1. (20pts) Given a sphere of radius 2 centered at the origin, find the equation for the plane that is tangent to it at the point \((1, 1, \sqrt{2})\) by considering the sphere as:

(a) a surface parametrized by \(\Phi(\theta, \phi) = (2 \cos \theta \sin \phi, 2 \sin \theta \sin \phi, 2 \cos \phi)\);

(b) a level surface of \(f(x, y, z) = x^2 + y^2 + z^2\); and

(c) the graph of \(g(x, y) = \sqrt{4 - x^2 - y^2}\).
2. (20pts) The cylinder $x^2 + y^2 = \frac{1}{4}$ divides the unit sphere S into two regions S_1 and S_2, where S_1 is inside the cylinder and S_2 is outside. Find the ratio of areas $A(S_2)/A(S_1)$.

3. (15pts) Evaluate $\int \int_S z \, dS$, where S is the surface $z = (x^2 + y^2)/2$ with $x^2 + y^2 \leq 1$.

2
4. (20pts) Let S be the part of the cone $z^2 = x^2 + y^2$ with z between 1 and 2 oriented by the normal pointing out of the cone. Compute $\int \int_{S} \mathbf{F} \cdot d\mathbf{S}$ where $\mathbf{F}(x, y, z) = (x, y, 2z)$.

5. (15pts) Evaluate $\int_{C^+} x^3 \, dy - y^3 \, dx$ where C^+ is the unit circle ($x^2 + y^2 = 1$) in the counterclockwise direction.
6. (15pts) Evaluate \(\int \int_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S} \) where \(\mathbf{F} = (x + z^2, x + y + z, z + x) \) and \(S \) is the surface \(z = x^2 + y^2 - 9 \) with \(z \leq 0 \) and \(S \) is oriented by the outward (= downward) unit normal.

7. (15pts) Evaluate the surface integral \(\int \int_S \mathbf{F} \cdot d\mathbf{S} \) where \(\mathbf{F} = x^2\mathbf{i} + (\log z + y)\mathbf{j} + (e^x + z)\mathbf{k} \) and \(S \) is the surface of the unit cube in the first octant (i.e., \(0 \leq x \leq 1 \), \(0 \leq y \leq 1 \), and \(0 \leq z \leq 1 \)) with the outward orientation.
8. (20pts) (a) Compute the curl of \(\mathbf{F} = (y, x + z, y + \cos z) \).
(b) Find a scalar function \(f(x, y, z) \) such that \(\nabla f = \mathbf{F} \).
(c) Compute \(\int_{c} y \, dx + (x + z) \, dy + (y + \cos z) \, dz \) along the path \(c(t) : x = \cos^3 t, y = \sin^3 t, z = t^3, \ 0 \leq t \leq \frac{\pi}{2} \).

9. (10pts) Let \(D \) be a \(y \)-simple region and let \(C \) be its boundary. Suppose \(P : D \to R \) is of class \(C^1 \) and \(Q = 0 \). Prove that \(\int_{C} P \, dx + Q \, dy = -\int_{D} \frac{\partial P}{\partial y} \, dxdy \).