Groups of order p^2q, $p > q$ both prime.

Let G be a group of order p^2q, with $p > q$ both prime. Since $1 + kp$ divides q only if $k = 1$, the Sylow p-subgroup S_p is normal in G. It follows that $G \cong S_p \times qZ_q$ for some $\theta : Z_q \rightarrow \text{Aut}(S_p)$. If q does not divide $p^2 - 1$ then $1 + kq \neq p$ or p^2, so $1 + kq$ does not divide p^2 unless $k = 0$. In this case, then, S_q too is normal, whence G is abelian, and so isomorphic to $Z_{p^2} \times Z_q$ or to $Z_p \times Z_p \times Z_q$. Thus there is no more to do unless $q|(p^2 - 1)$, which is assumed from now on.

Assume further that θ is injective, since otherwise G is abelian.

Then check that with $W := \theta(Z_q)$, G is isomorphic to the group of transformations $T_{z,w} : S_p \rightarrow S_p$ ($z \in S_p, w \in W$) where

$$T_{z,w}(x) = wx + z.$$

To classify such groups, suppose first that $S_p \cong Z_{p^2}$.

Lemma 1. $\text{Aut}(Z_{p^2}) \cong Z_{p^2}^*$ is cyclic, of order $p(p - 1)$.

Proof. We have seen the isomorphism before; and $|Z_{p^2}^*| = \phi(p^2) = p(p - 1)$. We also know that Z_p^* is cyclic. Choose $z \in Z_{p^2}^*$ so that its natural image in Z_p^* is a generator. It holds that $z^a \equiv 1 \pmod{p^2} \implies z^a \equiv 1 \pmod{p} \implies (p - 1)|a$. So the order of z is a multiple of $p - 1$, and also is a divisor of $p(p - 1)$, and thus can only be $p - 1$ or $p(p - 1)$. In the latter case, z generates $Z_{p^2}^*$. In the former case, the binomial expansion gives

$$(z + p)^{p^2 - 1} \equiv z^{p^2 - 1} + (p - 1)pz^{p^2 - 2} \equiv 1 - pz^{p^2 - 2} \equiv 1 \pmod{p^2}.$$

As before, $z + p$—which has the same image in Z_p^* as z does—has order $p - 1$ or $p(p - 1)$, and we've just seen that it can't be $p - 1$, so it must be $p(p - 1)$, i.e., $z + p$ generates $Z_{p^2}^*$. Thus in any case, $Z_{p^2}^*$ is indeed cyclic. \(\square\)

Remark. A similar argument shows, via induction, that $Z_{p^n}^*$ is cyclic for any $n > 0$.

Clearly, an injective θ exists $\iff q|(p^2 - 1)$, i.e., $q|(p - 1)$. So when q does divide $p - 1$, we find, arguing as for groups of order pq, that there is just one nonabelian group of order p^2q having a cyclic S_p, namely, with W the unique order-q subgroup of $Z_{p^2}^*$, the group of transformations $T_{z,w} : Z_{p^2} \rightarrow Z_{p^2}$ ($z \in Z_{p^2}, w \in W$) where

$$T_{z,w}(x) = wx + z.$$

Now the fun begins.

Suppose next that $S_p \cong Z_p \times Z_p$, a two-dimensional vector space over the field Z_p. Any group automorphism of $Z_p \times Z_p$ is an invertible Z_p-linear map (why?), and so $\text{Aut}(Z_p \times Z_p)$ is isomorphic to the group $\text{GL}_2(Z_p)$ of invertible 2×2 matrices with Z_p-entries.

Noting that any automorphism ϕ of G must take the unique order-p^2 subgroup $H := S_p$ to itself, and that H is abelian, deduce from the handout on isomorphisms of semi-direct products that, for two homomorphisms $\theta_i : Z_q \rightarrow \text{Aut}(S_p)$,

$$S_p \rtimes_{\theta_1} Z_q \cong S_p \rtimes_{\theta_2} Z_q \iff \theta_1(Z_q) \text{ and } \theta_2(Z_q) \text{ are conjugate subgroups of } \text{Aut}(S_p).$$

Thus the classification problem becomes the linear-algebra problem of determining the conjugacy classes of order-q subgroups of $\text{GL}_2(Z_p)$.

1
One often says two matrices in $\text{GL}_2(\mathbb{Z}_p)$ are “similar” rather than “conjugate.” (Both terms mean the same thing here.) How do we detect similarity?

Lemma 2. Let A be a 2×2 matrix over a field k. If A is not a scalar multiple of the identity matrix, then A is similar to the matrix

$$
\begin{pmatrix}
0 & -d \\
1 & t
\end{pmatrix} \\
(d = \det A, \ t = \text{trace } A)
$$

Proof. Representing elements of k^2 as 2×1 column vectors, let $T: k^2 \to k^2$ be the linear map given by left multiplication by A. If every vector in k^2 is an eigenvector of A, then A is a scalar multiple of the identity. (Show this, e.g., by using that $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, and $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ are eigenvectors.)

Otherwise, some nonzero vector $v \in k^2$ is not an eigenvector of A, and the pair (v, Tv) forms a basis of k^2. The matrix of T w.r.t. this basis has the form $\begin{pmatrix} 0 & a \\ 1 & b \end{pmatrix}$. This matrix, being similar to A, has the same determinant and trace, i.e., $-a = d$ and $b = t$. □

Corollary. Two non-scalar 2×2 matrices over k are similar iff they have the same eigenvalues.

