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CHAPTER 17

Additive invariants

17.1. Basic examples

Let k be a field. Let V ark denote the collection of all possibly reducible varieties
over k. An invariant is a map I : V ark → A to some set, such that I(X) = I(Y )
if and X and Y are isomorphic. We have many examples of invariants, such the
dimension, the various cohomology groups and so on. We want to concentrate on
invariants satisfying a property which makes them more computable.

Definition 17.1.1. An invariant I : V ark → A is called additive if A is an
abelian group and if I(X) = I(X − Z) + I(Z) whenever Z ⊂ X is closed. We will
call I multiplicative, if in addition, A is a ring and I(X × Y ) = I(X)I(Y ).

By induction, we can see that

Lemma 17.1.2. If X = ∪Xi is a disjoint union of locally closed varieties, then
I(X) =

∑

i I(Xi) for any additive invariant.

Example 17.1.3. Since we can express Pm
k = Am

k ∪ Am−1
k ∪ . . ., we see that

I(Pm) = I(Am) + I(Am−1) + . . ..

Here are a few examples.

Example 17.1.4. Let k = Fq be the finite field with q elements. Given a quasi-
projective variety X ⊆ PN , let X(Fqn) to be the set of points of PN

Fqn
satisfying

the equations (and inequalities) defining X. Let Nn(X) be the number of points of
X(Fqn). This is clearly additive and multiplicative.

The additivity property can be used in computations. For example, from above,
we see that

Nn(Pm
Fq

) = qnm + qn(m−1) + . . . qn.

Define the Grothendieck group K(V ark) to be the quotient of the free abelian
group generated by isomorphism classes [X] in V ark by the relations

[X] = [X − Z] + [Z]

whenever Z ⊂ X is closed.

Example 17.1.5. X 7→ [X] is additive and multiplicative. In fact, it is the
universal example.

17.2. Euler characteristics

Let k = C. We defined compactly supported cohomology of manifolds with
real coefficients using differential forms in section 4.3. We can define this with
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168 17. ADDITIVE INVARIANTS

coefficients in any abelian group A for a (locally compact Hausdorff) topological
space X by

Hi
c(X,A) = Hi(X̄/{∗}, A)

where X̄ = X ∪{∗} is the one point compactification. Note that X̄ can be replaced

by any (reasonable) compactification, say X̃. In particular, if X is compact we can

take X̃ = X and thus H∗
c (X) = H∗(X). From (13), we get a long exact sequence

(32) . . . Hi
c(X,A) → Hi(X̃, A) → Hi(X̃ − X,A) → Hi+1

c (X,A) → . . .

In De Rham cohomology, the first first map is given by extending a compactly
supported form by zero.

Definition 17.2.1. The Euler characteristic (with respect to compactly sup-
ported cohomology) is

χ(X) =
∑

(−1)i dimHi
c(X, R)

Lemma 17.2.2. Let χ is an additive and multiplicative invariant.

Proof. The additivity follows immediately from (32). The multiplicativity
follows from the Künneth formula

Hi(X × Y, R) =
⊕

j+l=i

Hj(X, R) ⊗ H l(Y, R)

¤

17.3. Mixed Euler characteristics

We want to emphasize that the definition and properties of the Euler char-
acteristic are not specific to algebraic varieties, and hold for more general spaces.
However, there are refinements available for varieties.

Theorem 17.3.1. For each integer m, there is an additive invariant χ(m) :
V arC → Z and invariant satisfying

1. χ(X) =
∑

χ(m)(X).
2. χ(m)(X) = (−1)mbm(X) if X smooth and projective.
3. χ(m)(X × Y ) =

∑

r+s=m χ(r)(X)χ(s)(Y ).

We will explain where this comes from in the next chapter. We can translate
the above properties into additivity and multiplicativity for the so called virtual
Poincaré polynomial

PX(t) =
∑

(−1)mχ(m)(X)tm,

and that

PX(t) =
∑

bm(X)tm

if X is smooth and projective. The existence of this function has the following
surprising consequence.

Corollary 17.3.2 (Durfee). If X = ∪Xi and Y = ∪Yi are smooth projective
varieties expressable as disjoint unions of locally closed subvarieties such that Xi

∼=
Yi, then X and Y have the same Betti numbers.

This is simply not true for more nonprojective varieties or more general spaces
(exercises). This invariant can be refined even further.
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Theorem 17.3.3. For each pair of integers (p, q), there exists additive invari-
ants χ(p,q) : V arC → Z such that

1. χ(m)(X) =
∑

p+q=m χ(p,q)(X)

2. χ(p,q)(X) = (−1)p+qhpq(X) if X is smooth and projective (where hpq(X)
is the usual Hodge number).

