
Ordinary Differential Equations and Dynamical Systems

Instructor: Professor Nung Kwan Yip

Course Number: MA 54300

Credits: Three

Time: 9:00–10:15 AM TTh

Description

This is a beginning graduate level course on ordinary differential equations. It covers basic

results for linear systems, local theory for nonlinear systems (existence and uniqueness, dependence

on parameters, flows and linearization, stable manifold theorem) and their global theory (global

existence, limit sets and periodic orbits, Poincare maps). Some further topics include bifurcations,

averaging techniques and applications to Hamiltonian mechanics and population dynamics.

Prerequisites: one undergraduate course in each of the following topics: linear algebra (for ex-

ample, MA 265, 351), differential equation (for example, MA 266, 366), analysis (for example, MA

341, 440, 504), or instructor’s consent.

Introduction to Functional Analysis

Instructor: Professor Marius Dadarlat

Course Number: MA 54600

Credits: Three

Time: 12:30–1:20 PM MWF

Description

1. Banach spaces

2. Hilbert spaces

3. Linear Operators and functionals

4. The Hahn-Banach Theorem

5. Duality

6. The Open Mapping Theorem

7. The Uniform Boundedness Principle

8. Weak Topologies

9. Spectra of operators

10. Compact operators

11. Banach algebras and C*-algebras

12. Riesz calculus

13. Fredholm index



14. Gelfand transform

15. Spectral theorem for normal operators

If time allows:

16. Unbounded Operators

17. Applications: Differential operators, Peter-Weyl theorem

Prerequisites: Familiarity with basic measure theory

Grading:

Attendance 35%,

HW 40%,

Final Exam 25% (a take-home 36 hours no collaboration exam).

No specific textbook is required. These topics are covered by most books on functional analysis.

A good reference is: Gert Pedersen, Analysis Now, (Graduate Texts in Mathematics) Corrected

Edition!

Homological Algebra

Instructor: Professor Donu Arapura

Course Number: MA 55800

Credits: Three

Time: 12:00–1:15 AM TTh

Description

The official designation for this course is “Abstract Algebra II”, which permits a certain amount

of latitude. So I’ve decided to cover homological algebra. This is the part of algebra that came out

of algebraic topology in the 1940’s and 50’s. Its impact cannot be underestimated. Not only is it

important in algebra, but within a few years, the foundations of subjects such as class field theory

and algebraic geometry were essentially rewritten to use this viewpoint.

For prerequisites, I won’t assume much more than a good knowledge of basic algebra (if you’ve

been through Atiyah-Macdonald for example, that should be plenty). In particular, since I won’t

assume prior knowledge of algebraic topology, I will cover a bit of that for purposes of motivation.

Then I will alternate between pure homological algebra (chain complexes, homotopies, mapping

cones, derived functors, Ext, Tor) and applications to various subjects (group theory: group

extensions; commutative algebra: characterization of regular rings; geometry: sheaf cohomology

and de Rham’s theorem etc.). If there is enough time and interest, then I may discuss more

advanced topics such as derived categories and spectral sequences. While I won’t follow any book

very closely, Weibel’s book contains most of the topics that I’m likely to cover.

Book: C. Weibel, An introduction to homological algebra



Introduction in Algebraic Topology

Instructor: Professor Ralph Kaufmann

Course Number: MA 57200

Credits: Three

Time: 3:00–4:15 PM TTh

Description

The course is an introduction to algebraic topology. The focus will be on homology and coho-

mology theory which are a basic tool in many subjects. It is fundamental for topology, but also

important for many other fields, such as differential, symplectic and algebraic geometry, number

theory, mathematical physics, data science etc.

We will treat the classical simplicial and singular homology and cohomology, but we also plan to

cover CW complexes and differential forms and more advanced topics as time permits.

The basic text for the course will be Elements of Algebraic Topology by James R. Munkres with

additions from other sources and the lecture to update the material to a more modern presentation.

These will be made available.

Arithmetic Harmonic Analysis: an introduction to the circle method

Instructor: Professor Trevor D. Wooley

Course Number: MA 59800AHA

Credits: Three

Time: 10:30–11:45 AM TTh

Description

This course serves as an introduction to the (Hardy-Littlewood) circle method, an important theme

in analytic number theory, and complements the course proposed by Tess Anderson on discrete

analysis – taking them in parallel, an option that is encouraged but not required, would enhance

the level of understanding of each of them. Background results from number theory and harmonic

analysis will be reviewed as needed.

