Homework 3: Due Thursday, September 13

Reading: Chapters 3, 4

Problem 1: For each of the following operations on \(\mathbb{R} \), determine whether it is commutative, associative, has an identity, and inverses. Justify your answer (i.e. if it’s true, prove it; otherwise justify your answer.)

1. \(x \ast y = x + 2y - xy \)
2. \(x \ast y = |x - y| \)
3. \(x \ast y = \max\{x, y\} \) (i.e. the maximum of \(x \) and \(y \)).

Problem 2: Let \(G \) be a group, and \(g \in G \). Show that \((g^{-1})^{-1} = g\). If \(g, h \in G \), show that \((gh)^{-1} = h^{-1}g^{-1}\).

Problem 3: Let \(G \) be a group. Two elements \(g, h \in G \) are said to commute if \(gh = hg \). Show that if \(g \) and \(h \) commute, then so do their inverses.

Problem 4: If two elements \(a \) and \(b \) in a group \(G \) commute, show that \((ab)^n = a^nb^n\) for all \(n \in \mathbb{Z}\).

Problem 5: Let \(S \) be a set with an associative law of composition and with an identity element. Let \(G \) be the subset of \(S \) consisting of invertible elements (i.e. those \(s \in S \) for which there is an inverse under the given law of composition). Show that \(G \) is a group.

Problem 6: Write down the multiplication table for the group of symmetries of the square. Recall, as a set this is given by \(\{1, R, R^2, R^3, F, FR, FR^2, FR^3\} \). See problem set 2 for the notation used here.

Problem 7: Determine all integers \(n \) such that 2 has an inverse under multiplication modulo \(n \).

Problem 8: Show that the permutation group \(S_n \) is not abelian for \(n \geq 3 \) by explicitly exhibiting two elements in \(S_n \) which do not commute.