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A complex abelian variety is a smooth projective variety which happens to be
a complex torus. This simplifies many things compared to general varieties, but
it also means that one can ask harder questions. Abelian varieties are indeed
abelian groups (unlike elliptic curves which aren’t ellipses), however the use
“abelian” here comes about from the connection with abelian integrals which
generalize elliptic integrals.
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Chapter 1

The classical story

1.1 Elliptic and hyperelliptic integrals

As all of us learn in calculus, integrals involving square roots of quadratic poly-
nomials can be evaluated by elementary methods. For higher degree polynomi-
als, this is no longer true, and this was a subject of intense study in the 19th
century. An integral of the form ∫

p(x)√
f(x)

dx (1.1)

is called elliptic if f(x) is a polynomial of degree 3 or 4, and hyperelliptic if f
has higher degree.

It was Riemann who introduced the geometric point of view, that we should
really be looking at the curve X ′

y2 = f(x)

in C2. When f(x) =
∏

(x − ai) has distinct roots (which we assume from
now on), X ′ is nonsingular, so we can regard it as a Riemann surface or one
dimensional complex manifold. It is convenient to add points at infinity to make
it a compact Riemann surface X called a (hyper)elliptic curve. Projection to
the x-axis gives a map from X to the Riemann sphere, that we prefer to call P1,
which is two to one away from a finite set of points called branch points, which
consist of the roots ai and possibly ∞. The classical way to understand the
topology of X is to take two copies of the sphere, slit them along nonintersecting
arcs connecting pairs of branch points (there are would be an even number of
such points). When n = 3, 4, we get a torus. In general, it is a g-holed surface,
where g is half the number of branch points minus one. The number g is called
the genus.

The integrand of (1.1) can be regarded a 1-form on X, which can be checked
to be holomorphic when deg p < g. Let V = Cg. Choose a base point x0 ∈ X,
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and define the Abel-Jacobi “map” α from X to V by

x 7→
(∫ x

x0

1

y
dx, . . .

∫ x

x0

xg−1

y
dx

)
Note that these integrals depend on the path, so as written α is a multivalued
function in classical language. In modern language, it is well defined on the
universal cover X̃ of X. Instead of going to X̃, we can also solve the problem

by working modulo the subgroup L = (
∫
γ
xi

y dx), as γ varies over closed loops of
X.

Theorem 1.1.1. L is a lattice in V ; in other words, L is generated by a real
basis of V .

Corollary 1.1.2. V/L is a torus called the Jacobian of X.

To explain the proof, we introduce some modern tools. First we need the
homology group H1(X,Z). The elements can be viewed equivalence classes
of formal linear combinations

∑
niγi, where γi are smooth closed curves on

X. Basic algebraic topology shows that this is very computable, and in fact
H1(X,Z) ∼= Z2g with generators as pictured below when g = 2.

a

b1

a21

b2

The next player is the first (de Rham) cohomologyH1(X,R) (resp. H1(X,C))
which is the space of real (resp. complex) valued closed 1-forms modulo exact
1-forms. Locally closed forms are expression fdx+ gdy such that

∂f

∂y
− ∂g

∂x
= 0

By calculus, such things are locally of the form

dh =
∂h

∂x
dx+

∂h

∂y
dy,

but this need not be true globally. H1 precisely measures this failure. Stokes’
theorem says that pairing

(γ, ω) 7→
∫
γ

ω

induces a pairing

H1(X,Z)×H1(X,K)→ K, K = R,C

4



The universal coefficients theorem tells that

H1(X,K) = Hom(H1(X,Z),K) ∼= K2g

where the identification is given by the above pairing.

Proof. We are now ready to outline the proof of the theorem. Clearly, we can
identify L = H1(X,Z). This sits as a lattice inside H1(X,Z)⊗R = H1(X,R)∗.
If we could identify the last space with V , we would be done. We do this in
the in the special case where the f is an odd degree polynomial with real roots,
although it is true in general. Arrange the roots in order a1 < . . . < an. The
assumptions guarantee that the integrals (written in real notation)∫ a1

−∞

xj√
f(x)

dx (1.2)

are purely imaginary, while ∫ ∞
an

xj√
f(x)

dx (1.3)

and purely real. Note that the preimages of the paths of integration above are
closed loops in X. We can think of the real dual V ∗ as the space spanned by the
differentials dx/y, . . . xg−1dx/y. This sits naturally inside H1(X,C). By taking
real parts, we can map this to H1(X,R). We claim that it is an isomorphism of
real vector spaces. These spaces have the same real dimension, so it is enough
to prove that it is injective. Suppose that

∑
ajx

jdx/y lies in the kernel. Then
the integrals

∫
γ

∑
ajx

jdx/y would have to be purely imaginary for all closed

loops γ. In view of (1.2) and (1.3), this is impossible unless the coefficients are
zero.

1.2 Elliptic curves

From the previous discussion, given an elliptic curve, we have an map to a one
dimensional torus which turns out to be an isomorphism. We now work back-
wards starting with a torus E = C/L of the complex plane by a lattice. Recall
that this means that L is a subgroup spanned by two R-linearly independent
numbers ωi. Since E ∼= C/ω−1

1 L, there is no loss in assuming that ω1 = 1, and
that Im(ω2) > 0 (replace ω2 by −ω2).

Now consider complex function theory on E. Any function on E can be
pulled back to a function f on C such that

f(z + λ) = f(z), λ ∈ L (1.4)

As a consequence

Lemma 1.2.1. Any holomorphic function on E is constant.
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Proof. Any holomorphic pulls back to a bounded holomorphic function, which
is constant by Liouville’s theorem.

