The simple proof of this important theorem is quite similar to that of Theorem 1 in Sec. 2.1 and is left to the student.

Verification of solutions in Probs. 2–13 proceeds as for ODEs. Problems 16–23 concern PDEs solvable like ODEs. To help the student with them, we consider two typical examples.

Example 2

Solving \(u_{xx} - u = 0 \) **Like an ODE**

Find solutions \(u \) of the PDE \(u_{xx} - u = 0 \) depending on \(x \) and \(y \).

Solution. Since no \(y \)-derivatives occur, we can solve this PDE like \(u'' - u = 0 \). In Sec. 2.2 we would have obtained \(u = Ae^x + Be^{-x} \) with constant \(A \) and \(B \). Here \(A \) and \(B \) may be functions of \(y \), so that the answer is

\[
u(x, y) = A(y)e^x + B(y)e^{-x}
\]

with arbitrary functions \(A \) and \(B \). We thus have a great variety of solutions. Check the result by differentiation.

Example 3

Solving \(u_{xy} = -u \) **Like an ODE**

Find solutions \(u = u(x, y) \) of this PDE.

Solution. Setting \(u_x = p \), we have \(p_y = -p \). \(p_y/p = -1 \), \(\ln|p| = -y + c(x) \), \(p = c(x)e^{-y} \) and by integration with respect to \(x \),

\[
u(x, y) = f(x)e^{-y} + g(y) \quad \text{where} \quad f(x) = \int c(x) \, dx,
\]

here, \(f(x) \) and \(g(y) \) are arbitrary.

Problem Set 12.1

1. **Fundamental theorem.** Prove it for second-order PDEs in two and three independent variables. Hint. Prove it by substitution.

2–13 **VERIFICATION OF SOLUTIONS**

Verify (by substitution) that the given function is a solution of the PDE. Sketch or graph the solution as a surface in space.

2–5 **Wave Equation (1) with suitable \(c \)**

2. \(u = x^2 + t^2 \)
3. \(u = \cos 4t \sin 2x \)
4. \(u = \sin kct \cos kx \)
5. \(u = \sin at \sin bx \)

6–9 **Heat Equation (2) with suitable \(c \)**

6. \(u = e^{-t} \sin x \)
7. \(u = e^{-2t} \cos ax \)
8. \(u = e^{-t} \sin ax \)
9. \(u = e^{-t} \cos 25x \)

10–13 **Laplace Equation (3)**

10. \(u = e^{x} \cos y, e^{x} \sin y \)
11. \(u = \arctan (y/x) \)
12. \(u = \cos y \sin x, \sin y \cosh x \)

13. \(u = x/(x^2 + y^2), y/(x^2 + y^2) \)

14. **TEAM PROJECT. Verification of Solutions**

(a) **Wave equation.** Verify that \(u(x, t) = v(x + ct) + w(x - ct) \) with any twice differentiable functions \(v \) and \(w \) satisfies (1).

(b) **Poisson equation.** Verify that each \(u \) satisfies (4) with \(f(x, y) \) as indicated.

\[
u = y/x \quad f = 2y/x^3
\]
\[
u = \sin xy \quad f = (x^2 + y^2) \sin xy
\]
\[
u = e^{x^2-y^2} \quad f = 4(x^2 + y^2)e^{x^2-y^2}
\]
\[
u = 1/\sqrt{x^2 + y^2} \quad f = (x^2 + y^2)^{-3/2}
\]

(c) **Laplace equation.** Verify that \(u = 1/\sqrt{x^2 + y^2 + z^2} \) satisfies (6) and \(u = \ln (x^2 + y^2) \) satisfies (3). Is \(u = 1/\sqrt{x^2 + y^2} \) a solution of (3)? Of what Poisson equation?

(d) Verify that \(u \) with any (sufficiently often differentiable) \(v \) and \(w \) satisfies the given PDE.

\[
u = v(x) + w(y) \quad u_{xy} = 0
\]
\[
u = v(x)w(y) \quad u_{wx} = u_{xy}
\]
\[
\alpha = v(x + 2t) + w(x - 2t) \quad u_{tt} = 4u_{xx}
\]

15. **Boundary value problem.** Verify that the function \(u(x, y) = a \ln (x^2 + y^2) + b \) satisfies Laplace's equation.
12.2 Modeling: Vibrating String, Wave Equation

In this section we model a vibrating string, which will lead to our first important PDE, that is, equation (3) which will then be solved in Sec. 12.3. The student should pay very close attention to this delicate modeling process and detailed derivation starting from scratch, as the skills learned can be applied to modeling other phenomena in general and in particular to modeling a vibrating membrane (Sec. 12.7).

We want to derive the PDE modeling small transverse vibrations of an elastic string, such as a violin string. We place the string along the x-axis, stretch it to length L, and fasten it at the ends $x = 0$ and $x = L$. We then distort the string, and at some instant, call it $t = 0$, we release it and allow it to vibrate. The problem is to determine the vibrations of the string, that is, to find its deflection $u(x, t)$ at any point x and at any time $t > 0$; see Fig. 286.

$u(x, t)$ will be the solution of a PDE that is the model of our physical system to be derived. This PDE should not be too complicated, so that we can solve it. Reasonable simplifying assumptions (just as for ODEs modeling vibrations in Chap. 2) are as follows.

Physical Assumptions

1. The mass of the string per unit length is constant ("homogeneous string"). The string is perfectly elastic and does not offer any resistance to bending.

2. The tension caused by stretching the string before fastening it at the ends is so large that the action of the gravitational force on the string (trying to pull the string down a little) can be neglected.

3. The string performs small transverse motions in a vertical plane; that is, every particle of the string moves strictly vertically and so that the deflection and the slope at every point of the string always remain small in absolute value.

Under these assumptions we may expect solutions $u(x, t)$ that describe the physical reality sufficiently well.

![Fig. 286. Deflected string at fixed time t. Explanation on p. 544](image-url)
For graphing the solution we may use \(u(x, 0) = f(x) \) and the above interpretation of the two functions in the representation (17). This leads to the graph shown in Fig. 291.

![Graph of solution u(x, t) for various values of t](image)

Fig. 291. Solution \(u(x, t) \) in Example 1 for various values of \(t \) (right part of the figure) obtained as the superposition of a wave traveling to the right (dashed) and a wave traveling to the left (left part of the figure).

Problem Set 12.3

1. **Frequency.** How does the frequency of the fundamental mode of the vibrating string depend on the length of the string? On the mass per unit length? What happens if we double the tension? Why is a contrabass larger than a violin?

2. **Physical Assumptions.** How would the motion of the string change if Assumption 3 were violated? Assumption 2? The second part of Assumption 1? The first part? Do we really need all these assumptions?

3. **String of length \(\pi \).** Write down the derivation in this section for length \(L = \pi \), to see the very substantial simplification of formulas in this case that may show ideas more clearly.

4. **CAS Project. Graphing Normal Modes.** Write a program for graphing \(u_n \) with \(L = \pi \) and \(c^2 \) of your choice similarly as in Fig. 287. Apply the program to \(u_2, u_3, u_4 \). Also graph these solutions as surfaces over the \(xt \)-plane. Explain the connection between these two kinds of graphs.

