MA 266 Fall 2000 REVIEW 3

FIRST ORDER DIFFERENTIAL EQUATIONS
You should be able to recognize and know how to solve first order differential equations that are either separable, linear, exact, or homogeneous.
You should be able to evaluate integrals of the following types:
\[
\int (\text{polynomial}) \, dx, \\
\int e^{ru} \, du, \\
\int u^r \, du, \text{ (including } r = -1) \\
\int \frac{ax + b}{(x-r_1)(x-r_2)} \, dx, \text{ (partial fractions)}
\]
You should be able to use given values \(y(x_0) = y_0 \) to determine unknown constants in a solution.
You should know the relation of the graph of the solution of an initial value problem to the corresponding direction field.

HOMOGENEOUS EQUATIONS
\[
\frac{dy}{dx} = F \left(\frac{y}{x} \right)
\]
Let \(y = xv \), so \(\frac{dy}{dx} = x \frac{dv}{dx} + v + \frac{v}{x} = v \).
Substitute to obtain \(\frac{dy}{dx} + v = F(v) \).
Solve the above separable differential equation for \(v \) in terms of \(x \).
Substitute \(v = \frac{y}{x} \) to obtain a formula for the solution \(y \) of the original homogeneous equation.

EXACT EQUATIONS
\[
M(x, y) + N(x, y) \frac{dy}{dx} = 0
\]
is exact if \(M_y(x, y) = N_x(x, y) \).
Find a function \(\psi(x, y) \) such that \(\psi_x(x, y) = M(x, y) \) and \(\psi_y(x, y) = N(x, y) \).

\[
(\psi(x, y) = \int M(x, y) \, dx + h(y)) \text{ solve } \frac{\partial}{\partial y} \left(\int M(x, y) \, dx \right) + h'(y) = N(x, y)
\]
for \(h(y) \).)
A solution \(y = \psi(x) \) of the exact equation then satisfies
\[
\frac{dy}{dx}(\psi(x, y)) = \psi_y(x, y) + \psi_v(x, y) \frac{dy}{dx} = M(x, y) + N(x, y) \frac{dy}{dx} = 0,
\]
so the general solution is of the form \(\psi(x, y) = C \).

Numerical Methods For Solving \(y' = f(t, y), y(t_0) = y_0 \):
Create an \textit{M}-file to define the function \(f(t, y) \). The function name and the \textit{file} name should be the same. Note that \textit{M}-f&s are not entered in the \textit{matlab command window}, but are external text files that are created with a text editor.

EXAMPLE If \(y' = \sqrt{t + y} \), create an M-file named \texttt{f11.m}:
\[
\begin{align*}
\text{function } z &= \text{f11}(t, y) \\
z &= \text{sqrt}(t + y);
\end{align*}
\]
The general syntax for the Euler tangent line method is
\[
> [t, y] = \text{eul('d6le',t0,tfinal,y0,stepsize});
\]
Note that \texttt{stepsize} = \((t_{\text{final}} - t_0)/n\), where \(n \) is the number of steps.

EXAMPLE To find the Euler tangent line approximation of the solution of the initial value problem \(y' = \sqrt{t + y}, y(1) = 3 \), where \(t = 2 \) using \texttt{stepsize h = 0.5};
\[
> [t, y] = \text{eul('f11',1,2,3,0.5});
\]
\[
\begin{array}{c}
1.0000 \\
1.5000 \\
2.0000
\end{array}
\]
The syntax is the same for the improved Euler method (use \texttt{rk2} in place of \texttt{eul}) and the \textit{runge-kutta} method (use \texttt{rk4} in place of \texttt{eul}).
To obtain the graph of an approximate solution on a direction field, enter
\[
> \text{plot}(t,y,C)
\]
where \(C='o'; '+'; 'x' \). \textit{Omit} \(C \) for a connected graph.
APPROXIMATE SOLUTIONS

The \texttt{matlab} commands \texttt{eul}, \texttt{rk2}, and \texttt{rk4} can be used to obtain approximate solutions of the initial value problem \(y' = f(x, y), y(x_0) = y_0 \).

You should be able to use the formula \(y_n = y_{n-1} + f(x_{n-1}, y_{n-1})h \) to evaluate Euler tangent line values by hand.

Approximation methods may not give good approximations of the solution of the initial value problem \(y' = f(x, y), y(x_0) = y_0 \), if:

- The initial value problem does not have a unique solution, because either \(f \) or \(f_y \) is not continuous at the initial point.
- The approximation extends beyond the interval where the solution is valid, because either \(y'(t) \) or \(y(x) \) becomes unbounded.
- The solution is unstable, because solutions that have slightly different initial values diverge from the desired solution.