Now we can start counting conjugacy classes. Henceforth, A is a matrix of order q, i.e., if I is the 2×2 identity matrix then $A^q = I$ and $A \neq I$. The eigenvalues of such an A are q-th roots of unity.

If these eigenvalues are both 1, and $A \neq I$, then Lemma 2 gives that A is similar to $B := \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}$. By induction, one shows that for $n > 0$,

$$B^n = \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}^n = \begin{pmatrix} 1-n & -n \\ n & n+1 \end{pmatrix}.$$

Hence $B^p = I$, hence $B^q \neq I$ (else $B = I$ would follow), hence $A^q \neq I$. So the eigenvalues can’t both be 1.

Recall that q divides $p^2 - 1$, so q divides $p - 1$ or $p + 1$, but not both if q is odd.

There are, then, three cases to examine.

(A) $q = 2$.

(B) $q|(p+1)$, $q \nmid (p-1)$.

(C) $q|(p-1)$, $q \nmid (p+1)$.

(A) Two order-2 subgroup of $\text{GL}_2(\mathbb{Z}_p)$ are conjugate if and only if their unique generators are similar. The eigenvalues of A are $(-1, -1)$ or $(1, -1)$. It follows that every order-2 subgroup of $\text{GL}_2(\mathbb{Z}_p)$ is similar to one and only one of the three groups generated respectively by

$$
\begin{pmatrix}
-1 & 0 \\
0 & -1
\end{pmatrix}, \quad
\begin{pmatrix}
-1 & 1 \\
0 & -1
\end{pmatrix}, \quad
\begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix}.
$$

The corresponding three pairwise nonisomorphic semidirect products G have generators x, y, z which satisfy $x^p = y^p = z^2 = e$, $xy = yx$, and $zx = x^{-1}z$, $zy = y^{-1}z$, respectively $zx = x^{-1}z$, $zy = xy^{-1}z$, respectively $zx = xz$, $zy = y^{-1}z$. (The third of these is isomorphic to $\mathbb{Z}_p \times D_{2p}$.)
(B) Since q doesn’t divide $p - 1$, \mathbb{Z}_p^* has no elements of order q, that is, 1 is the only q-th root of unity in \mathbb{Z}_p. Hence the eigenvalues λ and λ' of A satisfy $\lambda \lambda' = \det A = 1$. If $\lambda = 1$, then $\lambda' = 1$, which, we’ve seen, can’t happen. Since λ is a root of a quadratic equation—the characteristic equation of A—therefore $\mathbb{Z}_p[\lambda]$ is a quadratic extension of \mathbb{Z}_p (considered as a field); and this quadratic extension contains all the roots of the equation $X^q = 1$ (over \mathbb{Z}_p), namely the powers of λ.

Now if $B \neq I$ satisfies $B^q = I$, then the eigenvalues of B must be of the form $(\lambda^a, 1/\lambda^a)$ $(a, q) = 1$. Hence B is similar to A^a, and there is at most one conjugacy class of order-q subgroups of $\text{GL}_2(\mathbb{Z}_p)$.

To show that there is at least one order-q subgroup, i.e., that there is an element of order q, we need only show that q divides the order of $\text{GL}_2(\mathbb{Z}_p)$. But to specify an invertible 2×2 \mathbb{Z}_p-matrix, we can put any one of the $p^2 - 1$ nonzero row vectors in the first row, and then put any one of the $p^2 - p$ row vectors which are not scalar multiples of the first row in the second row. Thus $\text{GL}_2(\mathbb{Z}_p)$ has order $(p^2 - 1)(p^2 - p)$, which is indeed divisible by q.

In conclusion, in this case there exists a unique nonabelian semidirect product.

(C) Now there are q q-th roots of unity, forming a subgroup, necessarily cyclic, of \mathbb{Z}_p^*, with generator, say, ζ. The eigenvalues of A must then have the form (ζ^a, ζ^b), where at least one of a, b, say a, is not divisible by q; and then if $c = a^{-1}$ (mod q), A^c has eigenvalues (ζ, ζ^d) $(0 \leq d < q)$, and A^c generates the same order-q subgroup, call it U, as A does.

Suppose B generates an order-q subgroup V, and that the eigenvalues of B are (ζ, ζ^c). Then U is conjugate to V iff A is similar to some power B^f, i.e., the unordered pairs (ζ, ζ^d) and (ζ^f, ζ^{cf}) are the same. This means that either $f = 1$ and $c = d$ or $f = d \neq 0$ and $c = d^{-1}$.

In conclusion, when q is odd and $q|(p - 1)$, the set of conjugacy classes of order-q subgroups of $\text{GL}_2(\mathbb{Z}_p)$ corresponds 1-1 with the set consisting of the $(q - 3)/2$ pairs (d, d^{-1}) $(d \neq d^{-1} \in \mathbb{Z}_q^*)$ together with the pairs $(1, 1)$, $(1, -1)$, and $(1, 0)$. Thus there are $(q + 3)/2$ such conjugacy classes, and correspondingly, there are $(q + 3)/2$ nonabelian semidirect products.

Question: Which of these is $\mathbb{Z}_p \times H_{pq}$, where H_{pq} is the nonabelian group of order pq?

Exercise. How many distinct nonabelian groups are there having the following orders?

98, 147 (cf. D&F, p. 185,#10), 847, 1183, 5887.