5-13 Deflection of the String

Find \(u(x, t) \) for the string of length \(L = 1 \) and \(c^2 = 1 \) when the initial velocity is zero and the initial deflection with small \(k \) (say, 0.01) is as follows. Sketch or graph \(u(x, t) \) as in Fig. 291 in the text.

5. \(k \sin 3\pi x \)

6. \(k \left(\sin \pi x - \frac{1}{2} \sin 2\pi x \right) \)
7. $kx(1-x)$
8. $kx^2(1-x)$

9.

10.

11.

12.

13. $2x - 4x^2$ if $0 < x < \frac{1}{2}$, 0 if $\frac{1}{2} < x < 1$

14. **Nonzero initial velocity.** Find the deflection $u(x, t)$ of the string of length $L = \pi$ and $c^2 = 1$ for zero initial displacement and "triangular" initial velocity $u_t(x, 0) = 0.01x$ if $0 \leq x \leq \frac{1}{2}\pi$. $u_t(x, 0) = 0.01(\pi - x)$ if $\frac{1}{2}\pi \leq x \leq \pi$. (Initial conditions with $u_t(x, 0) \neq 0$ are hard to realize experimentally.)

15. Substituting $u = F(x)G(t)$ into (21), show that

$$\frac{F^{(4)}}{F} = -\frac{\partial^2}{\partial x^2}G = \beta^4 = \text{const.}$$

$$F(x) = A \cos \beta x + B \sin \beta x + C \cosh \beta x + D \sinh \beta x,$$

$$G(t) = a \cos \beta^2 t + b \sin \beta^2 t.$$

![Supports of a beam](image)

Fig. 293. Supports of a beam

16. **Simply supported beam in Fig. 293A.** Find solutions $u_{xx} = F_{xx}(x)G_{xx}(t)$ of (21) corresponding to zero initial velocity and satisfying the boundary conditions (see Fig. 293A)

$$u(0, t) = 0, u(L, t) = 0$$

(ends simply supported for all times t),

$$u_{xx}(0, t) = 0, u_{xx}(L, t) = 0$$

(zero moments, hence zero curvature, at the ends).

17. Find the solution of (21) that satisfies the conditions in Prob. 16 as well as the initial condition

$$u(x, 0) = f(x) = x(L - x).$$

18. Compare the results of Probs. 17 and 7. What is the basic difference between the frequencies of the normal modes of the vibrating string and the vibrating beam?

19. **Clamped beam in Fig. 293B.** What are the boundary conditions for the clamped beam in Fig. 293B? Show that F in Prob. 15 satisfies these conditions if BL is a solution of the equation

$$\cosh \beta L \cos \beta L = 1.$$

Determine approximate solutions of (22), for instance, graphically from the intersections of the curves of $\cos \beta L$ and $1/\cosh \beta L$.

SEPARATION OF A FOURTH-ORDER PDE. VIBRATING BEAM

By the principles used in modeling the string it can be shown that small free vertical vibrations of a uniform elastic beam (Fig. 292) are modeled by the fourth-order PDE

$$(21) \quad \frac{\partial^2 u}{\partial t^2} = -c^2 \frac{\partial^4 u}{\partial x^4} \quad \text{(Ref. [C11])}$$

where $c^2 = El/\rho A$ ($E =$ Young's modulus of elasticity, $I =$ moment of inertia of the cross section with respect to the y-axis in the figure, $\rho =$ density, $A =$ cross-sectional area). (Bending of a beam under a load is discussed in Sec. 3.3.)
2b. Clamped-free beam in Fig. 293C. If the beam is clamped at the left and free at the right (Fig. 293C), the boundary conditions are

\[u(0, t) = 0, \quad u_x(0, t) = 0, \]
\[u_{xx}(L, t) = 0, \quad u_{xxx}(L, t) = 0. \]

Show that \(F \) in Prob. 15 satisfies these conditions if \(\beta L \) is a solution of the equation

\[\cosh \beta L \cos \beta L = -1. \]

Find approximate solutions of (23).

12.4 D’Alembert’s Solution of the Wave Equation. Characteristics

It is interesting that the solution (17), Sec. 12.3, of the wave equation

\[\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}, \quad c^2 = \frac{T}{\rho}, \]

can be immediately obtained by transforming (1) in a suitable way, namely, by introducing the new independent variables

\[v = x + ct, \quad w = x - ct. \]

Then \(u \) becomes a function of \(v \) and \(w \). The derivatives in (1) can now be expressed in terms of derivatives with respect to \(v \) and \(w \) by the use of the chain rule in Sec. 9.6. Denoting partial derivatives by subscripts, we see from (2) that \(v_x = 1 \) and \(w_x = 1 \). For simplicity let us denote \(u(x, t) \), as a function of \(v \) and \(w \), by the same letter \(u \). Then

\[u_x = u_v v_x + u_w w_x = u_v + u_w. \]

We now apply the chain rule to the right side of this equation. We assume that all the partial derivatives involved are continuous, so that \(u_{xx} = u_{vv} \). Since \(v_x = 1 \) and \(w_x = 1 \), we obtain

\[u_{xx} = (u_v + u_w)_x = (u_v + u_w) v_x + (u_v + u_w) w_x = u_{vv} + 2u_{vw} + u_{ww}. \]

Transforming the other derivative in (1) by the same procedure, we find

\[u_{tt} = c^2 (u_{vv} - 2u_{vw} + u_{ww}). \]

By inserting these two results in (1) we get (see footnote 2 in App. A3.2)

\[u_{vw} = \frac{\partial^2 u}{\partial w \partial v} = 0. \]

(3)

The point of the present method is that (3) can be readily solved by two successive integrations, first with respect to \(w \) and then with respect to \(v \). This gives

\[\frac{\partial u}{\partial w} = h(v) \quad \text{and} \quad u = \int h(v) \, dv + \psi(w). \]
Here, $\Phi = \Phi(x, y), \Psi = \Psi(x, y), F_1 = F_1(v, w, u, u_v, u_w),$ etc., and we denote u as function of v, w again by $u,$ for simplicity. We see that the normal form of a hyperbolic PDE is as in d’Alembert’s solution. In the parabolic case we get just one family of solutions $\Phi = \Psi.$ In the elliptic case, $i = \sqrt{-1},$ and the characteristics are complex and are of minor interest. For derivation, see Ref. [GenRef3] in App. 1.

Example 1

D’Alembert’s Solution Obtained Systematically

The theory of characteristics gives d’Alembert’s solution in a systematic fashion. To see this, we write the wave equation $u_{tt} - c^2 u_{xx} = 0$ in the form (14) by setting $y = ct.$ By the chain rule, $u_t = u_x x_t = cu_y$ and $u_{xx} = c^2 u_{yy}.$ Division by c^2 gives $u_{xx} - u_{yy} = 0,$ as stated before. Hence the characteristic equation is $y^2 - 1 = (y' + 1)(y' - 1) = 0.$ The two families of solutions (characteristics) are $\Phi(x, y) = y + x = \text{const}$ and $\Psi(x, y) = y - x = \text{const}.$ This gives the new variables $v = \Phi + x = ct + x$ and $w = \Psi = y - x = ct - x$ and d’Alembert’s solution $u = f_1(x + ct) + f_2(x - ct)$.