The (Hardy-Littlewood) circle method applies Fourier analysis to count rational or integral solutions

of an equation or inequality in a manner respecting the inherent arithmetic. Developments in recent

years have broadened its impact into additive combinatorics and discrete harmonic analysis beyond

its more traditional role in quantitative arithmetic geometry. A highlight from the past five years

is the full resolution of the Main Conjecture in Vinogradov’s mean value theorem.

We shall take as our central example Waring’s problem – the problem of understanding the number

of representations of an integer as the sum of a fixed number of k-th powers of positive integers.



Our aims are twofold: (i) to understand the scope and limitations of the circle method, and (ii) to

gain some facility to apply the method, so from time to time there will be technical material that

we’ll just cite rather than prove in any detail. This course is intended to be accessible to those

without any background in analytic number theory.

Assessment: Six (short) problem sets will be offered through the semester, and class participants

can demonstrate engagement with the course by any written and/or in-class presentations featuring

a reasonable subset of these problems – three levels of difficulty: short problems testing basic skill-

sets, extended problems integrating the essential methods of the course, and more challenging

problems for enthusiasts with detailed hints available on request.

Contents:

(i) Discussion of Weyl’s inequality, Hua’s Lemma, and the simplest treatment of Waring’s problem.

This provides an opportunity to discuss the key elements of the major arc analysis, that is, the

singular integral and singular series, that together constitute the product of local densities.

Density of integral zeros of diagonal equations.

(ii) Refinements to the major arc analysis, including use of Poisson summation. Sketch of Kloost-

erman method. Diminishing ranges. Diophantine equations arising as sums of binary forms.

(iii) Vinogradov’s methods, especially Vinogradov’s mean value theorem and ensuing analogue’s

of Weyl’s inequality. Application to Waring’s problem and diagonal equations. The Main

Conjecture and its consequences.

iv) The Davenport-Heilbronn method (for establishing solubility of Diophantine inequalities). The

Bentkus-Goetze-Freeman variant.

v) Unrepresentation theory – the theory of exceptional sets of integers that fail to be represented

in a specified form.

The course will be based on the instructor’s lecture notes. Good texts for background reading and

support are:

R. C. Vaughan, The Hardy-Littlewood method, 2nd edn., Cambridge Tract No. 125, Cambridge

University Press, 1997 [Condensed, but the best source in print; updated from the 1981 first edition.]

H. Davenport, Analytic methods for Diophantine equations and Diophantine inequalities, Ann

Arbor Publishers, Ann Arbor, 1962 or the LaTeXed version published by Cambridge University

Press in 2005 [Friendlier for the basics, with material on general homogeneous cubics, but misses

modern developments.]

M. Nathanson, Additive number theory. The classical bases, GTM 164, Springer-Verlag, New York,

1996 [Pedestrian approach to the basics in which no corner is cut – good for getting started!]

Prerequisites: Elementary number theory and basic analysis.



The Discrete Jungle: Where Number Theory And Analysis Meet

Instructor: Professor Theresa Anderson

Course Number: MA 59800DJ

Credits: Three

Time: 9:00–10:15 AM TTh

Description

This course will introduce students to the fascinating interface of analysis and number theory

through the world of discrete harmonic analysis. We will cover the basics, so only basic measure

theory is assumed. Starting with some simple, yet powerful tools in analysis and elementary number

theory results, such as those for exponential sums, we will both draw parallels between the fields

as well as between the concurrent course proposed by Trevor Wooley in ”Arithmetic Harmonic

Analysis”. With this dictionary in hand, we will begin by exploring fundamental operators from

analysis in the continuous and discrete setting, and see how these regimes differ. Drastically different

approaches are needed – we will focus on the discrete perspective and see how number theory comes

into play as well as how information about discrete analogues have far reaching consequences.

An additional feature of this course is to develop presentation skills. The students will work

either individually or in teams, depending on interest, to understand and present the main ideas

from a recent research paper (or potentially another resource) in the area. Topics will be announced,

and are flexible depending on interest. Additionally, I will be happy to consult with students about

technical details.

We will rely on lecture notes and accessible versions of recent papers in the field, no text

is needed. No number theory background is assumed. Ideal for graduate students interested in

analysis, number theory, or related fields.