This leads to a practical tool for computing Hodge and Betti numbers for
projective varieties that can be decomposed into simpler pieces. As an example of
this, let X be smooth projective variety of dimension n. Choose x ∈ X. We can
define the blow up BlxX by generalizing the construction in 11.1. This is a smooth
projective variety with a morphism π : BlxX → X which is an isomorphism over
X − {x} and such that π−1(x) ∼= Pn−1. Then the Hodge numbers of BlxX are
determined by

χ(p,q)(BlxX) = χ(p,q)(Pn−1) + χ(p,q)(X − {x})
= χ(p,q)(Pn−1) + χ(p,q)(X) − χ(p,q)({x})

=

{

χ(p,q)(X) + 1 if p = q > 0

χ(p,q)(X) otherwise.

Corollary 17.3.4 (Durfee). If X = ∪Xi and Y = ∪Yi are smooth projective
varieties expressable as disjoint unions of locally closed subvarieties such that Xi

∼=
Yi, then X and Y have the same Hodge numbers.

Each of the ruled surfaces Fn, described in section 11.1, can be decomposed as a
union of P1 and P1×A1. Thus the Hodge numbers are the same as for F0 = P1×P1,
and this is easy to compute.

Exercises

1. Let X = C∗ × P1
C

and Y = C2 − {0}. Decompose both as a disjoint union
of C∗ and C∗ × C, but show that their Betti numbers differ.

2. Using similar arguments show that the compact manifolds X = S1 × S2

and Y = S3 can both be decomposed as a union of S1 and S1 × R2.





CHAPTER 18

Mixed Hodge Structures

Deligne has extended Hodge theory to algebraic varieties which may be be sin-
gular or noncompact. Here we give a brief introduction to these ideas by concen-
trating on the purely numerical aspects with a view toward explaining the functions
χ(p,q) introduced earlier.

18.1. Resolution of singularities

Besides Hodge theory, the basic tool is Hironaka’s theorem about the existence
of resolution of singularities. First, we state some terminology. Given an irreducible
variety Y , a resolution of singularities of X is a nonsingular variety X with a
surjective birational (generically one to one) morphism π : X → Y . If Y has
several components, we take a resolution to mean a disjoint union of resolutions of
the components of X together with the obvious map. An effective divisor D ⊂ X
of a nonsingular variety is a codimension one subscheme. This equivalent to giving
an ideal sheaf ID = OX(−D) which is locally principal. We say D has normal
crossings if for each x ∈ X, there are local analytic coordinates z1, . . . zn about x
such the ideal ID,x is generated by a monomial in zi’s. We are mostly interested
in reduced divisors, in which case the ID,x can be assumed to be generated by an
expression of the form z1z2 . . . zm. Although, not always included in the definition,
we would also like to require that the irreducible components of D are nonsingular.

Theorem 18.1.1 (Hironaka). If Y is a variety with a Zariski closed set Z ⊂ Y ,
then there exists a resolution of singularties π : X → Y such that π−1(Z) is a divisor
with normal crossings. If Z contains the singular locus, then we can assume that
X − p−1(Z) → Y − Z is an isomorphism. If Y is (quasi-)projective then so is X.

Corollary 18.1.2. If U is a quasiprojective variety, then there exists a pro-
jective compactification X such that X − U is a divisor with normal crossings.

Proof. Let Y be a projective compactification. Apply the theorem with Z =
Y − U . ¤

18.2. Mixed Hodge structures

Recall 10.1 that a real Hodge structure of weight m is a bigraded vector space
H = HR ⊗ C = ⊕p+q=mHpq satisfying Hodge symmetry H̄pq = Hqp. Split mixed
Hodge structures are sums of Hodge structures of different weights.

Definition 18.2.1. A split real mixed Hodge structure consists of finite di-
mensional bigraded vector space H = HR ⊗ C = ⊕Hpq satisfying Hodge symme-
try. A split mixed Hodge structure consists of the above plus a choice of lattice
HZ ⊗ R = HR.
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172 18. MIXED HODGE STRUCTURES

These form a category where morphisms are linear maps preserving the lattice
and bigradings. This contains the categories of pure Hodge structures of each weight
as full subcategories.

