
case with a viscosity ratio 5.

These two test examples confirm the merit of a locally conservative flux with continuous
normal component that is obtained from using the weak Galerkin finite element method.

5 Concluding Remarks

In this paper, we have combined the weak Galerkin finite element method and the finite
volume method in numerical simulations of two-phase flow as typically found in subsurface
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modeling. The weak Galerkin finite element method is utilized to solve the Darcy equation
and has been demonstrated as accurately generating a locally conservative numerical velocity.
This is crucial for robustness of the solver for saturation transport, particularly maintaining
the positivity of saturation. The suitability of the combined methods has been substantiated
by the simulation results on two benchmark test cases.

The study presented in this paper utilizes an upwinding finite volume method for solving
the saturation transport equation. This method is subject to the restriction of the CFL condi-
tion. An alternative approach is to use characteristic finite volumemethods [13], which allows
us to use relatively large time steps. It is desirable to combine theweakGalerkin finite element
methods with characteristic tracking [25] for development of transient convection-dominated
transport equations. This is particularly important and useful for numerical simulations of
multiphase flow when capillary pressure is included in the models. This is currently under
our investigation and will be reported in our future work.
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