Problem Set 12.4

1. Show that c is the speed of each of the two waves given by (4).
2. Show that, because of the boundary conditions (2), Sec. 12.3, the function f in (13) of this section must be odd and of period $2L.$
3. If a steel wire 2 m in length weighs 0.9 nt (about 0.20 lb) and is stretched by a tensile force of 300 nt (about 67.4 lb), what is the corresponding speed of transverse waves?
4. What are the frequencies of the eigenfunctions in Prob. 3?

Graphing Solutions

Using (13) sketch or graph a figure (similar to Fig. 291 in Sec. 12.3) of the deflection $u(x, t)$ of a vibrating string (length $L = 1,$ ends fixed, $c = 1$) starting with initial velocity 0 and initial deflection (k small, say, $k = 0.01).$

5. $f(x) = k \sin \pi x$
6. $f(x) = k (1 - \cos \pi x)$
7. $f(x) = k \sin 2\pi x$
8. $f(x) = k x (1 - x)$

Normal Forms

Find the type, transform to normal form, and solve. Show your work in detail.

9. $u_{xx} + 4u_{yy} = 0$
10. $u_{xx} - 16u_{yy} = 0$
11. $u_{xx} + 2u_{xy} + u_{yy} = 0$
12. $u_{xx} - 2u_{xy} + u_{yy} = 0$
13. $u_{xx} + 5u_{xy} + 4u_{yy} = 0$
14. $u_{xx} - u_{yy} = 0$
15. $u_{xx} - u_{yy} = 0$
16. $u_{xx} + 2u_{xy} + 10u_{yy} = 0$
17. $u_{xx} - 4u_{xy} + 5u_{yy} = 0$
18. $u_{xx} - 6u_{xy} + 9u_{yy} = 0$
19. Longitudinal Vibrations of an Elastic Bar or Rod. These vibrations in the direction of the x-axis are modeled by the wave equation $u_{tt} = c^2 u_{xx}, c^2 = E/\rho$ (see Tolstov [C9], p. 275). If the rod is fastened at one end, $x = 0,$ and free at the other, $x = L,$ we have $u(0, t) = 0$ and $u_x(L, t) = 0.$ Show that the solution corresponding to initial displacement $u(x, 0) = f(x)$ and initial velocity zero is

$$u = \sum_{n=0}^{\infty} A_n \sin \frac{n \pi x}{L} \cos \frac{n \pi}{L},$$

$$A_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n \pi x}{L} dx, \quad \rho_n = \frac{(2n + 1) \pi}{2L}.$$

20. Tricomi and Airy equations.2 Show that the Tricomi equation $yu_{xx} + u_{yy} = 0$ is of mixed type. Obtain the Airy equation $\frac{\partial^2 y}{\partial x^2} - y \frac{\partial^2 y}{\partial x \partial y} = 0$ from the Tricomi equation by separation. (For solutions, see p. 446 of Ref. [GenRef1] listed in App. 1.)

2Sir GEORGE BIDELL AIRY (1801–1892), English mathematician, known for his work in elasticity. FRANCESCO TRICOMI (1897–1978), Italian mathematician, who worked in integral equations and functional analysis.
This shows that the expressions in the parentheses must be the Fourier coefficients b_n of $f(x)$; that is, by (4) in Sec. 11.3,

$$b_n = A_n \sinh \frac{n\pi b}{a} = \frac{2}{a} \int_0^a f(x) \sin \frac{n\pi x}{a} \, dx.$$

From this and (16) we see that the solution of our problem is

$$u(x, y) = \sum_{n=1}^{\infty} u_n(x, y) = \sum_{n=1}^{\infty} A_n \sin \frac{n\pi x}{a} \sinh \frac{n\pi y}{a}$$

where

$$A_n = \frac{2}{a \sinh (n\pi b/a)} \int_0^a f(x) \sin \frac{n\pi x}{a} \, dx.$$

We have obtained this solution formally, neither considering convergence nor showing that the series for u, u_{xx}, and u_{yy} have the right sums. This can be proved if one assumes that f and f' are continuous and f'' is piecewise continuous on the interval $0 \leq x \leq a$. The proof is somewhat involved and relies on uniform convergence. It can be found in [C4] listed in App. 1.

Unifying Power of Methods. Electrostatics, Elasticity

The Laplace equation (14) also governs the electrostatic potential of electrical charges in any region that is free of these charges. Thus our steady-state heat problem can also be interpreted as an electrostatic potential problem. Then (17), (18) is the potential in the rectangle R when the upper side of R is at potential $f(x)$ and the other three sides are grounded.

Actually, in the steady-state case, the two-dimensional wave equation (to be considered in Secs. 12.8, 12.9) also reduces to (14). Then (17), (18) is the displacement of a rectangular elastic membrane (rubber sheet, drumhead) that is fixed along its boundary, with three sides lying in the xy-plane and the fourth side given the displacement $f(x)$.

This is another impressive demonstration of the unifying power of mathematics. It illustrates that entirely different physical systems may have the same mathematical model and can thus be treated by the same mathematical methods.

Problem Set 12.6

1. Decay. How does the rate of decay of (8) with fixed n depend on the specific heat, the density, and the thermal conductivity of the material?

2. Decay. If the first eigenfunction (8) of the bar decreases to half its value within 20 sec, what is the value of the diffusivity?

3. Eigenfunctions. Sketch or graph and compare the first three eigenfunctions (8) with $B_n = 1$, $c = 1$, and $L = \pi$ for $t = 0, 0.1, 0.2, \cdots, 1.0$.

4. Writing Project. Wave and Heat Equations. Compare these PDEs with respect to general behavior of eigenfunctions and kind of boundary and initial
conditions. State the difference between Fig. 291 in Sec. 12.3 and Fig. 295.

LATERALLY INSULATED BAR

Find the temperature \(u(x, t) \) in a bar of silver of length 10 cm and constant cross section of area 1 cm\(^2\) (density 0.16 g/cm\(^3\), thermal conductivity 1.04 cal/(cm sec \(\circ\)C), specific heat 0.056 cal/(g \(\circ\)C) that is perfectly insulated laterally, with ends kept at temperature 0\(\circ\)C and initial temperature \(f(x) \) \(\circ\)C, where

\[
5. \quad f(x) = \sin 0.1 \pi x \\
6. \quad f(x) = 4 - 0.8 |x - 5| \\
7. \quad f(x) = x (10 - x)
\]

8. Arbitrary temperatures at ends. If the ends \(x = 0 \) and \(x = L \) of the bar in the text are kept at constant temperatures \(U_1 \) and \(U_2 \) respectively, what is the temperature \(u(x) \) in the bar after a long time (theoretically, as \(t \to \infty \))? First guess, then calculate.

9. In Prob. 8 find the temperature at any time.

10. Change of end temperatures. Assume that the ends of the bar in Probs. 5–7 have been kept at 100\(\circ\)C for a long time. Then at some instant, call it \(t = 0 \), the temperature at \(x = L \) is suddenly changed to 0\(\circ\)C and kept at 0\(\circ\)C, whereas the temperature at \(x = 0 \) is kept at 100\(\circ\)C. Find the temperature in the middle of the bar at \(t = 1, 2, 3, 10, 50 \) sec. First guess, then calculate.

