Math 453 Abstract Algebra sample 2 with solutions to some problems

Groups

1. Show that if \(f : G \to H \) is a surjective homomorphism and \(K \triangleleft G \) then \(f(K) \triangleleft H \).

2. Show that intersection \(H_1 \cap H_2 \) of two subgroups \(H_1, H_2 \leq G \). Show that if \(H_1 \triangleleft G \) then \(H_1 \cap H_2 \triangleleft H_2 \).

3. If \(r \) is a divisor of \(m \) and \(s \) is a divisor of \(n \), find a subgroup of \(\mathbb{Z}_m \oplus \mathbb{Z}_n \) that is isomorphic to \(\mathbb{Z}_r \oplus \mathbb{Z}_s \).

4. (a) Prove that \(\mathbb{R} \oplus \mathbb{R} \) under addition in each component is isomorphic to \(\mathbb{C} \).

 (b) Prove that \(\mathbb{R}^* \oplus \mathbb{R}^* \) under multiplication in each component is not isomorphic to \(\mathbb{C}^* \).

 (c) Show that there is no isomorphism from \(\mathbb{Z}_8 \oplus \mathbb{Z}_2 \to \mathbb{Z}_4 \oplus \mathbb{Z}_4 \).

 Soln: (a) \(\phi : \mathbb{R} \oplus \mathbb{R} \to \mathbb{C} \), \(\phi(a, b) \to a + ib \) is an isomorphism. For, \(\phi((a, b) + (a', b')) = a + a' + i(b + b') = \phi((a, b) + \phi(a', b')) \) \(\phi \) is bijective: the inverse \(\phi^{-1} : \mathbb{C} \to \mathbb{R} \oplus \mathbb{R} \) is given by \(\phi^{-1}(a + ib) = (a, b) \).

 (b) If \(a \in \mathbb{R}^* \) then the order of \(a \) is infinite if the absolute value \(|a| \neq 1 \) and if \(a = -1 \) the order is 2 and if \(a = 1 \) the order is 1. Then the order of \((a, b) \) is the lcm of the orders \(|a|, |b| \).

 Thus it can be 1, 2 on \(\infty \). On the other hand \(\mathbb{C}^* \) contains the element \(i \) of order 4. Thus the groups \(\mathbb{R}^* \oplus \mathbb{R}^* \) and \(\mathbb{C}^* \) are not isomorphic.

 (c) Similarly as before \(\mathbb{Z}_8 \oplus \mathbb{Z}_2 \) contain an element of order 8, and \(\mathbb{Z}_4 \oplus \mathbb{Z}_4 \) does not.

5. Prove that if \(H \leq G \) and \(|G : H| = 2 \), then \(H \) is normal.

 Soln: \(G \) is a union of its disjoint left cosets and right cosets. If \(g \not\in H \) then \(G = H \cup gH = H \cup Hg \). Thus \(gH = G \setminus H = Hg \). If \(g \in H \) then \(gH = H = Hg \). In any case \(gH = Hg \) for \(g \in G \). Thus \(H \) is normal in \(G \).

6. Let \(G = \mathbb{Z}_4 \oplus \mathbb{Z}_2, H = \langle (2, 1) \rangle \) and \(K = \langle (2, 0) \rangle \). Show that \(G/H \) is not isomorphic to \(G/K \).

 Soln: The group \(G/H \) contains 4 = 8/2 elements. Moreover \(G/H = \{H, (1, 0) + H, (2, 0) + H, (3, 0) + H\} \) is cyclic generated by \((1, 0) + H \) of order 4. Similarly the group \(G/K \) contains 4 = 8/2 elements. But \(G/K = \{K, (1, 0) + K, (0, 1) + K, (1, 1) + K\} \), with all nonzero elements having order 2. Thus the groups are not isomorphic.

7. Let \(G \) be a finite group, and \(H \) be a normal subgroup of \(G \).

 (a) Show that the order of \(aH \) in \(G/H \) must divide the order of \(a \) in \(G \).

 (b) Show that it is possible that \(aH = bH \), but \(|a| \neq |b| \).

 Soln: (a) Let \(|a| = n \) then \(a^n = e \), and \((aH)^n = a^nH = H \). Thus the order of \(aH \) divides \(n = |a| \).
(b) If $a \in H$ and $a \neq e$ then $|a| \neq 1 = |e|$, but the order $aH = H$ is the same as the order of $eH = H$.

8. Suppose that $N \triangleleft G$ and $|G/N| = m$, show that $x^m \in N$ for all $x \in G$.

Soln: The order of $xN \in G/N$ divides $|G/N| = m$, and thus $(xN)^m = x^mN = eN = N$. The latter implies that $x^m \in N$.