Prerequisites: Measure theory (basic, can be taken concurrently). Intended for graduate students

in Mathematics. Recommended to take the complimentary course proposed by Trevor Wooley, but

not required.

Higher Category Theory

Instructor: Professor Manuel Rivera

Course Number: MA 59800IC

Credits: Three

Time: 10:30–11:45 AM TTh

Description

Often in mathematics it is useful to replace “equality” or “isomorphism” with weaker notions of

equivalence. For example, in topology we have the notions of homotopy between continuous maps

and homotopy equivalence (or even weak homotopy equivalence) between spaces. In homological



algebra we also encounter notions that behave similarly, like chain homotopy between chain maps,

quasi-isomorphisms or chain equivalences between chain complexes.

Higher category theory is an abstract framework for describing constructions, usually inspired

by homotopy theory, which are invariant under some notion of weak equivalence in a coherent sense.

While an ordinary category has objects and morphisms a higher category has objects, 1-morphisms,

2-morphisms (morphisms between morphisms), etc... Another perspective is that a higher category

theory encodes some “abstract homotopy theory” (a theory with constructions and results similar

to those we encounter in the homotopy theory of spaces). There are different models to make sense

of higher categories. Higher category theory has become increasingly important in different fields

ranging from algebraic topology and geometry to theoretical physics and computer science.

The goal of this course is to develop the theory of higher categories based on quasi-categories, as

studied in detail by Lurie and Joyal, with minimal prerequisites. We will also spend time developing

the theory of model categories with the end goal of comparing quasi-categories to simplicial cate-

gories (categories enriched over simplicial sets), another model for higher category theory. We will

assume basic knowledge of ordinary category theory and familiarity with the basic constructions

and results of algebraic topology including the fundamental group and homology groups.

Large Deviations

Instructor: Professor Jonathon Peterson

Course Number: MA 59800LD

Credits: Three

Time: 9:30–10:20 AM MWF

Description

Large deviation theory is, informally, the study of the asymptotics of probabilities of unlikely

events. As an example, while the law of large numbers says that the empirical mean of the sum

of a large number of i.i.d. random variables is typically close to the expected value of the random

variables, large deviation theory gives a framework for evaluating the asymptotics of the probability

the empirical mean is close to a number different than the expected value. Large deviation theory

not only gives understanding of how small probabilities of rare events are, but often also gives an

insight into exactly how rare events arise (that is, given that a rare event occurred, what is the most

likely way that this rare event happened). Large deviation theory is helpful for anyone working in

probability theory but also has applications in statistics and other applied areas where one needs

some understanding or control of rare events.

Prerequisites: 538 (532 and 539 will also be helpful but are not required).



Numerical Methods For PDEs I

Instructor: Professor Xiangxiong Zhang

Course Number: MA 61500

Credits: Three

Time: 10:30–11:20 AM MWF

Description

This is an introductory course of numerical solutions to partial differential equations for any

graduate students interested in computational mathematics. The course will cover key concepts

including accuracy, stability and convergence of finite difference methods for time dependent prob-

lems such as wave equations and parabolic equations. Linear system solvers such as the conjugate

gradient method and the multigrid method, and ODE solvers such as Runge-Kutta method will

also be discussed. As a special finite difference method, the finite difference implementation of

finite element method on a rectangular grid will be introduced for solving the Poisson equation. If

time permits, selected ad hoc topics including connections to optimization algorithms and appli-

cations to image processing will be briefly discussed. Homework and the final exam will consist of

both analysis and coding by Matlab. Sample Matlab codes will be provided thus prior knowledge

on coding is not required. Recommended prerequisites include linear partial differential equa-

tions, linear algebra and Fourier analysis, which will be reviewed during the lectures. Feel free to

send an email to zhan1966@purdue.edu for questions. Last year’s lecture notes are available at

http://www.math.purdue.edu/∼zhan1966/teaching/615/MA615 notes.pdf

Class Field Theory

Instructor: Professor Freydoon Shahidi

Course Number: MA 68400

Credits: Three

Time: 9:30–10:20 AM MWF

Description

Class field theory is that of understanding abelian extensions of local and global fields. It is a

crowning achievement of number theory in the 20th century and the main motivating object for

the Langlands program. We will treat the subject by mainly concerntrating on number fields.

Syllabus: Ideles, adeles, L–functions, first and second inequalities, Artin symbol, reciprocity, local

and global class fields, Kronecker–Weber theorem.