BAR UNDER ADIABATIC CONDITIONS

"Adiabatic" means no heat exchange with the neighborhood, because the bar is completely insulated, also at the ends. Physical Information: The heat flux at the ends is proportional to the value of \(\partial u / \partial x \) there.

11. Show that for the completely insulated bar, \(u_x(0, t) = 0, u_x(L, t) = 0, u(x, t) = f(x) \) and separation of variables gives the following solution, with \(A_n \) given by (2) in Sec. 11.3.

\[
u(x, t) = A_0 + \sum_{n=1}^{\infty} A_n \cos \frac{n \pi x}{L} e^{-n^2 \pi^2 / L^2 c^2 t}
\]

12–15 Find the temperature in Prob. 11 with \(L = \pi, c = 1, \) and

12. \(f(x) = x \)
13. \(f(x) = 1 \)
14. \(f(x) = \cos 2x \)
15. \(f(x) = 1 - x / \pi \)

16. A bar with heat generation of constant rate \(H (>0) \) is modeled by \(u_t = c^2 u_{xx} + H \). Solve this problem if \(L = \pi \) and the ends of the bar are kept at 0\(\circ\)C. Hint: Set \(u = v - H(x - \pi) / (2c^2) \).

17. Heat flux. The heat flux of a solution \(u(x, t) \) across \(x = 0 \) is defined by \(\phi(t) = -K u_x(0, t) \). Find \(\phi(t) \) for the solution (9). Explain the name. Is it physically understandable that \(\phi \) goes to 0 as \(t \to \infty \)?

18–25 TWO-DIMENSIONAL PROBLEMS

18. Laplace equation. Find the potential in the rectangle \(0 \leq x \leq 20, 0 \leq y \leq 40 \) whose upper side is kept at potential 110 V and whose other sides are grounded.

19. Find the potential in the square \(0 \leq x \leq 2, 0 \leq y \leq 2 \) if the upper side is kept at the potential 1000 sin \(\frac{1}{2} \pi x \) and the other sides are grounded.

20. CAS PROJECT. Isotherms. Find the steady-state solutions (temperatures) in the square plate in Fig. 297 with \(a = 2 \) satisfying the following boundary conditions. Graph isotherms.

(a) \(u = 80 \sin \pi x \) on the upper side, 0 on the others.
(b) \(u = 0 \) on the vertical sides, assuming that the other sides are perfectly insulated.
(c) Boundary conditions of your choice (such that the solution is not identically zero).

21. Heat flow in a plate. The faces of the thin square plate in Fig. 297 with side \(a = 24 \) are perfectly insulated. The upper side is kept at 25\(\circ\)C and the other sides are kept at 0\(\circ\)C. Find the steady-state temperature \(u(x, y) \) in the plate.

22. Find the steady-state temperature in the plate in Prob. 21 if the lower side is kept at \(U_0 \circ\)C, the upper side at \(U_1 \circ\)C, and the other sides are kept at 0\(\circ\)C. Hint: Split into two problems in which the boundary temperature is 0 on three sides for each problem.

23. Mixed boundary value problem. Find the steady-state temperature in the plate in Prob. 21 with the upper and lower sides perfectly insulated, the left side kept at 0\(\circ\)C, and the right side kept at \(f(y) \circ\)C.

24. Radiation. Find steady-state temperatures in the rectangle in Fig. 296 with the upper and left sides perfectly insulated and the right side radiating into a medium at 0\(\circ\)C according to \(u_x(a, y) + hu(a, y) = 0, h > 0 \) constant. (You will get many solutions since no condition on the lower side is given.)

25. Find formulas similar to (17), (18) for the temperature in the rectangle \(R \) of the text when the lower side of \(R \) is kept at temperature \(f(x) \) and the other sides are kept at 0\(\circ\)C.
1. CAS PROJECT. Heat Flow. (a) Graph the basic Fig. 299.
(b) In (a) apply animation to “see” the heat flow in terms of the decrease of temperature.
(c) Graph $u(x, t)$ with $c = 1$ as a surface over a rectangle of the form $-a < x < a, \ 0 < y < b$.

2. SOLUTION IN INTEGRAL FORM

Using (6), obtain the solution of (1) in integral form satisfying the initial condition $u(x, 0) = f(x)$, where

2. $f(x) = \begin{cases} 1 & \text{if } |x| < a \text{ and } 0 \text{ otherwise} \\ \text{Hint. Use (15) in Sec. 11.7.} \\
3. f(x) = \frac{1}{1 + x^2} \\ \text{Hint. Use Prob. 4 in Sec. 11.7.} \\
4. f(x) = e^{-id} \\
5. f(x) = |x| \text{ if } |x| < 1 \text{ and } 0 \text{ otherwise} \\
6. f(x) = x \text{ if } |x| < 1 \text{ and } 0 \text{ otherwise} \\
7. f(x) = \sin(x)/x. \\
\text{Hint. Use Prob. 4 in Sec. 11.7.} \\
8. Verify that u in the solution of Prob. 7 satisfies the initial condition.

9. Graph the bell-shaped curve [the curve of the integrand in (21)]. Show that $\text{erf} \ x$ is odd. Show that

$$\int_{-b}^{b} e^{-w^2} dw = \frac{\sqrt{\pi}}{2} \text{erf} \ b. $$

10. Obtain the Maclaurin series of $\text{erf} \ x$ from that of the integrand. Use that series to compute a table of $\text{erf} \ z$ for $x = 0, 0.01, 0.02, \cdots, 5$.

11. Obtain the values required in Prob. 10 by an integration command of your CAS. Compare accuracy.

12. It can be shown that $\text{erf} \ (\infty) = 1$. Confirm this experimentally by computing $\text{erf} \ x$ for large x.

13. Let $f(x) = 1$ when $x > 0$ and 0 when $x < 0$. Using $\text{erf} \ (\infty) = 1$, show that (12) then gives

$$u(x, t) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-x^2/4t} dx = \frac{1}{2} - \frac{1}{2} \text{erf} \left(-\frac{x}{2\sqrt{t}} \right) \ (t > 0).$$

14. Express the temperature (13) in terms of the error function.

15. Show that $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-s^2/2} ds \ \frac{1}{2} + \frac{1}{2} \text{erf} \left(\frac{x}{\sqrt{2}} \right)$.

Here, the integral is the definition of the “distribution function of the normal probability distribution” to be discussed in Sec. 24.8.
For even \(m \) or \(n \) we get 0. Together with the factor \(1/20 \) we thus have \(B_{m,n} = 0 \) if \(m \) or \(n \) is even and
\[
B_{m,n} = \frac{256 \cdot 32}{20 m^3 n^3 \pi^6} = \frac{0.426050}{m^3 n^3} \quad \text{for} \quad (m \text{ and } n \text{ both odd}).
\]
From this, (9), and (14) we obtain the answer
\[
u(x, y, t) = 0.426050 \sum_{m,n \text{ odd}} \frac{1}{m^3 n^3} \cos \left(\frac{\sqrt{5} \pi}{4} \sqrt{\frac{\pi^2}{m^2} + \frac{\pi^2}{n^2}} \right) t \sin \frac{m\pi x}{4} \sin \frac{n\pi y}{2}
\]
\[
(21) \quad = 0.426050 \left(\cos \frac{\sqrt{5} \pi \sqrt{5}}{4} \sin \frac{\pi x}{4} \sin \frac{\pi y}{2} + \frac{1}{27} \cos \frac{\sqrt{5} \pi \sqrt{37}}{4} \sin \frac{\pi x}{4} \sin \frac{3\pi y}{2} + \cdots \right).
\]
To discuss this solution, we note that the first term is very similar to the initial shape of the membrane, has no nodal lines, and is by far the dominating term because the coefficients of the next terms are much smaller. The second term has two horizontal nodal lines \((y = \frac{\pi}{2}, \frac{3\pi}{2})\), the third term two vertical ones \((x = \frac{\pi}{2}, \frac{3\pi}{2})\), the fourth term two horizontal and two vertical ones, and so on.