9. For each pair of positive integer m and n, show that the map ϕ from $\mathbb{Z} \rightarrow \mathbb{Z}_m \oplus \mathbb{Z}_n$ defined by $x \mapsto (x \mod m, x \mod n)$ is a homomorphism. Find its kernel.

Soln:

$$\phi(x+y) = (x+y \mod m, x+y \mod n) = (x \mod m, x \mod n)+(y \mod m, y \mod n) = \phi(x)+\phi(y)$$

which shows that ϕ is a homomorphism.

If $x \in \mathbb{Z}$ is in the kernel of ϕ iff $x \mod m = 0$, $x \mod n = 0$ iff m divides x and n divides x. The latter is equivalent the fact that x is a multiple of $\text{lcm}(m,n)$. Thus $\text{Ker}(\phi) = \text{lcm}(m,n) \cdot \mathbb{Z}$.

10. How many (group) homomorphisms are there from \mathbb{Z}_{20} onto (surjective to) \mathbb{Z}_8. How many are there to \mathbb{Z}_8? Soln: If $\phi : \mathbb{Z}_{20} \rightarrow \mathbb{Z}_8$ is onto then there is $a \in \mathbb{Z}_{20}$, such that $\phi(a) = 1 \in \mathbb{Z}_8$. This implies that the order $|\phi(a)|$ is 8 and divides order of a. But the order of a divides 20. This implies 8 divides 20, which is a contradiction. There is no homomorphism from \mathbb{Z}_{20} onto \mathbb{Z}_8.

If $\phi : \mathbb{Z}_{20} \rightarrow \mathbb{Z}_8$ is a homomorphism then the order of $\phi(1)$ divides $\text{gcd}(8,20) = 4$ so $\phi(1)$ is in a unique subgroup of order 4 which is $2\mathbb{Z}_8$. Thus possible homomorphisms are of the form $x \mapsto 2i \cdot x$ where $i = 0, 1, 2, 3$. One can easily see (please check) that all the functions define homomorphisms, and thus there are 4 homomorphisms.

11. Prove that $\phi : \mathbb{Z} \oplus \mathbb{Z} \rightarrow \mathbb{Z}$ by $\phi(a,b) = a - b$ is a homomorphism. Determine the kernel.

Soln: $\phi((a,b) + (a',b')) = a + a' - (b + b') = \phi(a,b) + \phi(a',b')$, and thus ϕ is a homomorphism. The kernel of ϕ is given by $\{(a,b) \mid \phi(a,b) = 0\} = \{(a,b) \mid a - b = 0\} = \{(a,a) \mid a \in \mathbb{Z}\}$.

12. (a) Let G be the group of nonzero real numbers under multiplication. Suppose r is a positive integer. Show that $x \mapsto x^r$ is a homomorphism. Determine the kernel, and determine r so that the map is an isomorphism.

(b) Let G be the group of polynomial in x with real coefficients. Define the map $p(x) \mapsto P(x) = \int p(x)$ such that $P(0) = 0$. Show that f is an homomorphism, and determine its kernel.

Soln: (a) $\phi_r(xy) = (xy)^r = x^ry^r = \phi_r(x)\phi_r(y)$, and thus ϕ is a homomorphism.

$$\text{Ker}(\phi_r) = \{x \mid \phi_r(x) = 1\} = \{x \mid x^r = 1\}$$
The equation $x^r = 1$ has one solution $x = 1$ if r is odd, and two solns $x = 1$ or $x = -1$ if $r \neq 0$ is even. Finally If $r = 0$ the $x^r = 1$ for all $x \in \mathbb{Z}$. Consequently $Ker(\phi_r) = 1$ is trivial if r is odd , $Ker(\phi_r) = \{-1, 1\}$ if $r \neq 0$ is even, and $Ker(\phi_r) = \mathbb{Z}$ if $r = 0$. Also if r is odd then ϕ_r is bijective with inverse given by $x \mapsto \sqrt[3]{x}$. This implies that ϕ_r is an isomorphism if r is odd.

(b) $p(x) \mapsto P(x) = \int p(x)$ such that $P(0) = 0$, and $p_1(x) \mapsto P_1(x) = \int p_1(x)$ such that $P_1(0) = 0$. $p(x) + p_1(x) \mapsto \overline{P(x)} = \int (p(x) + p_1(x))$ such that $P(0) = 0$. Then we have equality (up to constant) of the indefinite integrals $\overline{P(x)} + c = \int (p(x) + p_1(x)) = \int p(x) + \int p_1(x) = P(x) + p_1(x)$. But $\overline{P(0)} + c = 0 + c = P(0) + p_1(0) = 0 + 0$ which implies $c = 0$ and $\overline{P(x)} = P(x) + p_1(x)$. The latter means that $p(x) \mapsto P(x)$ is a homomorphism.

If $p(x)$ is in the kernel of the given homomorphism then $P(x) = 0$, and consequently $p(x) = P'(x) = 0$. This implies that the kernel is trivial.