To get interesting global functions, we should either allow poles or relax the
periodicity condition. A meromorphic function f is called elliptic if it satisfies
(1.4). A nontrivial example is the Weirstrass ℘-function

℘(z) =
1

z2
+

∑
λ∈L−{0}

[
1

(z − λ)2
− 1

λ2

]

It is instructive to note that the more naive series
∑

1/(z−λ)2 won’t converge,
but this will because ∣∣∣∣ 1

(z − λ)2
− 1

λ2

∣∣∣∣ ≤ const

λ3

See [S] for a proof that this converges to an elliptic function. This will have
double poles at the points of L and no other singularities.

The next step is to relate this to algebraic geometry by embedding E into
projective space. There are various ways to do this. We use ℘-function. To
begin with ℘ defines a holomorphic map from C − L to C, which necessarily
factors through E minus (the image) of 0. To complete this, we should send 0
to the point∞ on the Riemann sphere (which algebraic geometers prefer to call
P1). Since ℘(−z) = ℘(z) the map is not one to one. To get around that, we
send z ∈ C−L to (℘(z), ℘′(z)) ∈ C2. This gives a well defined map of E minus
0 to C2 which is one to one. We would like to characterize the image.

Theorem 1.2.2. (℘′)2 = 4℘3−g2℘−g3 for the appropriate choice of constants
gi.

Sketch. The idea is to choose the constants so that the difference (℘′)2− 4℘3−
g2℘ − g3 vanishes at 0. But then it is elliptic with no poles, so it vanishes
everywhere. See [S].

Corollary 1.2.3. The image of E − L is given by the cubic curve y2 = 4x3 −
g2x− g3.

To complete the picture we recall that we can embed C2 into the complex
projective plane P2 = C3 − {0}/C∗ by sending (x, y) to the point [x, y, 1] ∈ P2.
Then can be identified with the closure of the image of the above curve is given
by the homogeneous equation

zy2 = 4x3 − g2xz
2 − g3z

3

The point 0 ∈ E maps to [0, 1, 0]. It follows from Chow’s theorem that the group
law E × E → E is a morphism of varieties, i.e. it can be defined algebraically.
It is determined explicitly by the rule that points p + q + r = 0 if and only if
they are colinear.

Not all elliptic curves are the same. For example some of them, such as C/Z+
Zi have extra symmetries. To make this precise, we consider the endomorphism
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ring End(E which is the set of holomorphic endomorphisms of E. If E = C/L,
we can identify E with the set of complex numbers α such that αL ⊆ L.

Theorem 1.2.4. Let E = C/Z + Zτ , then either

1. End(E) = Z or

2. Q(τ) is an imaginary quadratic field, and End(E) is an order in Q(τ) i.e.
a finitely generated subring such that End(E)⊗Q = Q(τ).

Proof. Let L = Z + Zτ . Then End(E) can be identified with R = {α ∈ C |
αL ⊆ L}. For α ∈ R, there are integers ab, c, d such that

α = a+ bτ, ατ = c+ dτ

By Cayley-Hamilton, or direct calculation, we see that

α2 − (a+ d)τ + ad− bc = 0

Therefore R is an integral extension of Z.
Suppose that R 6= Z, and choose α ∈ R but α /∈ Z. Then eliminating α from

the previous equations yields

bτ2 − (a− d)τ − c = 0

Therefore Q(τ) is quadratic imaginary and R ⊂ Q(τ) is an order.

1.3 Jacobi’s Theta function

The alternative approach of relaxing the periodicity (1.4) leads to the theory of
theta functions. The higher dimensional analogue will play an important role
later below Basically, we want holomorphic functions that satisfy

f(z + λ) = (some factor)f(z)

which we refer to as quasi-periodicity with respect to L = Z + Zτ with τ = ω2

in the upper half plane, We can obtain elliptic functions by taking ratios of two
such functions with the same factors. To make it more precise, we want

f(z + λ) = φλ(z)f(z) (1.5)

where φλ(z) is a nowhere zero entire function. To guarantee nonzero solutions,
we require some compatibility conditions

f(z + (λ1 + λ2)) = φλ1+λ2
(z)f(z)

f((z + λ1) + λ2) = φλ2(z + λ2)φλ1(z)f(z)

which suggests that we should impose

φλ1+λ2
(z) = φλ2

(z + λ2)φλ1
(z)
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This is called the cocycle identity. As it turns out, there is a cheap way to
get solutions, choose a nowhere 0 function g(z) and let φλ(z) = g(z + λ)/g(z)
such as cocycle is called a coboundary. From the point of view of constructing
interesting solutions of (1.5), it is not very good. Any solution would be a
constant multiple of g(z). Taking ratios of two functions would result in a
constant.