The notion of a mixed Hodge structure is a little more subtle. Since split mixed
Hodge structures are sufficient for our purposes, we will be content to define the
notion a real mixed Hodge structure to give the flavour of the subject. As a first
step, given a split mixed Hodge structure, we can define the (decreasing) Hodge
filtration by

F p =
⊕

a≥b

Hab

and the (increasing) weight filtration by

Wk =
⊕

a+b≤k

Hab

It is not hard to see that these filtrations determine the bigrading.

Definition 18.2.2. A real mixed Hodge structure consists of a finite dimension
complex vector space H with a real structure HR, a decreasing filtration F • and an
increasing filtration W• satisfying:

1. Each Wm is real: W̄m = Wm

2. The filtration induced by F on GrW
m H = Wm/Wm−1 satisfies the conditions

of lemma 10.1.1.

The second guarantees that GrW
m H carries a pure Hodge structure of weight

m. Thus we can define the (p, q)th Hodge number of H as the dimension of the
(p, q)th part of GrW

p+qH. Mixed Hodge structures form a category in a natural way,
such that the category of split mixed Hodge structures can be embedded in it as a
full subcategory. Theses categories turn out to be abelian (which is by no means
obvious). A sequence of mixed Hodge structures is exact precisely when it is exact
as sequence of abelian groups. There is an exact functor going in the backwards
direction:

H 7→ Split(H) =
⊕

m

GrW
m

The main invariant of interest to us in are the Hodge numbers, and they coincide for
H and Split(H). Thus we may as well pass to Split(H). However, we should em-
phasize that H and Split(H) are rarely isomorphic, thus we are loosing something
by doing this.

18.3. Mixed Hodge numbers

The following is really an amalgam of various theorems in [D2].

Theorem 18.3.1 (Deligne). To every complex algebraic variety X, there is a
canonical mixed Hodge structure on Hi

c(X, C) such that

1. If X is smooth and projective, then this coincides with the pure Hodge
structure introduced in theorem 10.2.4.

2. If U ⊂ X is a Zariski open subset of a projective variety, with Z = X −U ,
then the long exact sequence

. . . Hi
c(U) → Hi(X) → Hi(Z) → Hi+1

c (U) . . .

is compatible with mixed Hodge structures.
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We introduce the mixed Hodge and Betti numbers

hi;(p,q)(X) = dimHi(X)(p,q)

by

b
(m)
i =

∑

p+q=m

hi;(p,q)(X)

To get some feeling for this, let us calculate the dimension of these invariants for
smooth nonprojective curve U . We can find a smooth compactification X of genus
g. Let Z = X − U , this is a finite set of say s points. The map H2

c (U) → H2(X)
is an isomorphisms and H0

c (U) = 0, thus we get

0 → H0(X)(0,0) → H0(Z)(p,q) → H1
c (U)(p,q) → H1(X)(p,q) → 0

Which gives
h1;(0,0)(U) = s − 1, h1;(1,0)(U) = h1;(0,1)(U) = g

We can now define

χ(p,q)(X) =
∑

i

(−1)ihi;(p,q)(X)

χ(m)(X) =
∑

i

b
(m)
i (X)

following [DK]. Theorems 17.3.1 and 17.3.3 will follow from this.

18.4. Complement of a smooth hypersurface

While a proof of theorem 18.3.1 will be out of reach, it is instructive to see
where some of this structure comes from in some special cases. Let us consider an n
dimensional smooth projective variety X with a nonsingular connected hypersurface
D ⊂ X. Let U = X − D, and let i : D → X and j : U → X denote the inclusions.
Let π : T → D be a tubular neigbourhood of D 4.4.2. Any differential form with
compact support on U can be extended by 0 to X. Thus the sheaf of compactly
supported forms E•

cU can be regarded as subsheaf of E•
X . This lies in the kernel K•

of the restriction map E•
X → E•

D.

Lemma 18.4.1. E•
cU is quasi-isomorphic to K•.