Problem Set 12.9

1. **Frequency.** How does the frequency of the eigenfunctions of the rectangular membrane change (a) If we double the tension? (b) If we take a membrane of half the density of the original one? (c) If we double the sides of the membrane? Give reasons.
2. **Assumptions.** Which part of Assumption 2 cannot be satisfied exactly? Why did we also assume that the angles of inclination are small?
3. Determine and sketch the nodal lines of the square membrane for \(m = 1, 2, 3, 4 \) and \(n = 1, 2, 3, 4 \).

4-8 Double Fourier Series

Represent \(f(x, y) \) by a series (15), where

4. \(f(x, y) = 1, \quad a = b = 1 \)
5. \(f(x, y) = y, \quad a = b = 1 \)
6. \(f(x, y) = x, \quad a = b = 1 \)
7. \(f(x, y) = xy, \quad a \) and \(b \) arbitrary
8. \(f(x, y) = xy(a - x)(b - y), \quad a \) and \(b \) arbitrary

9. CAS Project. Double Fourier Series. (a) Write a program that gives you four numerically equal \(A_{mn} \) for Example 1, so that four different \(F_{mn} \) correspond to it. Sketch the nodal lines of \(F_{18}, F_{20}, F_{37}, F_{79} \) as Example 1 and similarly for further \(F_{mn} \) that you will find.

11-13 Square Membrane

Find the deflection \(u(x, y, t) \) of the square membrane of side \(\pi \) and \(c^2 = 1 \) for initial velocity 0 and initial deflection

11. \(0.1 \sin 2x \sin 4y \)
12. \(0.01 \sin x \sin y \)
13. \(0.1 xy(\pi - x)(\pi - y) \)
12.10 Laplacian in Polar Coordinates. Circular Membrane. Fourier–Bessel Series

It is a general principle in boundary value problems for PDEs to choose coordinates that make the formula for the boundary as simple as possible. Here polar coordinates are used for this purpose as follows. Since we want to discuss circular membranes (drumheads), we first transform the Laplacian in the wave equation (1), Sec. 12.9,

\[u_{tt} = c^2 \nabla^2 u = c^2 (u_{xx} + u_{yy}) \]

(subscripts denoting partial derivatives) into polar coordinates \(r, \theta \) defined by \(x = r \cos \theta, y = r \sin \theta \); thus,

\[r = \sqrt{x^2 + y^2}, \quad \tan \theta = \frac{y}{x}. \]

By the chain rule (Sec. 9.6) we obtain

\[u_x = u_r r_x + u_\theta r_\theta. \]

Differentiating once more with respect to \(x \) and using the product rule and then again the chain rule gives

\begin{align*}
 u_{xx} &= (u_r r_x)_x + (u_\theta r_\theta)_x \\
 &= (u_r)_x r_x + u_r r_{xx} + (u_\theta)_x r_x + u_\theta r_{xx} \\
 &= (u_r r_x + u_\theta r_\theta)_x + u_r r_{xx} + (u_\theta r_x + u_\theta \theta)_x + u_\theta r_{xx}.
\end{align*}

Also, by differentiation of \(r \) and \(\theta \) we find

\[r_x = \frac{x}{\sqrt{x^2 + y^2}} = \frac{x}{r}, \quad \theta_x = \frac{1}{1 + (y/x)^2} \left(\frac{y}{x^2} \right) = \frac{y}{r^2}. \]
PROBLEM SET 12.10

13. RADIAL SYMMETRY

1. Why did we introduce polar coordinates in this section?

2. Radial symmetry reduces (5) to \(\nabla^2 u = u_{rr} + u/r \). Derive this directly from \(\nabla^2 u = u_{xx} + u_{yy} \). Show that the only solution of \(\nabla^2 u = 0 \) depending only on \(r = \sqrt{x^2 + y^2} \) is \(u = a \ln r + b \) with arbitrary constants \(a \) and \(b \).

3. Alternative form of (5). Show that (5) can be written \(\nabla_\theta^2 u = (ru_\theta)/r + u_{\theta\theta}/r^2 \), a form that is often practical.

BOUNDARY VALUE PROBLEMS. SERIES

4. TEAM PROJECT. Series for Dirichlet and Neumann Problems

(a) Show that \(u_n = r^n \cos n\theta, u_n = r^n \sin n\theta, n = 0, 1, \ldots \), are solutions of Laplace’s equation \(\nabla^2 u = 0 \) with \(\nabla^2 u \) given by (5). (What would \(u_0 \) be in Cartesian coordinates? Experiment with small \(n \).)

(b) Dirichlet problem (See Sec. 12.6) Assuming that termwise differentiation is permissible, show that a solution of the Laplace equation in the disk \(r < R \) satisfying the boundary condition \(u(R, \theta) = f(\theta) \) (\(R \) and \(f \) given) is

\[
\begin{align*}
 u(r, \theta) &= a_0 + \sum_{n=1}^{\infty} \left[a_n \left(\frac{r}{R} \right)^n \cos n\theta \\
 &\quad + b_n \left(\frac{r}{R} \right)^n \sin n\theta \right]
\end{align*}
\]

where \(a_n, b_n \) are the Fourier coefficients of \(f \) (see Sec. 11.1).

(c) Dirichlet problem. Solve the Dirichlet problem using (20) if \(R = 1 \) and the boundary values are \(u(\theta) = -100 \text{ volts if } -\pi < \theta < \pi \), \(u(\theta) = 100 \text{ volts if } 0 < \theta < \pi \). (Sketch this disk, indicate the boundary values.)

(d) Neumann problem. Show that the solution of the Neumann problem \(\nabla^2 u = 0 \) if \(r < R \), \(u_N(R, \theta) = f(\theta) \) (where \(u_N = \partial u/\partial N \) is the directional derivative in the direction of the outer normal) is

\[
 u(r, \theta) = A_0 + \sum_{n=1}^{\infty} r^n (A_n \cos n\theta + B_n \sin n\theta)
\]

with arbitrary \(A_0 \) and

\[
\begin{align*}
 A_n &= \frac{1}{\pi n R^{n-1}} \int_{-\pi}^{\pi} f(\theta) \cos n\theta \, d\theta, \\
 B_n &= \frac{1}{\pi n R^{n-1}} \int_{-\pi}^{\pi} f(\theta) \sin n\theta \, d\theta.
\end{align*}
\]

(e) Compatibility condition. Show that (9), Sec. 10.4, imposes on \(f(\theta) \) in (d) the “compatibility condition”

\[
\int_{-\pi}^{\pi} f(\theta) \, d\theta = 0.
\]

(f) Neumann problem. Solve \(\nabla^2 u = 0 \) in the annulus \(1 < r < 2 \) if \(u_r(1, \theta) = \sin \theta, u_r(2, \theta) = 0 \).