PROPERTIES OF SOLUTIONS

If \(f \) has continuous first partial derivatives, then solutions of the differential equation \(y' = f(x, y) \) satisfy

\[
 y'' = f_x(x, y) + f_y(x, y) \frac{dy}{dx} = f_x(x, y) + f_y(x, y)f(x, y).
\]

If \(y(x) \) is a solution of the differentiable equation \(y' = f(x, y) \):

- If \(y' > 0 \) at a point, then \(y \) is increasing near the point.
- If \(y' < 0 \) at a point, then \(y \) is decreasing near the point.

If \(y'' > 0 \) at a point, then \(y \) is concave upward and the Euler tangent line approximations are less than or equal to the solution near the point.

If \(y'' < 0 \) at a point, then \(y \) is concave downward and the Euler tangent line approximations are greater than or equal to the solution near the point.

The Taylor expansion of \(f \) about \(x = c \) is

\[
f(x) = f(c) + f'(c)(x-c) + \frac{f''(c)}{2!}(x-c)^2 + \frac{f'''(c)}{3!}(x-c)^3 + \frac{f^{iv}(c)}{4!}(x-c)^4 + \cdots.
\]

MA266 Fall 2000 REVIEW 3 PRACTICE QUESTIONS

1. Determine whether each of the following differential equations is separable, homogeneous, linear, or exact. Briefly justify your answers.

 (a) \(2x + y + (x + 3y) \frac{dy}{dx} = 0 \)

 (b) \(x + 3y + (2x + y) \frac{dy}{dx} = 0 \)

 (c) \(x + 3y + 1 + (2x + y + 1) \frac{dy}{dx} = 0 \)

 (d) \(2xy + 1 + (x^2 + 1) \frac{dy}{dx} = 0 \)

 (e) \(x^2 + 1 + (y^2 + 1) \frac{dy}{dx} = 0 \)

2. Find the explicit solution of the initial value problem \(y' = y^2 - 1, y(0) = 0 \).

3. Find the general solution of the differential equation \(xy' + 2y = x^2 \).

4. Use the formula \(y = xv \) to express the differential equation \(\frac{dy}{dx} = \frac{x + y}{x - y} \) in terms of \(x, v \), and \(\frac{dv}{dx} \).

5. Find an implicit form of the general solution of the differential equation \(x^2 + 9 \frac{dz}{dx} = x^2 \).

6. Find an implicit solution of the initial value problem \(2xy + 1 + (x^2 + 2y) \frac{dy}{dx} = 0, \quad y(1) = -1 \).

7. Determine approximate values at \(x = 0.5 \) of the solution of the initial value problem \(y' = 3x + y, y(0) = 1 \) by using the Euler tangent line method with \(h = 0.25 \).
8. Use the given direction fields and the graph of an Euler tangent line approximation of a solution of an initial value problem to explain why the approximation is not a good approximation of the solution.

(a) $y' = 3y^{2/3}$, $y(0) = 0$
(b) $y' = \frac{3x^2}{3y^2 - 4}$, $y(1) = 0$

(c) $y' = y^2/0.85$, $y(0) = 1$
(d) $y' = 10y - 11e^{-t}$, $y(0) = 1$

9. Consider the initial value problem $y' = xy + y^2$, $y(3) = -1$.

(a) Is the solution increasing or decreasing near $x = 3$?
(b) Is the solution concave upward or downward near $x = 3$?
(c) Are the Euler tangent line approximations of the solution near $x = 3$ greater than or less than the solution?

10. Find the first four nonzero terms of the Taylor series about $c = 1$ of the solution of the initial value problem $y' = x^2y$, $y(1) = 2$.

MA 266 Fall 2000 REVIEW 3 PRACTICE QUESTION ANSWERS

1. (a) homogeneous, exact (b) homogeneous (c) none of these types (d) linear, exact (e) separable, exact

2. $y = \frac{1 - e^{2x}}{1 + e^{2x}}$

3. $y = \frac{x^2 + c}{x^2}$

4. $x \frac{dv}{dx} + v = \frac{1 + v}{1 - v}$

5. $\frac{1}{2} \left(\frac{y}{x} \right)^2 = \ln |x| + C$

6. $x^2y + x + y^2 = 1$

7. $y_2 = 1.75$

8. (a) The initial value problem does not have a unique solution near x_0. The functions $y(t) = 0$ and $y(t) = t^3$ are both solutions.
(b) The approximation extends beyond where the solution is valid. The solution approaches a point where $y'(x)$ becomes unbounded.
(c) The approximation extends beyond where the solution is valid. The solution approaches a vertical asymptote.
(d) The solution is unstable. Solutions that have slightly different initial values diverge from the desired solution.

9. (a) $(x, y) \approx (3, -1)$ implies $y' = xy + y^2 \approx -2 < 0$, so y is decreasing.
(b) $(x, y) \approx (3, -1)$ implies $y'' = xy' + y + 2yy' \approx -3 < 0$, so y is concave downward.
(c) The Euler approximations of the solution near $x = 3$ are greater than the solution.

10. $y = 2 + 2(x - 1) + 3(x - 1)^2 + 3(x - 1)^3 + \ldots$