13. (a) Determine all (group) homomorphisms from \mathbb{Z}_n to itself

(b) Determine all (group) homomorphisms from \mathbb{Z}_{30} to itself with kernel $3\mathbb{Z}_{30}$.

Soln: (a) Let $\phi : \mathbb{Z}_n \rightarrow \mathbb{Z}_n$ be a homorphism. Denote $a := \phi(1) \in \mathbb{Z}_n$. Then the homomorphism ϕ is given by $\phi(x) = ax$. Conversely (please check) for any $a \in \mathbb{Z}_n$ the function $x \mapsto ax$ defines a homomorphism,

(b) Let $\phi : \mathbb{Z}_{30} \rightarrow \mathbb{Z}_{30}$ be a homomorphism, $\phi(x) = ax$. If $3\mathbb{Z}_{30} \subset Ker(\phi)$ then $\phi(3) = 3a = 0 \in \mathbb{Z}_{30}$. Thus $30|3a$, and $10|a$. This means $a = 10, 20, 0$. If $a = 0$ then $Ker(\phi) = \mathbb{Z}_{30}$.

If $a = 10$, then $x \in Ker(\phi)$ iff $30|ax$ iff $3|x$ iff $x \in 3\mathbb{Z}_{30}$.

If $a = 20$, then $x \in Ker(\phi)$ iff $30|20x$ iff $3|2x$ iff $3|x$ iff $x \in 3\mathbb{Z}_{30}$.

Thus if $a = 10, 20$ then $Ker(\phi) = 3\mathbb{Z}_{30}$.

3
Rings

14. Find all the ring homomorphisms: a) \(\mathbb{Z}_5 \to \mathbb{Z}_{10} \), b) \(\mathbb{Z}_{10} \to \mathbb{Z}_{10} \).

15. Let \(R \) be a ring.
 (a) Suppose \(a \in R \). Shown that \(S = \{ x \in R : ax = xa \} \) is a subring.
 (b) Show that the center of \(R \) defined by \(Z(R) = \{ x \in R : ax = xa \text{ for all } a \in R \} \) is a subring.

16. Let \(R \) be a ring.
 (a) Prove that \(R \) is commutative if and only if \(a^2 - b^2 = (a + b)(a - b) \) for all \(a, b \in R \).
 (b) Prove that \(R \) is commutative if \(a^2 = a \) for all \(a \in R \).

17. Show that every nonzero element of \(\mathbb{Z}_n \) is a unit (element with multiplicative inverse) or a zero-divisor.

18. Find the characteristic of \(\mathbb{Z}_n \oplus \mathbb{Z}_m \).

19. An element \(a \) of a ring \(R \) is nilpotent if \(a^n = 0 \) for some \(n \in \mathbb{N} \).
 (a) Show that if \(a \) and \(b \) are nilpotent elements of a commutative ring, then \(a + b \) is also nilpotent.
 (b) Show that a ring \(R \) has no nonzero nilpotent element if and only if \(0 \) is the only solution of \(x^2 = 0 \) in \(R \).
 (c) Show that the set of all nilpotent elements of a commutative ring is an ideal.

20. Let \(R_1 \) and \(R_2 \) be rings, and \(\phi : R_1 \to R_2 \) be a ring homomorphism such that \(\phi(R) \neq \{0\} \).
 (a) Show that if \(R_1 \) has unity and \(R_2 \) has no zero-divisors, then \(\phi(1) \) is a unity of \(R_2 \).
 (b) Show that the conclusion in (a) may fail if \(R_2 \) has zero-divisors.

21. Let \(R_1 \) and \(R_2 \) be rings, and \(\phi : R_1 \to R_2 \) be a ring homomorphism.
 (a) Show that if \(A \) is an ideal of \(R_1 \), then \(\phi(A) \) is an ideal of \(\phi(R_1) \).
 (b) Give an example to show that \(\phi(A) \) may not be an ideal of \(R_2 \).
 (c) Show that if \(B \) is an ideal of \(R_2 \), then \(\phi^{-1}(B) \) is an ideal of \(R_1 \).

22. Let \(D \) be an integral domain.
 Show that a nonconstant polynomial in \(D[x] \) has no multiplicative inverse.

23. Solve the equations in \(\mathbb{Z}_7 \): (a) \(x^2 = 2 \), (b) \(3x = 4 \)

24. Show that \(I = \{ a_0 + \cdots + a_n x^n : a_i \in \mathbb{Q}, a_0 + \cdots + a_n = 0 \} \) is an ideal. Show that \(A = \{ a_0 + \cdots + a_n x^n : a_i \in \mathbb{Q}, a_0 + \cdots + a_n \in \mathbb{Z} \} \) is an subring of \(\mathbb{Q}[x] \).