The problem of constructing cocycles which are not coboundaries is not
completely obvious. As a first step since φ is entire and nowhere 0, we can take
a global logarithm ψ(z) = log φ(z). Then

ψλ1+λ2(z) = ψλ2(z + λ2) + ψλ1(z) mod 2πiZ

It is not entirely obvious how to find nontrivial solutions, but here is one

ψnτ+m(z) = −n2πiτ + 2πinz

With this choice, we can find an explicit solution to (1.5). The Jacobi θ-function
is given by the Fourier series

θ(z) =
∑
n∈Z

exp(πin2τ + 2πinz) =
∑
n∈Z

exp(πin2τ) exp(2πinz)

Writing τ = x+ iy, with y > 0, shows that on a compact subset of the z-plane
the terms are bounded by O(e−n

2y). So uniform convergence on compact sets
is guaranteed. This is clearly periodic

θ(z + 1) = θ(z)

In addition it satifies the function equation

θ(z + τ) =
∑

exp(πin2τ + 2πin(z + τ))

=
∑

exp(πi(n+ 1)2τ − πiτ + 2πinz)

= exp(−πiτ − 2πiz)θ(z)

and more generally

θ(z + nτ + b) = exp(ψnτ+m(z))θ(z)

We can get a larger supply of quasiperiodic functions by translating. Given
a rational number b, define

θ0,b(z) = θ(z + b)

Then

θ0,b(z + 1) = θ0,b(z), θ0,b(z + τ) = exp(−πiτ − 2πiz − 2πib)θ(z)

We can construct elliptic functions by taking ratios: θ0,b(Nz)/θ0,b′(Nz) is a
(generally nontrivial) elliptic function when b, b′ ∈ 1

NZ. More generally given
rational numbers a, b ∈ 1

NZ, we can form the theta functions with characteristics

θa,b(z) = exp(πia2τ + 2πa(z + b))θ(z + aτ + b) (1.6)

Fix N ≥ 1, and let VN denote the set of linear combinations of these functions.
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Lemma 1.3.1. Given nonzero f ∈ VN , it has exactly N2 zeros in the parallel-
ogram with vertices 0, N,Nτ,N + τ .

Sketch. Complex analysis tells us that the number of zeros is given by the
integral

1

2πi

∫
γ

f ′dz

f

over the boundary of the parallelogram. This can be evaluated to N2 using the
identities f(z + N) = f(z), f(z + Nτ) = Const. exp(−2πiNz)f(z) following
from (1.6).

These can be used to construct a projective embedding different from the
previous.

Theorem 1.3.2. Choose an integer N > 1 and the collection of all θai,bi , as

(ai, bi) runs through representatives of 1
NZ/Z. The the map of C/L into PN2−1

by z 7→ [θai,bi(z)] is an embedding.

Sketch. Suppose that this is not an embedding. Say that f(z1) = f(z′1) for some
z1 6= z′1 in C/L and all f ∈ VN . By translation by (aτ + b)/N for a, b ∈ 1

NZ,
we can find another such pair z2, z

′
2 with this property. Since dimVN = N2, we

can find additional points z2, . . . zN2−3, distinct in C/NL, so that

f(z1) = f(z2) = f(z3) = . . . f(zN2−3) = 0

for some f ∈ VN−{0}. Notice that we are forced to also have f(z′1) = f(z′2) = 0
which means that f has at least N2 + 1 zeros which contradicts the lemma.

Further details can be found in [M2].

1.4 Riemann’s conditions

We now turn our attention to higher dimensions. Let T = Cn/L where L is
a lattice. This is a complex manifold called a complex torus. As before, we
can view functions on X as L-periodic functions on Cn. The first major differ-
ence is that most tori will have no constant meromorphic functions. Riemann
found necessary and sufficient conditions to guarantee the existence of interest-
ing functions.

To see where this comes from, we return to the situation of a compact (not
necessarily hyperelliptic) surface X of genus g. Set L = H1(X,Z) ∼= Z2g. We
have an intersection pairing

E : L× L→ Z

where E(γ, γ′) counts the number of times γ intersects γ′, with signs. That is
if the curves are transverse

E(γ, γ′) =
∑

p∈γ∩γ′

±1

according to
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+1 −1

There are various ways to construct this rigorously. One way is to construct the
dual pairing on H1(X,Z) using the cup product. In terms of the embedding
H1(X,Z) ⊂ H1(X,R), this given by integration

E(α, β) =

∫
X

α ∧ β

The key point is that E is skew symmetric with determinant +1. By linear alge-
bra, we can find a basis for L, called a symplectic basis, so that E is represented
by the matrix (

0 I
−I 0

)
To simply notation, let us identify L ∼= L∗ = H1(X,Z) using E.

Let H1,0(X) ⊂ H1(X,C) be the subspace spanned by holomorphic 1-forms.
The are forms given locally by ω = f(z)dz where f is holomorphic. Since

ω ∧ ω̄ = −2i|f(z)|2dx ∧ dy

we conclude that

H(ω, η) = i

∫
X

ω ∧ η̄

is a positive definite Hermitian form on H1,0. To finish the story, we should
observe that the real part determines an isomorphism H1,0(X) ∼= H1(X,R).
(We checked this in a special case, but it is true in general.) Thus H1(X,Z)
embeds into H10(X) as a lattice. Clearly, E = imH on L. We now generalize.

Definition 1.4.1. Given lattice L in finite dimensional a complex vector space
V . A Riemann form or polarization is a positive definite Hermitian form H
on V such that E = imH is integer valued on L. The torus V/L is called an
abelian variety if such a polarization exists.

It follows from the above conditions, that E is a nondegenerate integral
symplectic form. It is not hard to see that E determines H by

H(u, v) = E(iu, v) + iE(u, v)

so we sometimes refer to E as the polarization. In terms of a basis we have the
following interpretation:

Proposition 1.4.2. Identify V ∼= Cg and choose a basis of L and let Π be
the g × 2g matrix having these vectors as columns. A 2g × 2g integral skew
symmetric matrix E determines a polarization if and only if
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1. ΠE−1ΠT = 0 and

2. ΠE−1Π̄T is positive definite.