Proof. ¤

The long exact associated to

0 → K• → E•
X → E•

D → 0

is just (32). Since we want the mixed Hodge structure to be compatible with it,
this forces

Split(Hi
c(U)) = ker[Hi(X) → Hi(D)] ⊕ im[Hi−1(X) → Hi−1(D)]

In particular, the mixed Hodge numbers can be expressed as

hpq;i(U) =











dim ker[Hq(Ωp
X) → Hq(Ωp

D)] if p + q = i

dim im[Hq(Ωp
X) → Hq(Ωp

D)] if p + q = i − 1

0 otherwise

We want to replace these with holomorphic objects. We define Ωp
X(∗D) ⊂ j∗Ep

U

to be the sheaf of meromorphic p-forms which are holomorphic on U . Ωp
X(log D) ⊂

Ωp
X(∗D) is the subsheaf of meromorphic forms α such that both α and dα have
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simple poles along D. If we choose local coordinates z1, . . . zn so that D is defined
by z1 = 0. Then the sections of Ωp

X(log D), are locally spanned as an OX module
by

{dzi1 ∧ . . . dzip
| ij > 1} ∪ {dz1 ∧ dzi2 ∧ . . . dzip

z1
}

Ωp
X(log D)(−D) is the product of the ideal sheaf of D with the previous sheaf.

Locally this is spanned by

{z1dzi1 ∧ . . . dzip
| ij > 1} ∪ {dz1 ∧ dzi2 ∧ . . . dzip

}

These are exactly the forms vanishing along D. Thus

Lemma 18.4.2. Ωp
X(log D)(−D) = ker[Ωp

X → Ωp
D]

Clearly Ω•
X(log D)(−D) is a subcomplex of Ω•

X . It is not difficult to see, using
10.5, that in the diagram

0 → Ω•
X(log D)(−D) → Ω•

X → Ω•
D → 0

↓ ↓ ↓
0 → K• → E•

X → E•
D →

the vertical maps are quasi-isomorphisms. Thus

. . . → Hi(Ω•
X(log D)(−D)) → Hi(Ω•

X) → Hi(Ω•
D) → . . .

coincides with (32). We also have sequences

(33) . . . → Hq(Ωp
X(log D)(−D)) → Hq(Ωp

X) → Hq(Ωp
D) → . . .

Proposition 18.4.3 (Deligne). There is a noncanonical decomposition

Hi
c(U, C) ∼=

⊕

p+q=i

Hq(X,Ωp
X(log D)(−D))

Proof. It suffices to prove equality of dimensions. The sequence (33) implies
that

dim Hq(X,Ωp
X(log D)(−D)) = hpq;p+q(U) + hpq;p+q−1(U)

and this does the trick. ¤

Corollary 18.4.4. Hi(X,OX(−D)) = 0 if the 2n − ith Betti number of U
vanishes.

Proof. This follows from Poincaré duality: Hi
c(U) ∼= H2n−i(U)∗. ¤

This yields a special case of the Kodaira vanishing theorem. The method used
is closely related to various “topological” proofs found by Esnault, Viehweg, Kollár
and others (see [EV]). We say that

Corollary 18.4.5 (Kodaira). If D is very ample (the intersection of X with
a hyperplane under a projective embedding), then Hi(X,OX(−D)) = 0 for i > 0.

Proof. Since X −D is affine and hence Stein, this follows corollary 10.5.4 ¤
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18.5. Smooth varieties

Having come this far, we can outline the construction when U is a smooth
quasi-projective variety. By resolution of singularities, U can be compactified by a
smooth projective variety X ⊃ U , such that D = X − U is a divisor with normal
crossings. We can assume to be reduced. To simplify the discussion, let us assume
that D = D1∪D2 has two smooth irreducible components Di. Let K• be the kernel
of the restriction map E•

X → E•
D1

⊕ E•
D2

. As before, EcU is quasi-isomorphic to K•.
The inclusion can be extended to an exact sequence

0 → K• → E•
X → E•

D1
⊕ E•

D2
→ E•

D1∩D2
→ 0

which can be used to express

Hi
c(U) ∼= Hi(T •)

where
T i = E i(X) ⊕ E i−1(D1) ⊕ E i−1(D2) ⊕ E i−2(D1 ∩ D2)

with differential

∂(α, β1, β2, γ) = (dα, α|D1
+ dβ1, α|D2

+ dβ2, β1|D1∩D2
− β2|D1∩D2

+ dγ)

At least if one is willing to disregard the integral stucture, the filtrations defining
mixed Hodge structure can be read off from T . The Hodge filtration is given by

F pHi
c(U) = im[H(F pE i(X) ⊕ F pE i−1(D1) ⊕ F pE i−1(D2) ⊕ F pE i−2(D1 ∩ D2))]

where
F pE =

⊕

r≥p

Ers

The weight filtration is given by

WmHi
c(U) =



















Hi
c(U) if m ≥ i

im[Hi(E i−1(D1) ⊕ E i−1(D2) ⊕ E i−2(D1 ∩ D2)) if m = i − 1

im[Hi(E i−2(D1 ∩ D2))] if m = i − 2

0 if m < i − 2

Although, we have chosen to work with C∞-forms, these filtrations can also be
expressed holomorphically using a complex Ω•

X(log D)(−D) construct as before.





