1. Let \(H \) and \(K \) be finite subgroups of a group \(G \).

 (a) Recall that \(HK = \{ hk : h \in H, k \in K \} \), and show
 \[
 |HK| = \frac{|H||K|}{|H \cap K|}.
 \]

 (b) For \(x \in G \), the set \(HxK = \{ h\,x\,k : h \in H, k \in K \} \) is called a double coset of \(H \) and \(K \). Show that \(G \) is a disjoint union of double cosets and
 \[
 |HxK| = \frac{|H||K|}{|H \cap xKx^{-1}|}.
 \]

 (c) If all double cosets of the form \(HxH \) for \(x \in G \) have the same number of elements, show that \(H \triangleleft G \).

Solution: (a) follows from (b) using \(x = e \).

(b) If \(HxK \) and \(HyK \) are two double cosets and \(hxk \in HyK \) for \(h \in H \) and \(k \in K \), then \(x \in HyK \), and so \(HxK \subseteq HyK \). Consequently \(HxK \) and \(HyK \) are either disjoint or equal.

Next note that \(xKx^{-1} \) is a subgroup of \(G \), and so \(H \cap xKx^{-1} \) is a subgroup of \(H \). Therefore \(H \) is the disjoint union of left cosets of \(H \cap xKx^{-1} \), i.e.,
 \[
 H = \bigcup_{i \in I} h_i(H \cap xKx^{-1})
 \]

where \(I \) is a finite index set, \(h_i \in H \), and the union is disjoint. But then
 \[
 HxK = \bigcup_{i \in I} h_i xK.
 \]

The cosets \(\{h_i xK\}_{i \in I} \) are left cosets of \(K \), and so they must be equal or disjoint. If \(h_i xK = h_j xK \), then \(x^{-1}h_j^{-1}h_i x \in K \), and \(h_j^{-1}h_i \in H \cap xKx^{-1} \). This implies \(h_i = h_j \), and so we have a disjoint union in \((*)\). Consequently
 \[
 |I| = \frac{|H|}{|H \cap xKx^{-1}|} = \frac{|HxK|}{|xK|} = \frac{|HxK|}{|K|}.
 \]

(c) If \(|HxH| \) does not depend on \(x \), then \(|HxH| = |HeH| = |H| \) for all \(x \in G \). The formula from (b) now implies that \(|H| = |H \cap xHx^{-1}| \), i.e., that \(xHx^{-1} = H \) for all \(x \in G \).

2. Let \(G \) be a \(p \)-group where \(p \) be a prime integer.

 (a) If \(|G| = p^2 \), show that \(G \) is abelian.

 (b) If \(|G| = p^3 \), show that either \(G \) is abelian or \(|Z(G)| = p \), where \(Z(G) \) is the center of \(G \).

Solution: We set \(Z = Z(G) \). Since \(G \) is a \(p \)-group, \(p \) divides \(|Z| \). Suppose \(G/Z \) is cyclic, then there exists \(a \in G \) such that \(aZ \) generates the group \(G/Z \). Consequently \(G = \bigcup a^nZ \), and so every element of \(G \) has the form \(a^n z \) for some integer \(n \) and \(z \in Z \). It follows that \(G \) is abelian.

(a) In this case \(G/Z \) can have order 1 or \(p \), so it must be cyclic. Consequently \(G \) is abelian (and so \(G = Z \)).

(b) We must have \(|Z| \in \{p, p^2, p^3\} \). If \(|Z| \neq p \), then \(|G/Z| \in \{1, p\} \) so \(G/Z \) is cyclic, and therefore \(G \) is abelian.
3. Let \(p \) be a prime integer and \(G \) be a \(p \)-group. If \(H \triangleleft G \) and \(|H| = p \), prove that \(H \) is contained in the center of \(G \).

Solution: Since \(H \) is normal \(G \) acts on \(H \) by conjugation, and this gives us a homomorphism

\[
\phi : G \longrightarrow \text{Aut}(H).
\]

But \(|\text{Aut}(H)| = p - 1 \), and so \(|\text{Image}(\phi)| = 1 \). Consequently \(\text{Image}(\phi) \) is the trivial automorphism, i.e., \(xhx^{-1} = h \) for all \(h \in H \) and \(x \in G \).

4. Let \(G \) be an infinite group and \(H \) a subgroup of finite index. Show that \(G \) has a normal subgroup \(K \) of finite index, with \(K < H \).

Solution: Let \(S \) be the set of left cosets of \(H \) and \(n = |S| = (G : H) \). Then \(G \) acts by translation on \(S \),

\[
\phi : G \longrightarrow \text{Perm}(S), \quad g \mapsto (xH \mapsto gxH).
\]

Let \(K = \text{Ker} \phi \). Then \(K \triangleleft G \) and \(|G/K| \) divides \(n! \) and so \(K \) has finite index in \(G \). If \(k \in K \) then \(kxH = xH \) for all \(x \in G \), and so \(k \in H \).