I will generally follow my notes which is now posted on my bio page. Other sources are:

1. S. Lang, “Algebraic Number Theory”, Addison Wesley, 1970.

2. J. Cassels and A. Frolich, “Algebraic Number Theory”, Thompson book company, 1967.

Prerequisite: MA 584 or the instructor’s approval.



Introduction To p-adic Hodge Theory

Instructor: Professor Tong Liu

Course Number: MA 69000PHT

Credits: Three

Time: 1:30–2:20 PM MWF

Description

In this course, we will discuss the rudiments for p-adic Galois representations and p-adic Hodge

theory, which is vital for the research of Langlands program from Galois and geometric side. I

will discuss p-adic Galois representation of global Galois group, l-adic Galois representations, Weil-

Deligne representation, construction of p-adic period rings, various p-adic representations (crys-

talline, semi-stable, de Rham, Hodge-Tate), and how these relate to various cohomology of algebraic

variety.

Topics In Commutative Algebra: Homological Conjectures/Theorems And Perfectoid Spaces

Instructor: Professor Linquan Ma

Course Number: MA 69000PSHC

Credits: Three

Time: 1:30–2:45 PM TTh

Description

The goal of this course is to explain Hochster’s direct summand conjecture/theorem and some

of its consequences. This was proved by Yves Andre in 2016 using perfectoid algebras and spaces.

To achieve this we will set up some foundations on almost mathematics and perfectoid space theory.

References:

1. Andre’s papers: arXiv:1609.00320, arXiv:1609.00345

2. Bhatt and Heitmann–Ma’s shorter proofs: arXiv:1608.08882, arXiv:1703.08281

3. Bhatt’s lecture notes: http://www-personal.umich.edu/ bhattb/teaching/mat679w17/lectures.pdf

4. Scholze’s thesis: https://www.math.uni-bonn.de/people/scholze/PerfectoidSpaces.pdf

5. Gabber–Ramero’s book: arXiv:math/0201175



Analysis Of Hydrodynamic Equations In Complex Fluids

Instructor: Professor Changyou Wang

Course Number: MA 69300CW

Credits: Three

Time: 1:30–2:45 PM TTh

Description

This course will roughly cover three parts:

(1) Analysis of variational problems modeled on harmonic maps between Riemannian manifolds

and their heat flows. Harmonic maps are critical points of Dirichlet energy functional between

two manifolds, which are nonlinear extensions of harmonic functions and result in a quasilinear

elliptic system with supercritical nonlinearity. I will mainly focus on the regularity issue of

harmonic maps, along with some discussion on the structure of its singular sets. I will talk about

harmonic map heat flows, which are negative gradient flow of the Dirichlet energy functional.

I plan to discuss the work by Schoen-Uhlenbeck, Helein-Bethuel-Riviere, Eells-Sampson, and

Chen-Struwe’s.

(2) Basic theory on the incompressible Navier-Stokes equation, which is the governing equation for

Newtonian fluids and constitutes the underlying equation for many complex fluids. Here I plan

to discuss the existing regularity theory by Leray and Caffarelli-Kohn-Nirenberg.

(3) The static Oeen-Frank theory and the hydrodynamic Ericksen-Leslie theory on nematic liquid

crystals. These equations model either minimal configurations or evolutions of the average

orientation fields of nematic liquid crystal materials. Harmonic maps can be viewed as an

approximation of critical points in the Oseen-Frank theory, while Ericksen-Leslie system can

be viewed as a nonlinear coupling Between forced Navier-Stokes equations and transported

harmonic map heat flows. I plan to discuss the work by Hardt-Lin-Kinderelehrer, and Lin-

Wang.

Some familiarity with linear elliptic and parabolic PDEs equivalent to MATH 523 are preferable.

Topics In Complex Geometry

Instructor: Professor Sai Kee Yeung

Course Number: MA 69600A

Credits: Three

Time: 12:30–1:20 PM MWF

Description

Here are some tentative topics to be discussed, which may be adjusted as the class proceeds.

(a). Introduction to analytic aspects of zeta functions.

(b). Introduction to L2 techniques in complex geometry.



(c). Introduction to Andre-Oort conjecture and related results.

(d). Introduction to some problems related to Abelian varieties.

Prerequisite: 562, 525

References: I would provide reference as the class proceeds.