5–8 ELECTROSTATIC POTENTIAL.
STEADY-STATE HEAT PROBLEMS

The electrostatic potential satisfies Laplace’s equation \(\nabla^2 u = 0 \) in any region free of charges. Also the heat equation \(u_t = c^2 \nabla^2 u \) (Sec. 12.5) reduces to Laplace’s equation if the temperature \(u \) is time-independent (“steady-state case”). Using (20), find the potential (equivalently: the steady-state temperature) in the disk \(r < 1 \) if the boundary values are (sketch them, to see what is going on).

5. \(u(1, \theta) = 220 \text{ if } -\frac{1}{2} \pi < \theta < \frac{1}{2} \pi \text{ and 0 otherwise} \)

6. \(u(1, \theta) = 400 \cos^3 \theta \)

7. \(u(1, \theta) = 110|\theta| \text{ if } -\pi < \theta < \pi \)

8. \(u(1, \theta) = \theta \text{ if } -\frac{1}{2} \pi < \theta < \frac{1}{2} \pi \text{ and 0 otherwise} \)

9. CAS EXPERIMENT. Equipotential Lines. Guess what the equipotential lines \(u(r, \theta) = \text{const} \) in Probs. 5 and 7 may look like. Then graph some of them, using partial sums of the series.

10. Semidisk. Find the electrostatic potential in the semidisk \(r < 1, 0 < \theta < \pi \) which equals \(110 \theta (\pi - \theta) \) on the semicircle \(r = 1 \) and 0 on the segment \(-1 < x < 1 \).

11. Semidisk. Find the steady-state temperature in a semicircular thin plate \(r < a, 0 < \theta < \pi \) with the semicircle \(r = a \) kept at constant temperature \(u_0 \) and the segment \(-a < x < a \) at 0.

CIRCULAR MEMBRANE

12. CAS PROJECT. Normal Modes. (a) Graph the normal modes \(u_4, u_5, u_6 \) as in Fig. 306.
(b) Write a program for calculating the A_n's in Example 1 and extend the table to $m = 15$. Verify numerically that $\alpha_m = (m - \frac{1}{4})\pi$ and compute the error for $m = 1, \ldots, 10$.

(c) Graph the initial deflection $f(r)$ in Example 1 as well as the first three partial sums of the series. Comment on accuracy.

(d) Compute the radii of the nodal lines of u_2, u_3, u_4 when $R = 1$. How do these values compare to those of the nodes of the vibrating string of length l? Can you establish any empirical laws by experimentation with further u_m?

13. Frequency. What happens to the frequency of an eigenfunction of a drum if you double the tension?

14. Size of a drum. A small drum should have a higher fundamental frequency than a large one, tension and density being the same. How does this follow from our formulas?

15. Tension. Find a formula for the tension required to produce a fundamental frequency f_1 of a drum.

16. Why is $A_1 + A_2 + \cdots = 1$ in Example 1? Compute the first few partial sums until you get 3-digit accuracy. What does this problem mean in the field of music?

17. Nodal lines. Is it possible that for fixed c and R two or more u_m [see (16)] with different nodal lines correspond to the same eigenvalue? (Give a reason.)

18. Nonzero initial velocity is more of theoretical interest because it is difficult to obtain experimentally. Show that for (17) to satisfy (9b) we must have

$$B_m = K_m \int_0^R x_0(x_0'/R) \, dx$$

where $K_m = 2/(c\alpha_m R^2/\alpha_m)$.

19. (Separations) Show that substitution of $u = F(r)G(\theta)$ into the wave equation (6), that is,

$$u_{tt} = c^2 \left(u_{rr} + \frac{1}{r} u_r + \frac{1}{r^2} u_{\theta\theta} \right),$$

gives an ODE and a PDE

$$\ddot{G} + \lambda^2 G = 0,$$

where $\lambda = ck$,

(24) \hspace{1cm} F_{rr} + \frac{1}{r} F_r + \frac{1}{r^2} F_{\theta\theta} + k^2 F = 0.$$

Show that the PDE can now be separated by substituting $F = W(r)Q(\theta)$, giving

$$Q'' + n^2 Q = 0,$$

(25)\hspace{1cm} r^2 W'' + r W' + (k^2 r^2 - n^2) W = 0.$$

20. Periodicity. Show that $Q(\theta)$ must be periodic with period 2π, and, therefore, $n = 0, 1, 2, \cdots$ in (25) and (26). Show that this yields the solutions $Q_n = \cos n\theta, \quad Q_n^* = \sin n\theta$, $W_n = \mathcal{J}_n(kr)$, $n = 0, 1, \cdots$.

21. Boundary condition. Show that the boundary condition

$$u(R, \theta, t) = 0$$

leads to $k = k_{mn} = \alpha_m R/R$, where $s = \alpha_{mn}$ is the nth positive zero of $J_n(s)$.

22. Solutions depending on both r and θ. Show that solutions of (22) satisfying (27) are (see Fig. 310)

$$u_{nm} = (A_{nm} \cos \alpha_m r + B_{nm} \sin \alpha_m r) X_n(k_{nm} r) \cos n\theta,$$

(28)

$$u_{nm}^* = (A_{nm}^* \cos \alpha_m r + B_{nm}^* \sin \alpha_m r) X_n(k_{nm} r) \sin n\theta.$$

Fig. 310. Nodal lines of some of the solutions (28)

23. Initial condition. Show that $u_t(r, \theta, 0) = 0$ gives $B_{nm} = 0, B_{nm}^* = 0$ in (28).

24. Show that $u_{0m} = 0$ and u_{nm} is identical with (16) in this section.

25. Semicircular membrane. Show that u_{11} represents the fundamental mode of a semicircular membrane and find the corresponding frequency when $c^2 = 1$ and $R = 1$.

\hspace{1cm} \begin{align*}
&F_{rr} + \frac{1}{r} F_r + \frac{1}{r^2} F_{\theta\theta} + k^2 F = 0. \\
&Q'' + n^2 Q = 0, \\
&r^2 W'' + r W' + (k^2 r^2 - n^2) W = 0. \\
\end{align*}
\[A_n = \frac{55(2n + 1)}{2^n} \sum_{m=0}^{n} \frac{(-1)^m (2n - 2m)!}{m!(n - m)!(n - 2m + 1)!} . \]

Taking \(n = 0 \), we get \(A_0 = 55 \) (since \(0! = 1 \)). For \(n = 1, 2, 3, \ldots \) we get
\[
A_1 = \frac{165}{2} \frac{2!}{0!1!2!} = 165, \\
A_2 = \frac{275}{4} \frac{4!}{0!2!3!} - \frac{2!}{1!1!1!1!} = 0, \\
A_3 = \frac{385}{8} \frac{6!}{0!3!4!} - \frac{4!}{1!1!2!} = -\frac{385}{8}, \text{ etc.}
\]

Hence the potential (17) inside the sphere is (since \(B_1 = 1 \))

\[u(r, \phi) = 55 + \frac{165}{2} r P_1(\cos \phi) - \frac{385}{8} r^3 P_3(\cos \phi) + \cdots. \]

with \(P_1, P_3, \ldots \) given by (11'), Sec. 5.21. Since \(R = 1 \), we see from (19) and (21) in this section that \(B_n = A_n \) and (20) thus gives the potential outside the sphere

\[u(r, \phi) = \frac{55}{r} + \frac{165}{2r^2} P_1(\cos \phi) - \frac{385}{8r^4} P_3(\cos \phi) + \cdots. \]

Partial sums of these series can now be used for computing approximate values of the inner and outer potential. Also, it is interesting to see that far away from the sphere the potential is approximately that of a point charge, namely, \(55/r \). (Compare with Theorem 3 in Sec. 9.7.)

