Math 453 Abstract Algebra sample 2

Groups

1. Show that if \(f : G \to H \) is a surjective homomorphism and \(K \triangleleft G \) then \(f(K) \triangleleft H \).

2. Show that intersection \(H_1 \cap H_2 \) of two subgroups \(H_1, H_2 \leq G \). Show that if \(H_1 \triangleleft G \) then \(H_1 \cap H_2 \triangleleft H_2 \).

3. If \(r \) is a divisor of \(m \) and \(s \) is a divisor of \(n \), find a subgroup of \(\mathbb{Z}_m \oplus \mathbb{Z}_n \) that is isomorphic to \(\mathbb{Z}_r \oplus \mathbb{Z}_s \).

4. (a) Prove that \(\mathbb{R} \oplus \mathbb{R} \) under addition in each component is isomorphic to \(\mathbb{C} \).

 (b) Prove that \(\mathbb{R}^* \oplus \mathbb{R}^* \) under multiplication in each component is not isomorphic to \(\mathbb{C}^* \).

 (c) Show that there is no isomorphism from \(\mathbb{Z}_8 \oplus \mathbb{Z}_2 \to \mathbb{Z}_4 \oplus \mathbb{Z}_4 \).

5. Prove that if \(H \leq G \) and \(|G : H| = 2 \), then \(H \) is normal.

6. Let \(G = \mathbb{Z}_4 \oplus \mathbb{Z}_2 \), \(H = \langle (2,1) \rangle \) and \(K = \langle (2,0) \rangle \). Show that \(G/H \) is not isomorphic to \(G/K \).

7. Let \(G \) be a finite group, and \(H \) be a normal subgroup of \(G \).

 (a) Show that the order of \(aH \) in \(G/H \) must divide the order of \(a \) in \(G \).

 (b) Show that it is possible that \(aH = bH \), but \(|a| \neq |b| \).

8. Suppose that \(N \triangleleft G \) and \(|G/N| = m \), show that \(x^m \in N \) for all \(x \in G \).

9. For each pair of positive integer \(m \) and \(n \), show that the map from \(\mathbb{Z} \to \mathbb{Z}_m \oplus \mathbb{Z}_n \) defined by \(x \mapsto (x \mod m, x \mod n) \) is a homomorphism. Find its kernel.

10. How many (group) homomorphisms are there from \(\mathbb{Z}_{20} \) onto \(\mathbb{Z}_8 \). How many are there to \(\mathbb{Z}_8 \)?

11. Prove that \(\phi : \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z} \) by \(\phi(a, b) = a - b \) is a homomorphism. Determine the kernel.

12. (a) Let \(G \) be the group of nonzero real numbers under multiplication. Suppose \(r \) is a positive integer. Show that \(x \mapsto x^r \) is a homomorphism. Determine the kernel, and determine \(r \) so that the map is an isomorphism.

 (b) Let \(G \) be the group of polynomial in \(x \) with real coefficients. Define the map \(p(x) \mapsto P(x) = \int p(x) \) such that \(P(0) = 0 \). Show that \(f \) is an homomorphism, and determine its kernel.

13. (a) Determine all (group) homomorphisms from \(\mathbb{Z}_n \) to itself

 (b) Determine all (group) homomorphisms from \(\mathbb{Z}_{30} \) to itself with kernel \(3\mathbb{Z}_{30} \).
Rings

14. Find all the ring homomorphisms: a) \(\mathbb{Z}_5 \rightarrow \mathbb{Z}_{10}\), b) \(\mathbb{Z}_{10} \rightarrow \mathbb{Z}_{10}\).

15. Let \(R\) be a ring.
 (a) Suppose \(a \in R\). Shown that \(S = \{x \in R : ax = xa\}\) is a subring.
 (b) Show that the center of \(R\) defined by \(Z(R) = \{x \in R : ax = xa\ \text{for all} \ a \in R\}\) is a subring.

16. Let \(R\) be a ring.
 (a) Prove that \(R\) is commutative if and only if \(a^2 - b^2 = (a + b)(a - b)\) for all \(a, b \in R\).
 (b) Prove that \(R\) is commutative if \(a^2 = a\) for all \(a \in R\).

17. Show that every nonzero element of \(\mathbb{Z}_n\) is a unit (element with multiplicative inverse) or a zero-divisor.

18. Find the characteristic of \(\mathbb{Z}_n \oplus \mathbb{Z}_m\).

19. An element \(a\) of a ring \(R\) is nilpotent if \(a^n = 0\) for some \(n \in \mathbb{N}\).
 (a) Show that if \(a\) and \(b\) are nilpotent elements of a commutative ring, then \(a + b\) is also nilpotent.
 (b) Show that a ring \(R\) has no nonzero nilpotent element if and only if 0 is the only solution of \(x^2 = 0\) in \(R\).
 (c) Show that the set of all nilpotent elements of a commutative ring is an ideal.

20. Let \(R_1\) and \(R_2\) be rings, and \(\phi : R_1 \rightarrow R_2\) be a ring homomorphism such that \(\phi(R) \neq \{0'\}\).
 (a) Show that if \(R_1\) has unity and \(R_2\) has no zero-divisors, then \(\phi(1)\) is a unity of \(R_2\).
 (b) Show that the conclusion in (a) may fail if \(R_2\) has zero-divisors.

21. Let \(R_1\) and \(R_2\) be rings, and \(\phi : R_1 \rightarrow R_2\) be a ring homomorphism.
 (a) Show that if \(A\) is an ideal of \(R_1\), then \(\phi(A)\) is an ideal of \(\phi(R_1)\).
 (b) Give an example to show that \(\phi(A)\) may not be an ideal of \(R_2\).
 (c) Show that if \(B\) is an ideal of \(R_2\), then \(\phi^{-1}(B)\) is an ideal of \(R_1\).

22. Let \(D\) be an integral domain.
 Show that a nonconstant polynomial in \(D[x]\) has no multiplicative inverse.

23. Solve the equations in \(\mathbb{Z}_7\): (a) \(x^2 = 2\), (b) \(3x = 4\)

24. Show that \(I = \{a_0 + \cdots + a_nx^n : a_i \in \mathbb{Q}, a_0 + \cdots + a_n = 0\}\) is an ideal. Show that \(A = \{a_0 + \cdots + a_nx^n : a_i \in \mathbb{Q}, a_0 + \cdots + a_n \in \mathbb{Z}\}\) is an subring of \(\mathbb{Q}[x]\).