Proof. [BL, §4.2].

By linear algebra [L], we can represent E by a matrix(
0 D
−D 0

)
where D is integer diagonal matrix with positive entries on the diagonal. In
the special case where D = I, as in the Riemann surface case, we call this a
principal polarization. Let assume this for simplicity. Classically, one normalizes
the matrix Π = (I,Ω). Then the above conditions say that

1. Ω is symmetric and

2. The imaginary part of Ω is positive definite.

We refer to set of such matrices as the Siegel upper half plane Hg. We now
construct the Riemann theta function on Cg

θ(z) =
∑
n∈Zg

exp(πintΩn+ 2πintz)

This is a generalization of the Jacobi function. Proof of convergence is similar.
With this function in hand, we can build up a large class of auxillary functions
θa,b on Cg/Zg+ΩZg which can be used to construct an embedding in projective
space as before. This will be explained later.

The significance is given by

Theorem 1.4.3 (Chow). Any complex submanifold of a complex projective
space is an algebraic variety, i.e. it is defined by homogeneous polynomials.

Therefore as a corollary, we see that

Theorem 1.4.4. A principally polarized abelian variety is a projective algebraic
variety.

We will see that this true for any abelian variety, and conversely, that any
torus which a projective variety is an abelian variety.
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Chapter 2

The modern viewpoint

2.1 Cohomology of a torus

In this section, we can ignore the complex structure and work with a real torus
X = Rn/Zn. Let e1, . . . , en ( resp. x1, . . . , xn ) denote the standard basis (resp.
coordinates) of Rn. A k-form is an expression

α =
∑

fi1,...ik(x1, . . . , xn)dxi1 ∧ . . . ∧ dxik

where the coefficient are L-periodic C∞-functions. We let Ek(X) denote the
space of these. As usual

dα =
∑ ∂fi1,...ik

∂xj
dxj ∧ dxi1 ∧ . . . ∧ dxik

This satisfies d2 = 0. So we defined k-th de Rham cohomology as

Hk(X,R) =
ker[Ek(X)

d→ Ek+1(X)]

im[Ek−1(X)
d→ Ek(X)]

The constant form dxi1 ∧ . . . ∧ dxik certainly defines an element of this space,
which is nonzero because it has nonzero integral along the subtorus spanned
by eij . (Integration can be interpreted as pairing between cohomology and
homology.) These form span by the following special case of Künneth’s formula:

Theorem 2.1.1. A basis is given by cohomology classes of constant forms
{dxi1 ∧ . . . ∧ dxik}. Thus Hk(X,R) ∼= ∧kRn.

It is convenient to make this independent of the basis. Let us suppose that
we have a torus X = V/L given as quotient of real vector space by a lattice.
Then we can identify α ∈ Hk(X,R) with the alternating k-linear map

L× . . .× L→ R
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sending (λ1, . . . , λk) to the integral of α on the torus spanned by λj . Thus we
have an natural isomorphism

Hk(X,R) = ∧kHom(L,R)

This works with any choice of coefficients such as Z. For our purposes, we can
identify Hk(X,Z) the group of integer linear combinations of constant forms.
Then

Hk(X,Z) = ∧kL∗, L∗ = Hom(L,Z)

We are now in a position to understand what a polarization on an abelian va-
riety X = V/L means geometrically. We will eventually construct an embedding
X ⊂ PN . To make a long story short, the de Rham cohomology Hk(PN ,R), and
the subgroup Hk(PN ,Z), can be defined as above. It is known that H2(PN ,Z)
is an infinite cyclic group with a natural generator. Restricting this class to
H2(X,Z) which corresponds to skew symmetric form on L. This is precisely
our polarization E.

2.2 Line bundles on tori

A manifold X is a metric space which locally looks like Euclidean space. More
formally, for an n dimensional C∞ (resp. complex) manifold we require an
open covering {Ui} together with homeomorphisms to the unit ball in φi : Ui ∼=
B ⊂ Rn (resp. Cn) such that the transition functions φi ◦ φ−1

j are C∞ (resp.
holomorphic). A more detailed treatment can be found in Griffiths and Harris
[GH] for example. For us, the main class of examples of either type of manifold
are tori.

Fix a manifold X. The trivial rank r complex vector bundle is simply X×Cr
viewed as manifold with a projection X ×Cr → X. In general, a rank n vector
bundle is manifold π : V → X which is locally isomorphic to a trivial vector
bundle. This means that there exists an open cover {Ui} and isomorphisms
π−1(Ui) ∼= Ui×Cn compatible with projections and linear on the fibres. A rank
1 vector bundle is also called line bundle. To be clear, when X is a complex
manifold, which is the case we really care about, we will say that V is also a
complex manifold and the above maps are holomorphic.

Example 2.2.1. Let X = Pn. View it as the set of one dimensional subspaces
of Cn+1. Then the the tautological line bundle O(−1) is the holomorphic line
bundle defined by a the manifold

{(v, `) ∈ Cn+1 × Pn | v ∈ `}

with its projection to Pn.

Given a holomorphic line bundle π : Λ→ X, the set of sections over an open
set U ⊆ X

L(U) = {s : U → π−1(U) | π ◦ s = id}
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is naturally a module over the ring of holomorphic functions OX(U). The
collection L(U) is a so called rank one locally free sheaf of modules, which
determines Λ. In fact, algebraic geometers generally conflate the two notions.
It is not hard to show that O(−1)(Pn) = 0, and therefore that O(−1) is not
trivial.