Example 2

Simpler Cases. Help with Problems

The technicalities encountered in cases that are similar to the one shown in Example 1 can often be avoided. For instance, find the potential inside the sphere \(S: r = R = 1 \) when \(S \) is kept at the potential \(f(\phi) = \cos 2\phi \). (Can you see the potential on \(S \)? What is it at the North Pole? The equator? The South Pole?)

Solution. \(w = \cos \phi, \cos 2\phi = 2 \cos^2 \phi - 1 = 2w^2 - 1 = \frac{2}{3} P_2(w) - \frac{1}{3} = \frac{2}{3} (3\cos^2 \phi - 1) - \frac{1}{3} \). Hence the potential in the interior of the sphere is
\[
u = \frac{2}{3} P_2(w) - \frac{1}{3} = \frac{2}{3} r^2 P_2(\cos \phi) - \frac{1}{3} = \frac{2}{3} r^2 (3 \cos^2 \phi - 1) - \frac{1}{3}.
\]

Problem Set 12.11

1. **Spherical coordinates.** Derive (7) from \(\nabla^2 u \) in spherical coordinates.

2. **Cylindrical coordinates.** Verify (5) by transforming \(\nabla^2 u \) back into Cartesian coordinates.

3. **Sketch** \(P_n(\cos \theta), \ 0 \leq \theta \leq 2\pi \), for \(n = 0, 1, 2 \). (Use (11') in Sec. 5.2.)

4. **Zero surfaces.** Find the surfaces on which \(u_1, u_2, u_3 \) in (36) are zero.
5. **CAS PROBLEM. Partial Sums.** In Example 1 in the text verify the values of A_{0}, A_{1}, A_{2}, A_{3} and compute A_{4}, \ldots, A_{10}. Try to find out graphically how well the corresponding partial sums of (23) approximate the given boundary function.

6. **CAS EXPERIMENT. Gibbs Phenomenon.** Study the Gibbs phenomenon in Example 1 (Fig. 314) graphically.

7. Verify that u_{n} and u_{n}^{o} in (16) are solutions of (8).

8. **Dimension 3.** Verify that the potential $u = c/r, r = \sqrt{x^{2} + y^{2} + z^{2}}$ satisfies Laplace’s equation in spherical coordinates.

9. **Spherical symmetry.** Show that the only solution of Laplace’s equation depending only on $r = \sqrt{x^{2} + y^{2} + z^{2}}$ is $u = c/r + k$ with constant c and k.

10. **Cylindrical symmetry.** Show that the only solution of Laplace’s equation depending only on $r = \sqrt{x^{2} + y^{2}}$ is $u = c \ln r + k$.

11. **Verification.** Substituting $u(r, \theta)$ with r as in Prob. 9 into $u_{xx} + u_{yy} + u_{zz} = 0$, verify that $u'' + 2u/r = 0$, in agreement with (7).

12. **Dirichlet problem.** Find the electrostatic potential between coaxial cylinders of radii $r_{1} = 2$ cm and $r_{2} = 4$ cm kept at the potentials $U_{1} = 220$ V and $U_{2} = 140$ V, respectively.

13. **Dirichlet problem.** Find the electrostatic potential between two concentric spheres of radii $r_{1} = 2$ cm and $r_{2} = 4$ cm kept at the potentials $U_{1} = 220$ V and $U_{2} = 140$ V, respectively. Sketch and compare the equipotential lines in Probs. 12 and 13. Comment.

14. **Heat problem.** If the surface of the ball $r^{2} = x^{2} + y^{2} + z^{2} \leq R^{2}$ is kept at temperature zero and the initial temperature in the ball is $f(r)$, show that the temperature $u(r, t)$ in the ball is a solution of $ut = c^{2}u_{rr} + 2u/r$ satisfying the conditions $u(R, t) = 0, u(r, 0) = f(r)$. Show that setting $v = ru$ gives $vt = c^{2}v_{rr}, v(R, t) = 0, v(r, 0) = tf(r)$. Include the condition $v(0, t) = 0$ (which holds because u must be bounded at $r = 0$), and solve the resulting problem by separating variables.

15. What are the analogs of Probs. 12 and 13 in heat conduction?

16. **Boundary Value Problems in Spherical Coordinates** r, θ, ϕ

Find the potential in the interior of the sphere $r = R = 1$ if the interior is free of charges and the potential on the sphere is

16. $f(\phi) = \cos \phi$
17. $f(\phi) = 1$
18. $f(\phi) = 1 - \cos^{2} \phi$
19. $f(\phi) = \cos 2\phi$
20. $f(\phi) = 10 \cos^{5} \phi - 3 \cos^{2} \phi - 5 \cos \phi - 1$

21. **Point charge.** Show that in Prob. 17 the potential exterior to the sphere is the same as that of a point charge at the origin.

22. **Exterior potential.** Find the potentials exterior to the sphere in Probs. 16 and 19.

23. **Plane intersections.** Sketch the intersections of the equipotential surfaces in Prob. 16 with xz-plane.

24. **TEAM PROJECT. Transmission Line and Related PDEs.** Consider a long cable or telephone wire (Fig. 315) that is imperfectly insulated, so that leaks occur along the entire length of the cable. The source S of the current $i(x, t)$ in the cable is at $x = 0$, the receiving end T at $x = l$. The current flows from S to T and through the load, and returns to the ground. Let the constants R, L, C, and G denote the resistance, inductance, capacitance to ground, and conductance to ground, respectively, of the cable per unit length.

![Fig. 315. Transmission line](image)

(a) Show that ("first transmission line equation")

$$\frac{\partial u}{\partial x} = Ri + L \frac{\partial i}{\partial t}$$

where $u(x, t)$ is the potential in the cable. Hint: Apply Kirchhoff’s voltage law to a small portion of the cable between x and $x + \Delta x$ (difference of the potentials at x and $x + \Delta x$ is resistive drop + inductive drop).

(b) Show that for the cable in (a) ("second transmission line equation")

$$\frac{\partial i}{\partial x} = G u + C \frac{\partial u}{\partial t}.$$

Hint: Use Kirchhoff’s current law (difference of the currents at x and $x + \Delta x$ is loss due to leakage to ground + capacitive loss).

