EXAMPLES OF SECTION 6.5

Example 1. A 16 lb object stretches a spring \(\frac{8}{9} \) ft by itself. There is no damping and no external forces acting on the system. The spring is initially displaced 6 inches upwards from its equilibrium position and given an initial velocity of 1 ft/sec downward. Find the displacement \(u(t) \) at any time \(t \).

Solution. We first need to set up the equation for the problem. This requires us to find \(m \) and \(k \).

The mass is

\[
m = \frac{\text{Weight}}{g} = \frac{16}{32} = \frac{1}{2}.
\]

Now we find \(k \) by Hook’s law:

\[
k = \frac{mg}{L} = \frac{16}{\frac{8}{9}} = 18.
\]

We can now set up the IVP.

\[
u'' + 36u = 0, \quad u(0) = -\frac{1}{2}, \quad u'(0) = 1.
\]

For the initial conditions recall that upward displacement/motion is negative while downward displacement/motion is positive. Also, since we decided to do everything in feet we had to convert the initial displacement to feet.

The associated polynomial differential equation is

\[
(D^2 + 36)u = 0,
\]

which gives us the complex conjugate roots \(r = \pm 6i \). The general solution can be found to be:

\[
u = C_1 \cos(6t) + C_2 \sin(6t).
\]

To find the undetermined constants, we plug in the initial values:

\[
u(0) = C_1 = -\frac{1}{2},
\]

and

\[
u'(0) = -6C_1 \cos(0) + 6C_2 \sin(0) = 1 \implies C_2 = \frac{1}{6}.
\]

The displacement at any time \(t \) now is given by

\[
u(t) = -\frac{1}{2} \cos(6t) + \frac{1}{6} \sin(6t).
\]
Now, let’s convert this to a single cosine. First let’s get the amplitude, \(R \).

\[
R = \sqrt{\left(-\frac{1}{2}\right)^2 + \left(\frac{1}{6}\right)^2} = \frac{\sqrt{10}}{6}.
\]

The phase is now given by

\[
\phi = \cos^{-1}\left(-\frac{1/2}{\sqrt{10/6}}\right) = \cos^{-1}\left(-\frac{3}{\sqrt{10}}\right).
\]

This angle is between \(\pi/2 \) to \(\pi \), which makes \(\sin \phi > 0 \). So we are good, since we expect \(\sin \phi = \frac{1/6}{\sqrt{10/6}} = \frac{1}{\sqrt{10}} \). This yields

\[
u(t) = \frac{\sqrt{10}}{6} \cos(6t - \phi).
\]

Remark 2. The difficulty of this kind of problems is to determine the phase angle. For example, if

\[
u(t) = -\frac{1}{2} \cos(6t) - \frac{1}{6} \sin(6t).
\]

We still get the same amplitude \(R = \frac{\sqrt{10}}{6} \). So the angle

\[
\phi = \cos^{-1}\left(-\frac{1/2}{\sqrt{10/6}}\right) = \cos^{-1}\left(-\frac{3}{\sqrt{10}}\right)
\]

remain the same as in the example, and thus is between \(\pi/2 \) to \(\pi \). However, in this case our \(\sin \phi = \frac{1/6}{\sqrt{10/6}} = -\frac{1}{\sqrt{10}} < 0 \). A contradiction. An angle that works will be

\[
\theta = 2\pi - \phi,
\]

as cosine is an even function

\[
\cos(\theta) = \cos(2\pi - \phi) = \cos(-\phi) = \cos(\phi) = -\frac{3}{\sqrt{10}}
\]

and sine is an odd function

\[
\sin(\theta) = \sin(2\pi - \phi) = \sin(-\phi) = -\sin(\phi) = -\frac{1}{\sqrt{10}}.
\]