We come to the main point, which is a general construction for line bundles
on a complex torus X = V/L. A “system of multipliers” or an “ automorphy
factor” is a collection of nowhere zero holomorphic functions φλ ∈ O(V )∗ such
that

φλ+λ′(z) = φλ′(z + λ)φλ(z) (2.1)

The multipliers φλ can be used to construct a right action of L on V × C by

(z, x) · λ = (z + λ, φλ(z)x)

Indeed (2.1) shows the required associativity condition

(z, x) · (λ+ λ′) = ((z, x) · λ) · λ′

holds. Then we can define the quotient

Λφ = (V × C)/L

using this action. When equipped with the obvious projection to Λφ → X, this
becomes a line bundle. We can construct the associated sheaf Lφ directly. A
holomorphic function on (a subset of) V is a theta function with respect to φ if

f(z + λ) = φλ(z)f(z). (2.2)

Note that f(z + λ + λ′) can be expressed in several ways, and the consistency
of these expressions follows from (2.1). Let π : V → T denote the projection.
For any open set U ⊂ T , let Lφ(U) denote the set of θ-functions on π−1U .

In general, different systems of multipliers could give rise to the same line
bundle.

Example 2.2.2. Given a nowhere zero function ψ, φλ(z) = ψ(z + λ)ψ(z)−1 is
system of multipliers. Such an example is called a coboundary.

Lemma 2.2.3. If φλ, φ
′
λ are two systems of multipliers such that the ratio

φλ/φ
′
λ is a coboundary, then the corresponding line bundles are isomorphic,

Proof. By assumption, φλ(z)/φ′λ(z) = ψ(z + λ)/ψ(z) Then f 7→ ψf is an in-
vertible transformation from the space of theta function for φ′λ to the space of
theta function for φ′λ for each U .

For the record, we note that

Theorem 2.2.4. All line bundles on X arise from this construction using a
system of multipliers uniquely up to multiplication by a coboundary.
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Proof. Here is a “sledgehammer” proof. If it doesn’t make sense, don’t worry,
we (probably) won’t need it. A slightly lower tech, and longer but equivalent,
argument can be found in [M, chap 1,§2]. Equation (2.1) is precisely the cocycle
rule for defining an element of group cohomology H1(L,O(V )∗). Two cocycles
define the same element precisely when their ratio is a coboundary. On the other
hand, we know that line bundles are classified by sheaf cohomology H1(X,O∗X).
To see that these two are the same, use the exact sequence

0→ H1(L,O(V )∗)→ H1(X,O∗X)→ H0(L,H1(V,O∗V ))

which comes from the spectral sequence

Epq2 = Hp(Γ, Hq(V,O∗V ))⇒ Hp+q(X,O∗X)

So we are reduced to proving that H1(V,O∗V ) = 0. But this sits in an exact
sequence

0 = H1(V,OV )→ H1(V,O∗V )→ H2(V,Z) = 0

The vanishing of the left and right hand groups comes from the fact that V is
both Stein and contractible.

2.3 Theorem of Appell-Humbert

We want to specialize the previous construction to an abelian variety X = V/L.
We choose forms H,E as in definition 1.4.1, but we now we relax the requirement
that H is positive definite. More explicitly, H is a Hermitian form such that
E = ImH is integer valued on L. For example H = E = 0 is allowed. In this
case, we have method for describing explicit multipliers. Let U(1) ⊂ C denote
the unit circle.

Lemma 2.3.1. There exists a (nonunique) map α : L → U(1), called a
semicharacter, satisfying

α(λ1 + λ2) = (−1)E(λ1,λ2)α(λ1)α(λ2) = ±α(λ1)α(λ2) (2.3)

For any α as above,

φλ(z) = α(λ) exp(π[H(z, λ) +
1

2
H(λ, λ)]) (2.4)

is a system of multipliers.

Proof. Choose a basis λi ∈ L, and assign values α(λi) ∈ U(1). Then it is not
hard to see that for each tuple (n1, n2, . . .), there is a unique choice of sign below

α(
∑

niλi) = ±α(λ1)n1α(λ2)n2 . . .

which makes (2.3) true.
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Using the identity

H(λ+ λ′, λ+ λ′) + 2iImH(λ, λ′) = H(λ, λ) +H(λ′, λ′) + 2H(λ, λ′)

and
α(λ+ λ′) = exp(iπImH(λ, λ′))α(λ)α(λ′)

we can check (2.1).

φλ+λ′(z) = α(λ)α(λ′) exp(π[iImH(λ, λ′) +H(z, λ+ λ′) +
1

2
H(λ+ λ′, λ+ λ′)])

= α(λ′) exp(π[H(z + λ, λ′) +
1

2
H(λ′, λ′)])α(λ) exp(π[H(z, λ) +

1

2
H(λ′, λ′)])

= φλ′(z + λ)φλ(z)

We refer to the pairs (H,α) as Appell-Humbert data. These form a group
under the rule

((H1, α1), (H1, α1)) 7→ (H1 +H2, α1α2)

Theorem 2.3.2 (Appell-Humbert). Any system of multipliers is a product
of a coboundary and a system of multipliers associated to an (H,α). Conse-
quently the group of multipliers modulo coboundaries is isomorphic to the group
of Appell-Humbert data.

