Math 265, Practice Midterm 2

Name: ___
Section: _________

This exam consists of 8 pages including this front page.

Ground Rules
1. No calculator is allowed.
2. Show your work for every problem unless otherwise stated.
3. You may use one 4-by-6 index card, both sides.

<table>
<thead>
<tr>
<th></th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>
1. The following are true/false questions. You don’t have to justify your answers. Just write down either T or F in the table below. A, X, b are always matrices here.

(a) It is not possible to find 4 linearly independent vectors v_1, v_2, v_3, v_4 in \mathbb{R}^3.
(b) Let A be an $m \times n$ matrix. If the dimension of the column space of A is 5, then $n \geq 5$.
(c) Consider a system of linear equations $AX = b$ with A an $n \times n$-matrix. If the system is consistent then $\text{rank}(A) = n$.
(d) Let V be an inner product space and $u, v, w \in V$. If w is orthogonal to u and v, then w is orthogonal to any linear combination of u and v.
(e) Let A be an $n \times n$-matrix. If $\text{rank}(A) < n$ then $\det(A) = 0$.

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Answer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. Quick Questions, no steps of explanation are needed.

(a) Suppose \(u = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \) and \(v = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \). Find the length of \(u \) and \(v \).

(b) Let \(u \) and \(v \) be as the above question and \(\theta \) is the angle between \(u \) and \(v \). Find \(\cos(\theta) \).

(c) Find a basis for the space of \(3 \times 3 \) real symmetric matrices.
3. (a) For what values of c are the vectors \[
\begin{pmatrix}
-1 \\
0 \\
-1
\end{pmatrix}, \begin{pmatrix}
2 \\
1 \\
2
\end{pmatrix} \text{ and } \begin{pmatrix}
1 \\
1 \\
c
\end{pmatrix}
\] in \mathbb{R}^3 linearly independent?

(b) If possible, find a, b, c so that $u = \begin{pmatrix}
a \\
b \\
c
\end{pmatrix}$ is orthogonal to $v = \begin{pmatrix}
1 \\
2 \\
1
\end{pmatrix}$ and $w = \begin{pmatrix}
1 \\
-1 \\
1
\end{pmatrix}$.
4. Let $A = \begin{pmatrix} 1 & 0 & -1 & 1 \\ 1 & -1 & 0 & -1 \\ 2 & -1 & -1 & 0 \end{pmatrix}$.

1. Find a basis for the row space of A.

2. Find a basis for the column space of A.

3. Find a basis for the null space of A.

4. Verify the equality $\text{rank}(A) + \text{Nullity}(A) = n$.
5. Let $V \subset \mathbb{R}^4$ be a subspace spanned by \[
\begin{bmatrix}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{bmatrix}.
\]

1. Find an orthonormal basis of V.

2. Let $u = \begin{pmatrix} 0 & -1 & 1 & 0 \end{pmatrix}^T$. Find $\text{Proj}_V u$.
6. Consider the following system of linear equation

\[-2x_1 + 3x_2 - x_3 = 1\]
\[x_1 + 2x_2 - x_3 = 4\]
\[-2x_1 - x_2 + x_3 = -3\]

1. Find the rank of the coefficient matrix.

2. Find the rank of the augmented matrix.

3. Is the system consistent? why?
7. Let A be a 3×5-matrix.

1. What will be the maximal possible rank of A.

2. Show that columns of A are linearly dependent.

3. What will be the maximal possible dimension of $N(A)$.