CHAPTER 19

Varieties over finite fields

19.1. The Deligne-Weil bound

In chapter 17, we gave a number of examples of additive invariants, including
counting functions for varieties over finite fields. It turns that the there is a deeper
connection between invariants. In order to state these, we start with a complex
quasiprojective algebraic variety X with a fixed embedding into PN

C
. If the defining

equations (and inequalities) have integer coefficients, then we can reduce the equa-
tions modulo a prime p to get a quasiprojective “variety” Xp defined over the finite
field Fp with p elements (recall that, up to isomorphism, there is exactly one such
field). In general, by adjoining the coefficients of the defining equations of X to Z,
we obtain a finitely generated algebra A ⊂ C. Choose a maximal ideal Q ⊂ A, then
A/Q will be a finite field. Fix an isomorphism A/Q ∼= Fq. Now we can reduce the
equations modulo Q to get a quasiprojective “variety” XQ defined over Fq. We can
define XQ(Fqn) to be the set of points of PN

Fqn
satisfying the equations (and inequal-

ities) defining X. Let Nn(XQ) = Nn be the cardinality of this set. In more abstract
terms, we have a scheme X → SpecA called a model of X. The original variety
X is the fiber product X ×Spec A Spec C, and and XQ is the scheme theoretic fiber
over Q. Note that even if X is smooth, XQ need not be; we say that X has “good
reduction” at Q if this is the case. We have XQ(Fqn) = Homschemes(Spec Fqn ,XQ).

As the following example indicates, it is not usually possible to write down
exact formulas for Nn. So we should seek qualitative information.

Example 19.1.1. Consider the elliptic curve E defined by zy2 = x3 − z3. This
equation gives a model over the integers. Then N1(Ep) = p + 1 if p ≡ 2 mod 3 is
an odd prime, but not in general as the following table shows:

p N1 p N1 p N1 p N1

7 4 67 52 127 148 193 192
13 12 73 84 139 124 199 172
19 28 79 76 151 148 211 196
31 28 97 84 157 144 223 196
37 48 103 124 163 172 229 252
43 52 109 108 181 156 241 228

A quick inspection of the table suggests N1(Ep) stays fairly close to 1 + p. In
fact, we always have following estimate:

Theorem 19.1.2 (Weil). If X is a smooth projective curve of genus g, and
suppose that X has good reduction at Q. Then

|Nn(XQ) − (1 + qn)| ≤ 2g
√

q
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178 19. VARIETIES OVER FINITE FIELDS

This is very remarkable formula which says that topological and arithmetic
properties of curves are related. Weil conjectured, and Deligne [D4] subsequently
proved, that this phenomenon holds much more generally. To formulate it, let us
say that an algebraic number λ ∈ Q̄ has uniform absolute value x ∈ R if |ι(λ)| = x
for all embeddings ι : Q̄ → C.

Theorem 19.1.3 (Deligne). Let X be a smooth projective d dimensional variety
and suppose that X has good reduction at Q. Then

Nn(XQ) =
2d
∑

i=0

(−1)i
bi

∑

j=1

λn
ji,

where λji are algebraic integers with uniform absolute values qi/2 and bi coincides
with the ith Betti number of X.

See [Har, appendix C] and especially [K] for a more involved discussion of this
and the other Weil conjectures. It is worth noting that the classical method of
Lefschetz pencils play an important role in the proof.

Deligne [D3], [D5] found a refinement for singular or open varieties.

Theorem 19.1.4 (Deligne). Let X be a d dimensional variety Then

Nn(Xq) =
2d
∑

i=0

(−1)i
bi

∑

j=1

λn
ji

where λji are algebraic integers with uniform absolute values in {0, q1/2, q, . . . qi/2}.
bi = dim Hi

c(X, C). Furthermore the mixed Betti numbers

b
(m)
i (X) = #{j | |λij | = qm/2}

19.2. ℓ-adic cohomology

The discussion in the previous section may have a seemed a bit like black
magic. It may be worthwhile to explain a little more about the philosophy behind
it. Let X be a smooth projective variety defined over Fq, and X̄ be the extension
of X to the algebraic closure F̄q. Fix a prime ℓ different from the characteristic of
Fq. If we choose an embedding X ⊂ PN , we have F : X̄ → X̄ be the Frobenius
morphism which acts by raising the coordinates of the qth power (see [Har] for
a more precise description). Then Nn(X) is just the number of fixed points of
Fn. Weil suggested that that these numbers could be computed by an appropriate
generalization of Lefschetz’s trace formula. This was realized by Grothendieck’s
ℓ-adic cohomology theory [Mi], where ℓ is fixed prime not dividing q. The theory
assigns to X a collection of finite dimensional Qℓ-vector spaces Hi

et(X̄, Ql) (and
Hi

et,c(X̄, Ql)), which behaves very much singular cohomology of a complex variety
(with compact support). In particular, these satisfy:

1. This cohomology theory satisfy analogues of the Künneth formulas, Poincaré
duality, and the Lefschetz trace formula.

2. If X is obtained as in the previous section by reducing modulo Q, dim Hi
et,c(X̄, Ql)

coincides with the Betti number of the original complex variety.

The trace formula shows that

Nn(X) =
∑

i

(−1)itrace[Fn∗ : Hi
et(X̄, Ql) → Hi

et(X̄, Ql)]
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The λji of theorems 19.1.3 and 19.1.4 are precisely the eigenvalues of F acting on
these cohomology groups. Thus the real content of this theorem is the estimate
on these eigenvalues. The W (weight) filtration in mixed Hodge theory admits an
analogue in the ℓ-adic defined in terms of eigenspaces of F . The last part 19.1.4
amounts to the assertion that these spaces have the same dimension.

19.3. A transcendental analogue of Weil’s conjecture

After this excursion into arithmetic, let us return to Hodge theory and prove
an analogue of the Weil conjecture found by Serre [S3]. To set up the analogy
let us replace X̄ above by a smooth complex projective variety Y , and F by and
endomorphism f : Y → Y . As for q, if we consider, the effect of the Frobenius on
PN

Fq
, the pullback of O(1) under this map is O(q). To complete the analogy, we

require the existence of a very ample line bundle OY (1) on Y , so that f∗OY (1) ∼=
OY (1)⊗q. We can take c1(OY (1)) to be the Kähler class ω Then we have f∗ω = qω.

Theorem 19.3.1 (Serre). If f : Y → Y is holomomorphic endomorphism of a
compact Kähler manifold with Kähler class ω, such that f∗ω = qω for some q ∈ R.
Then the eigenvalues λ of f∗ : Hi(Y, Z) → Hi(Y, Z) are algebraic integers with
uniform absolute value qi/2

Proof. The theorem holds for H2n(Y ) since ωn generates it. By hypothesis,
f∗ preserves the Lefschetz decomposition (theorem 13.1.1), thus we can replace
Hi(Y ) by primitive cohomology P i(Y ). Recall from corollary 13.1.4,

Q̃(α, β) = Q(α,Cβ̄)

is positive definite Hermitean form P i(Y ), where

Q(α, β) = (−1)i(i−1)/2

∫

α ∧ β ∧ ωn−i.

Consider the endomorphism F = q−i/2f∗ of P i(Y ). We have

Q(F (α), F (β)) = (−1)i(i−1)/2q−n

∫

f∗(α ∧ β ∧ ωn−i) = Q(α, β)

Moreover, since f∗ is a morphism of Hodge structures, it preserves the Weil operator
C. Therefore F is unitary with respect to Q̃, so its eigenvalues have norm 1. This
gives the desired estimate on absolute values of the eigenvalues of f∗. Since f∗ can
be represented by an integer matrix, the set of it eigenvalues is a Galois invariant
set of algebraic integers, so these have uniform absolute value qi/2. ¤

Grothendieck suggested that one should be able to carry out a similar proof for
the Weil conjectures. However making this work would require the full strength of
his standard conjectures [GSt, Kl] which are, at present, very much open.
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[Hrm] L. Hörmander, An introduction to several complex variables North Holland (1973)

[I] B. Iverson, Cohomology of Sheaves, Springer-Verlag (1986)
[K] N. Katz, An overview of Deligne’s proof of the Riemann hypothesis for varieties over

finite fields. Proc. Sympos. Pure Math., Vol. XXVIII, AMS (1976)
[Ke] J. Kelly, General topology, Springer-Verlag

[Kl] S. Kleiman, Algebraic cycles and the Weil conjectures, Dix Esposes sur la cohomologies
les schemas, North Holland (1968)

[La] K. Lamotke, The topology of complex projective varieties after S. Lefschetz. Topology

(1981)
[Ln] S. Lang, Algebra, 3rd ed, Springer-Verlag (2002)
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