Proof. [BL, M].

The set of line bundles on X also forms a group with respect tensor product.
This is called the Picard group and denoted by Pic(X). To each pair (H,α) we
have a system of multipliers and therefore a line bundle, which we denote by
L(H,α).

Corollary 2.3.3. The map (H,α) 7→ L(H,α) induces an isomorphism between
the group of pairs (H,α) and Pic(X).

To each pair (H,α), we can associate the element E ∈ ∧2L∗ = H2(X,Z).
This gives a group homomorphism Pic(X)→ H2(X,Z). This can be identified
with the first Chern class c1 [BL, M]. The kernel denoted by Pic0(X) can be
identified with the subgroup of pairs (0, α). Note α : L→ U(1) is necessarily a
homomorphism. Thus

Corollary 2.3.4.
Pic0(X) ∼= Hom(L,U(1))

In particular, we see that Pic0(X) is also a real torus. We claim that this
can be realized as a complex torus. Let V ∗ be the space of complex antilinear
maps V → C. This means that f(av1 + a2v2) = ā1f(v1) + ā2f(v2). This is can
be understood as complex conjugate of the usual dual. Let L∗ ⊂ V ∗ denote the
subset of those maps which are integer valued on L.
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Lemma 2.3.5. The map f 7→ e2π
√
−1Imf(−) induces an isomorphism V ∗/L∗ ∼=

Pic0(X). When X is abelian variety, then so is the dual V ∗/L∗

Proof. The first is part is pretty straight forward. By linear algebra a polariza-
tion E on L gives rise to a dual polarization E∗ on L∗. If E is represented by a
matrix with respect to a basis of L, E∗ is represented by the same matrix with
respect to the dual basis.

We let X̂ = V ∗/L∗. This is called the dual abelian variety. The key property
is the following:

Proposition 2.3.6. There exists a line bundle P on X × X̂ called a Poincaré
line bundle such that every line bundle in Pic0(X) is isomorphic to the restric-
tion P |X×L for a unique L ∈ X̂.

Sketch. P is determined by (H,α) where H is the Hermitian form H on (V ×V ∗)
given by

H((v1, f1), (v2, f2)) = f2(v1) + f1(v2)

We can choose any compatible semicharacter α : L× L∗ → U(1).

Remark 2.3.7. We can normalize the choice of α so that P |X×L ∼= L and
P0×X̂ = OX̂ . Then P is uniquely determined. In this case

α(λ, f) = exp(π
√
−1Imf(λ))

2.4 The number of theta functions

Let X = V/L be a g dimensional abelian variety with a polarization (H,E). In
a suitable integral basis of L, called a symplectic basis,

E =

(
0 D
−D 0

)
(2.5)

where D is a diagonal matrix with positive integer entries di. In particular,√
detE = det(D) =

∏
di is an integer. Choose a semicharacter α as in lemma

2.3.1.

Theorem 2.4.1 (Frobenius). The dimension of the space of theta functions
L(H,α)(X) is exactly

√
detE. In particular, it is a finite nonzero number.

The basic idea is to count Fourier coefficients. This can be illustrated by
what is in fact a special case:

Lemma 2.4.2. Let τ be in the upper half plane. The space of holomorphic
functions satisfying

f(z + 1) = f(z)

f(z + τ) = exp(−2πik + b)f(z)

is k dimensional.
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Proof. By periodicity, we can express

f(z) =
∑

an exp(2πinz)

The second equation above implies∑
an exp(2πinτ) exp(2πinz) = f(z + τ)

=
∑

an exp(2πi(n+ k)z) exp(b)

=
∑

an−k exp(b) exp(2πinz)

Leading to recurrence relations

an = an−k exp(b− 2πinτ)

Thus a0, . . . , ak−1 can be chosen freely, and they determine the other coefficients.
The proof of convergence is similar to the proof for the Jacobi function.

The proof of the theorem is in principle similar, but the reductions are
somewhat involved. Complete details can be found in [BL, M]. Implicit in the
above theorem is the assertion:

Lemma 2.4.3. dimL(H,α)(X) is independent of α.

Sketch. This can be checked directly. Given another semicharacter α′, an iso-
morphim L(H,α)(X) ∼= L(H,α′)(X) is given by multiplication by exp(q(z)) for
an appropriately chosen quadratic function q.

Proof of theorem. In brief outline, the theorem is proved as follows. By the
previous lemma, we may choose α in a convenient manner. For a suitably chosen
basis of L, we can split L = L1⊕L2 where L1 spanned by the first g basis vectors,
and L2 by the remaining vectors. We can choose α(λi) = 1 as explained in the
proof of lemma 2.3.1. The space of theta functions L(H,α)(X) is the space of
functions f(z) satisfying (2.2) for (2.4). Multiplying φλ by a coboundary leads
to an isomorphic space. By choosing an appropriate coboundary, we can arrange
that the functions in the new space are periodic with respect L2. Thus they can
expanded in a Fourier series. The remaining quasiperiodicity conditions can be
used to find recurrence relations on the Fourier coefficients as above.