5. Let \(G \) be an infinite group containing an element \(x \neq e \) having only finitely many conjugates. Prove that \(G \) is not simple.

Solution: Let \(G \) act on itself by conjugation. The orbit of \(x \) is finite, so \((G : G_x) < \infty \) where \(G_x \) is the isotropy group of \(x \). By (4), there exists a subgroup \(K \triangleleft G \) of finite index, with \(K < G_x \). Consequently if \(G_x \neq G \), then \(K \neq G \) is a nontrivial normal subgroup, and so \(G \) is not simple.

If \(G_x = G \) then \(x \in Z(G) \), and so \(Z(G) \triangleleft G \) is a nontrivial normal subgroup; if \(Z(G) \neq G \) it follows that \(G \) is not simple. If \(Z(G) = G \), then \(G \) is an infinite abelian group and we claim such a group cannot be simple: Let \(g \in G \) where \(g \neq e \). Then \(\langle g \rangle \triangleleft G \) and so, if \(G \) is simple, \(\langle g \rangle = G \), i.e., \(G \) is an infinite cyclic group with generator \(g \). But then \(\langle g^2 \rangle \triangleleft G \) is a nontrivial proper normal subgroup, contradicting the assumption that \(G \) is simple.

6. Let \(G \) be a finite group such that \(\text{Aut}(G) \) acts transitively on the set \(G \setminus \{e\} \). Show that \(G \) is a \(p \)-group for some prime \(p \), and that \(G \) is abelian.

Solution: Let \(p \) be a prime dividing \(|G| \). Then there exists \(x \in G \) with \(|x| = p \). Let \(y \in G \setminus \{e\} \) be an arbitrary element. Then there exists \(\phi \in \text{Aut}(G) \) with \(\phi(x) = y \), and so \(e = \phi(x^p) = y^p \), which implies that \(|y| = p \). Consequently if \(q \neq p \) is a prime, then \(G \) has no elements of order \(q \), and so \(|G| \) must be a power of \(p \).

Since \(G \) is a \(p \)-group, there exists \(z \neq e \) in the center of \(G \). If \(a, b \in G \setminus \{e\} \) are arbitrary elements, then there exists \(\psi \in \text{Aut}(G) \) with \(\psi(b) = z \). But then

\[
\psi(ab) = \psi(a)z = z\psi(a) = \psi(ba).
\]

Since \(\psi \) is an automorphism, and hence injective, \(ab = ba \).

7. Let \(G \) be a group with \(|G| = mp^n \) where \(p \) is a prime and \(m < p \). Show that \(G \) has exactly one \(p \)-Sylow subgroup, and that this subgroup is normal.

Solution: We saw that \(G \) acts on the set of \(p \)-Sylow subgroups by conjugation, and that this action is transitive. Let \(P \) be any \(p \)-Sylow subgroup. Then the number of \(p \)-Sylow subgroups is the length of the orbit of \(P \), which equals \((G : G_P)\), where \(G_P \) is the isotropy group of \(P \). Note
that $P < G_p < G$, and so $(G : G_P)$ divides $(G : P) = m$. Consequently the number of p-Sylow subgroups divides m, and is also $1 \mod p$. Since $m < p$, there is only one p-Sylow subgroup, namely P. Since $xP x^{-1}$ is also a p-Sylow subgroup, we must have $xP x^{-1} = P$ for all $x \in G$, i.e., $P \triangleleft G$.

8. Let G be a finite group of odd order which acts transitively on a set S. For $s \in S$, show that the orbits of the action of G_s on $S \setminus \{s\}$ have lengths which are equal in pairs.

Solution: Let $H = G_s$. Since the action of G on S is transitive, every element of S is of the form ys for $y \in G$, and so every element of $S \setminus \{s\}$ is of the form ys for $y \notin H$. We claim that for $y \notin H$, the orbits of ys and $y^{-1}s$ under the action of H are disjoint and have the same length.

Suppose $hys = y^{-1}s$ for $h \in H$, then $yhys = s$, i.e., $yhy \in H$. In that case, $(yh)^2 \in H$. Since $|G|$ is odd, $|yh|$ must be an odd integer, say $2k + 1$. But then

$$yh = yh(yh)^{2k+1} = ((yh)^2)^{k+1} \in H,$$

which contradicts the assumption that $y \notin H$. This proves that ys and $y^{-1}s$ belong to disjoint orbits under the action of H.

The length of the orbit of ys under the action of H is $(H : H_{ys})$, where

$$H_{ys} = \{h \in H : hys = ys\} = \{h \in H : y^{-1}hy \in H\} = H \cap yHy^{-1}.$$

is the isotropy subgroup of ys. Therefore the length of the orbit of ys under the action of H is

$$|H|/|H \cap yHy^{-1}|.$$

Similarly, the length of the orbit of $y^{-1}s$ under the action of H is

$$|H|/|H \cap y^{-1}Hy|,$$

and these lengths are equal since

$$|H \cap y^{-1}Hy| = |y(H \cap y^{-1}Hy)y^{-1}| = |yHy^{-1} \cap H|.$$

9. Let G be a finite group and p a prime number. An element $g \in G$ is called p-unipotent if its order is a power of p, and p-regular if its order is not divisible by p.