(c) **Second-order PDEs.** Show that elimination of i or u from the transmission line equations leads to

$$u_{xt} = (RC + GL)u_{t} + RG, i_{xx} = (RC + GL)u_{t} + RGI.$$

(d) ** Telegraph equations.** For a submarine cable, G is negligible and the frequencies are low. Show that this leads to the so-called submarine cable equations or telegraph equations

$$u_{xx} = RCu_{t}, \quad i_{xx} = RCi_{t}.$$
that is,

\[w(x, t) = \sin \left(\frac{t - x}{c} \right) \text{ if } \frac{x}{c} < t < \frac{x}{c} + 2\pi \quad \text{or} \quad ct > x > (t - 2\pi)c \]

and zero otherwise. This is a single sine wave traveling to the right with speed \(c \). Note that a point \(x \) remains at rest until \(t = x/c \), the time needed to reach that \(x \) if one starts at \(t = 0 \) (start of the motion of the left end) and travels with speed \(c \). The result agrees with our physical intuition. Since we proceeded formally, we need to verify that (5) satisfies the given conditions. We leave this to the student.

![Fig. 317. Traveling wave in Example 1](image)

We have reached the end of Chapter 12, in which we concentrated on the most important partial differential equations (PDEs) in physics and engineering. We have also reached the end of Part C on Fourier Analysis and PDEs.

Outlook

We have seen that PDEs underlie the modeling process of various important engineering applications. Indeed, PDEs are the subject of many ongoing research projects.

Numerics for PDEs follows in Secs. 21.4–21.7, which, by design for greater flexibility in teaching, are independent of the other sections in Part E on numerics.

In the next part, that is, Part D on complex analysis, we turn to an area of a different nature that is also highly important to the engineer. The rich vein of examples and problems will signify this. It is of note that Part D includes another approach to the two-dimensional Laplace equation with applications, as shown in Chap. 18.

Problem Set 12.12

1. Verify the solution in Example 1. What traveling wave do we obtain in Example 1 for a nonterminating sinusoidal motion of the left end starting at \(t = 2\pi \)?

2. Sketch a figure similar to Fig. 317 when \(c = 1 \) and \(f(x) \) is "triangular," say, \(f(x) = x \) if \(0 < x < \frac{1}{2} \), \(f(x) = 1 - x \) if \(\frac{1}{2} < x < 1 \) and 0 otherwise.

3. How does the speed of the wave in Example 1 of the text depend on the tension and on the mass of the string?

4. Solve by Laplace transforms

\[\frac{\partial w}{\partial x} + x \frac{\partial w}{\partial t} = x, \quad w(x, 0) = 1, \quad w(0, t) = 1 \]

5. \(\frac{\partial^2 w}{\partial x^2} + \frac{\partial w}{\partial t} = x, \quad w(x, 0) = 0 \text{ if } x \geq 0, \quad w(0, t) = 0 \text{ if } t \geq 0 \)

6. \(\frac{\partial^2 w}{\partial x^2} + 2x \frac{\partial w}{\partial t} = 2x, \quad w(x, 0) = 1, \quad w(0, t) = 1 \)

7. Solve Prob. 5 by separating variables.

8. \(\frac{\partial^2 w}{\partial x^2} = 100 \frac{\partial^2 w}{\partial t^2} + 100 \frac{\partial w}{\partial t} + 25w, \)

\[w(x, 0) = 0 \text{ if } x \geq 0, \quad w_t(x, 0) = 0 \text{ if } t \geq 0, \quad w(0, t) = \sin t \text{ if } t \geq 0 \]
HEAT PROBLEM

Find the temperature \(w(x, t) \) in a semi-infinite laterally insulated bar extending from \(x = 0 \) along the \(x \)-axis to infinity, assuming that the initial temperature is \(0, w(x, t) \to 0 \) as \(x \to \infty \) for every fixed \(t \geq 0 \), and \(w(0, t) = f(t) \). Proceed as follows.

9. Set up the model and show that the Laplace transform leads to

\[
sW = c^2 \frac{\partial^2 W}{\partial x^2} \quad (W = \mathcal{L}\{w\})
\]

and

\[
W = F(s)e^{-\sqrt{s/c}} \quad (F = \mathcal{L}\{f\}).
\]

10. Applying the convolution theorem, show that in Prob. 9,

\[
w(x, t) = \frac{x}{2c\sqrt{\pi}} \int_0^t f(t - \tau) e^{-x^2/(4c^2\tau)} d\tau.
\]

11. Let \(w(0, t) = f(t) \) (Sec. 6.3). Denote the corresponding \(w, W, \) and \(F \) by \(w_0, \) \(W_0, \) and \(F_0 \). Show that then in Prob. 10,

\[
w_0(x, t) = \frac{x}{2c\sqrt{\pi}} \int_0^t \tau^{-3/2} e^{-x^2/(4c^2\tau)} d\tau
\]

with the error function \(\text{erf} \) as defined in Problem Set 12.7.

12. **Duhamel's formula.** Show that in Prob. 11,

\[
w_0(x, s) = \frac{1}{s} e^{-\sqrt{s/c}}
\]

and the convolution theorem gives Duhamel's formula

\[
W(x, t) = \int_0^t f(t - \tau) \frac{\partial w_0}{\partial \tau} d\tau.
\]

CHAPTER 12 REVIEW QUESTIONS AND PROBLEMS

1. For what kinds of problems will modeling lead to an ODE? To a PDE?
2. Mention some of the basic physical principles or laws that will give a PDE in modeling.
3. State three or four of the most important PDEs and their main applications.
4. What is "separating variables" in a PDE? When did we apply it twice in succession?
5. What is d'Alembert's solution method? To what PDE does it apply?
6. What role did Fourier series play in this chapter? Fourier integrals?
7. When and why did Legendre's equation occur? Bessel's equation?
8. What are the eigenfunctions and their frequencies of the vibrating string? Of the vibrating membrane?
9. What do you remember about types of PDEs? Normal forms? Why is this important?
10. When did we use polar coordinates? Cylindrical coordinates? Spherical coordinates?
11. Explain mathematically (not physically) why we got exponential functions in separating the heat equation, but not for the wave equation.
12. Why and where did the error function occur?
13. How do problems for the wave equation and the heat equation differ regarding additional conditions?
14. Name and explain the three kinds of boundary conditions for Laplace's equation.
15. Explain how the Laplace transform applies to PDEs.

16-18 Solve for \(u = u(x, y) \):

16. \(u_{xx} + 25u = 0 \)
17. \(u_{yy} + u_y = 6u = 18 \)
18. \(u_{xx} + u_x = 0, \quad u(0, y) = f(y), \quad u_x(0, y) = g(y) \)

19-21 **NORMAL FORM**

Transform to normal form and solve:

19. \(u_{xy} = u_{yy} \)
20. \(u_{xx} + 6u_{xy} + 9u_{yy} = 0 \)
21. \(u_{xx} - 4u_{yy} = 0 \)

22-24 **VIBRATING STRING**

Find and sketch or graph (as in Fig. 288 in Sec. 12.3) the deflection \(u(x, t) \) of a vibrating string of length \(\pi \), extending from \(x = 0 \) to \(x = \pi \), and \(c^2 = T/\rho = 4 \) starting with velocity zero and deflection:

22. \(\sin 4x \)
23. \(\sin^3 x \)
24. \(\frac{1}{2} \pi - |x - \frac{1}{2} \pi| \)

Jean-Marie Constant Duhamel (1797–1872), French mathematician.