To flesh this out, we need to make the choices explicit. Choose L1 = ΩZg
and L2 = DZg where Ω is a matrix in the Siegel upper half space (the set of
symmetric matrices with positive definite imaginary part). Then L = L1 ⊕ L2

is our lattice. Let Vi = RLi. Then V = Cg = V1 ⊕ V2 is a decomposition into
real subspaces. Let H,B be Hermitean and symmetric forms represented by the
same matrix

H(u, v) = uT (ImΩ)−1v̄

B(u, v) = uT (ImΩ)−1v
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Since V2 consists of real vectors, the difference (H −B)(u, v) = 0 when v ∈ V2.
We choose the unique semicharacter α so that it is trivial on each basis vector
of L. We define the classical system of multipliers by

ψλ(z) = α(λ) exp(π(H −B)(z, λ) +
π

2
(H −B)(λ, λ))

= φλ(z) exp(
π

2
B(z, z)) exp(

π

2
B(z + λ, z + λ))−1︸ ︷︷ ︸

coboundary

The main advantage of this is that ψλ(z) = 1 when λ ∈ L2 by the previously
stated properties of α and H − B. It follows that a theta function for ψλ can
be expanded as Fourier series

f(z) =
∑
λ∈L2

aλ exp(2πiz · λ)

The remaining conditions

f(z + λ) = ψλ(z)f(z), λ ∈ L1

yield recurrence relations which show that the coefficients are determined by
a(n1,n2,...) with 0 ≤ ni < di (cf [BL, p 51]). Moreover, it can be shown that
these formal solutions converge and are independent. When D = I, there is
exactly one solution up to scalars, and this is the Riemann theta function.

In fancier language, the expression
√

detE can be identified with the Chern
number 1

g!c1(L(H,α)g. In this form, the theorem can be understood as a special
case of the Hirzebruch-Riemann-Roch theorem when combined with Kodaira’s
vanishing theorem. Of course, this is much less elementary.

2.5 Lefschetz’s embedding theorem

Let X = V/L be an abelian variety. Our goal is to construct a projective
embedding as we said we would. Actually, the result is a bit stronger. Let H
denote a polarization. Choose a semicharacter α as lemma 2.3.1. Then Lefschetz
showed, in modern language that L(nH,αn) is very ample when n ≥ 3. Let
us spell this out. The space of theta functions L(nH,αn)(X) is nonzero and
finite dimensional by the previous theorem. Let f0, . . . , fN be a basis. By
quasiperiodicity the map V 99K PN sending x→ [f0(x), . . . , fN (x)] descends to
a map ι : X 99K PN . The dotted arrow indicates that the domain need not, a
priori, be all of X. It consists of the points where fi(x) are not all simultaneously
0.

Theorem 2.5.1 (Lefschetz). When n ≥ 3, the above map ι is defined on all of
X and it yields an embedding as a submanifold.

The key is that given a ∈ V , we have an automorphism T : X → X given
by translation x 7→ x+ a which acts on everything.
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Lemma 2.5.2. If f ∈ L(H,α), then (T ∗a f)(z) = f(z + a) lies in L(H,α ·
exp(E(a,−)).

Proof. [BL, 2.3.2].

We will sketch the proof of the theorem when n = 3. Here is the first step:

Lemma 2.5.3. The map ι is defined on all of X.

Proof. We know by Frobenius’ theorem that there exists a nonzero function
θ ∈ L(H,α)(X). Given a, b ∈ V , let

θab(x) = θ(x+ a+ b)θ(x− a)θ(x− b)

By the previous lemma, this lies in L(3H,α3)(X). Now fix x ∈ V . Since θ 6= 0,
it follows that θ(x− a) 6= 0 for almost all a ∈ V . Thus θab(x) 6= 0 for some a, b.
This proves the assertion.

Proposition 2.5.4. The map ι is injective.

Proof. We outline the proof and refer to [BL, §4.5] for details. It is convenient
to rephrase the problem in more geometric language. A divisor is a formal linear
combination of hypersurfaces in X. Given a nonzero theta function f , its zero
set D = Z(f) defines a divisor in X. The divisor of T ∗a f is just the divisor D
translated by −a. We denote this by T ∗aD for consistency. It follows that

(*) b ∈ T ∗aD if and only f(b+ a) = 0 if and only a ∈ T ∗bD.

Let θ ∈ L(H,α)(X) and θa,b be as above. Let Θ be the divisor of θ. Then
the divisor of θa,b is

Θa,b = T ∗a+bΘ + T ∗−aΘ + T ∗−bΘ

The key fact we need is that if θ ∈ L(H,α) is chosen generically, then T ∗aΘ 6= Θ
only unless a = 0 [loc. cit.].

Suppose x, y ∈ X are distinct points. In the language of divisors we have
to show that there that there exists a divisor of a function in L(3H,α3)(X)
containing x but not y. In fact, we show that exists a, b such that x ∈ Θab but
y /∈ Θab. Suppose not, then x ∈ Θab ⇔ y ∈ Θab for all a, b.

Claim: x ∈ T ∗−aΘ⇔ y ∈ T ∗−aΘ for all a.

If x ∈ T ∗−aΘ then x ∈ Θab for all b. So y ∈ Θab for all b. This is possible
only if y ∈ T ∗−aΘ. The other direction is identical. So the claim is proved.

By the earlier remark (*), the claim can be stated as −a ∈ TxΘ⇔ −a ∈ T ∗yΘ
Therefore T ∗xΘ = T ∗yΘ or equivalently T ∗x−yΘ = Θ. Thus x = y, which is a
contradiction.
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Although this proves that ι is a set theoretic embedding, the theorem actually
asserts that it is a closed immersion or equivalently that derivative is nowhere
zero. This can be proved in a very similar way. See [BL, §4.5].