(a) Let $x \in G$. Show that there exists a unique ordered pair (u, r) of elements of G such that u is p-unipotent, r is p-regular, and $x = ur = ru$.

(Hint: First consider the case where G is the cyclic group generated by x.)

(b) Let P be a p-Sylow subgroup of G, C the centralizer of P, and E the set of p-regular elements of G. Show that

$$|E| \equiv |E \cap C| \mod p.$$

(c) Deduce that p does not divide the order of E.

(Hint: Use induction on the cardinality of G to reduce to the case where $C = G$; then use (a)).
Solutions to Assignment 2

(a) Let U be the set of p-unipotent elements of G, and E the set of p-regular elements. Note that $U \cap E = \{e\}$ and that U is a subgroup whenever the elements of U commute; likewise, E is a subgroup whenever the elements of E commute.

We first consider the case $G = \langle x \rangle$. Since G is abelian in this case, U and E are both subgroups of G. Consequently if $x = ur = u'r'$ for $u, u' \in U$ and $r, r' \in E$, then $u^{-1}ur = r'r^{-1} \in U \cap E = \{e\}$, and so $u = u'$ and $r = r'$.

Let $|x| = mp^n$ where m and p are relatively prime. There exist positive integers $a, b \in \mathbb{Z}$ such that $am + bp^n \equiv 1 \mod mp^n$. Note that this implies $(a, p^n) = 1$ and $(b, m) = 1$. We have

$$x = x^{am+bp^n} = x^{am}x^{bp^n} = ur$$

where $u = x^{am}$ has order p^n and $r = x^{bp^n}$ has order m.

If G is not necessarily cyclic, we still have $x = ur = ru$ for a p-unipotent element $u \in \langle x \rangle$ and a p-regular element $r \in \langle x \rangle$. Suppose $x = u'r' = r'u'$ is another such factorization with $u' \in U$ and $r' \in E$. Then $u' = xu^{-1}r'$ and so $x = r'ru^{-1}$, i.e., $xu^{-1}r' = r'x$. Similarly $xx = u'u$, and so u' and r' commute with x, and hence also with u and r which are powers of x. But then $u'^{-1}u = r'r^{-1} \in U \cap E = \{e\}$, and so uniqueness follows in the general case as well.

(b) Since conjugation preserves the order of an element, P acts on E by conjugation. The fixed points of this action are precisely the elements of $E \cap C$. Since P is a p-group, it follows that $|E| \equiv |E \cap C| \mod p$.

(c) We use induction on $|G|$. The result is certainly true if $|G| = p$. The set of p-regular elements of C is precisely $|E \cap C|$, and so if C is a proper subgroup of C, the induction hypothesis implies that p does not divide $|E \cap C|$. Using (b), it then follows that p does not divide $|E|$.

Consequently we may assume that $C = G$, i.e., that P is in the center of G. This implies, in particular, that $P \triangleleft G$, and so P is the unique p-Sylow subgroup of G, and $P = U$. In this case, consider the map

$$f : U \times E \to G \quad \text{where} \quad f(u, r) = ur = ru.$$

By (a), this map is a bijection, and so $|G| = |U||E|$. Since $U = P$ is a p-Sylow subgroup of G, we conclude that p does not divide $|E|$.

10. Let G be a finite group, P a Sylow subgroup of G, and N the normalizer of P. Let X_1 and X_2 be subsets of the center of P which are conjugate, i.e., $sX_1s^{-1} = X_2$ for some element $s \in G$.

(a) Show that there exists $n \in N$ such that $nxs^{-1} = xst^{-1}s^{-1}$ for all $x \in X_1$.

(b) Deduce that two elements of the center of P are conjugate in G if and only if they are conjugates in N.

Solution: (a) Let C be the centralizer of X_1 in G. Since $X_1 < Z(P)$, it follows that P is contained in C, and hence that P is a Sylow subgroup of C. Since $X_2 = sX_1s^{-1} \subseteq Z(P)$, it is easily checked that $X_1 \subseteq Z(s^{-1}Ps)$, and so $s^{-1}Ps$ is also contained in C. But Sylow subgroups of C are conjugate, so there exists $t \in C$ such that $s^{-1}Ps = tPt^{-1}$. Consequently $P = stPt^{-1}s^{-1}$, and so $n = st \in N$. Now if $x \in X_1$, then $nxn^{-1} = stx^{-1}s^{-1} = sxst^{-1}s^{-1} = sxs^{-1}$ since $t \in C$.

(b) follows immediately from (a), taking X_1 and X_2 to be the appropriate singleton sets.