Corollary 2.5.5. An abelian variety is a projective algebraic variety.

Proof. This follows from Chow’s theorem stated earlier.

As we remarked earlier. Conversely, if a complex torusX embeds into projec-
tive space X ⊂ PN , the restriction of the canonical generator of H2(PN ,Z) = Z
can be interpreted as polarization on X. Thus we arrive at a geometric charac-
terization of abelian varieties:

Theorem 2.5.6. A complex torus is an abelian variety if and only if it is a
projective algebraic variety.

In the purely algebraic theory of abelian varieties [M], the conclusion of this
theorem is taken as the definition. More precisely, an abelian variety over a field
k, is defined as a projective variety over k which also has a group structure such
that the group operations are morphisms of algebraic varieties.

21



Chapter 3

The endomorphism algebra

3.1 Poincaré reducibility

A homomorphism between abelian varieties f : V/L → W/M is given by a C-
linear map F : V → W such that F (L) ⊆ M . A homomorphism f is called an
isogeny if F is an isomorphism, and an isomorphism if in addition F (L) = M .
Isomorphisms are always bijections, while isogenies a finite to one surjections.
For example, multiplication by a nonzero integer n : V → V induces an isogeny,
which is not an isomorphism unless n = ±1. Two abelian varieties X and Y
are called isogenous if there exists an isogeny from X to Y .

Lemma 3.1.1. This is an equivalence relation.

We give two proofs.

Proof 1. We prove symmetry which is the only nonobvious assertion. If f :
V/L → W/M is isogeny, then F (L) ⊆ M is a finite index subgroup. It follows
that nM ⊂ F (L) for some n � 0. Therefore nF−1 induces an isogeny in the
opposite direction.

For the second proof, we start by interpreting isogeny in a fancier way. The
collection of abelian varieties and homomorphisms forms an additive category
AbV ar. We can form a new category AbV arQ with the same objects but with
morphisms given by HomQ(X,Y ) = Hom(X,Y ) ⊗ Q. We also set End(X) =
Hom(X,X) and EndQ(X) = End(X) ⊗ Q. These are both rings. The last
lemma is now an immediate consequence of the observation:

Lemma 3.1.2. Two abelian varieties are isogenous if and only if they are iso-
morphic in AbV arQ.

Corollary 3.1.3. EndQ(X) depends only on the isogeny class of X.

Theorem 3.1.4 (Poincaré). If X ⊂ Y is an injective homomorphism of abelian
varieties, then Y is isogenous to a product X with another abelian variety.
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Proof. Suppose that Y = V/L then X = W/L ∩W for some subspace W ⊂ V
Let W⊥ be the orthogonal complement with respect to a polarization H. Then
this is also the orthogonal complement with respect to E = ImH. Therefore
L ∩W⊥ has maximal rank. The torus Z = W⊥/L ∩W⊥ is an abelian variety
polarized by the restriction of H. The identity map W ⊕W⊥ = V defines an
isogeny X × Z → Y .

An abelian variety is simple if it contains no nontrivial abelian subvarieties.

Corollary 3.1.5. An abelian variety is isogenous to a product of simple abelian
varieties.

We turn now to the structure of the endomorphism ring EndQ(X) . This is
a standard argument in representation theory.

Theorem 3.1.6. If X is simple, then EndQ(X) is a finite dimensional division
algebra over Q. In general, EndQ(X) is a product of matrix algebras over finite
division algebras over Q.

Proof. The finite dimensionality is clear from construction, since EndQ(X) ⊂
End(L ⊗ Q) where L is the lattice. Suppose that f ∈ EndQ(X) is nonzero.
We have to show that f has an inverse. After replacing f by nf , we can
assume that it is a homomorphism f : X → X. It is enough to show that
it is an isogeny. Since f(X) ⊂ X is nonzero abelian subvariety, it follows
that f(X) = X. Consider ker(f) ⊂ X. It must be finite, since otherwise the
connected component of the identity would give a nonzero abelian subvariety.

For the second statement, we can can assume that X =
∏
X ′i where X ′i

simple. We can arrange this as X =
∏
Xni
i where Xi and Xj are nonisogenous

when i 6= j. Then a morphism from f : Xi → Xj is trivial by the same argument
as above. We have ker(f) ⊗ Q = 0 and that either f(Xi) is 0 or Xj . The last
case is impossible because Xi and Xj are not isogenous. Let Di = EndQ(Xi).
Then

EndQ(X) =
∏

Hom(X ′i, X
′
j) =

∏
Matni×ni(Di)

3.2 The Rosati involution

There is an extra bit of structure which will be play a very important role. Given
an algebra R over a field. An involution is a map r 7→ r∗ which is linear over
the field, such that (rs)∗ = s∗r∗. For example, transpose gives an involution of
on the algebra of matrices.

Let X = V/L be an abelian variety with polarization H. The adjoint with
respect to H:

H(Ax, y) = H(x,A∗y)

defines an involution on End(V ). The algebra EndQ(X) sits naturally inside
this. It can be identified with the endomorphisms which preserve the rational
lattice LQ = L⊗Q.
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Theorem 3.2.1. The subring EndQ(X) ⊂ End(V ) is stable under the involu-
tion ∗.

Proof. If A ∈ End(LQ) define A† ∈ End(LQ) to be the adjoint with respect to
E = ImH i.e. E(Ax, y) = E(x,A†y). This is defined because E is nonsingular.
Given A ∈ EndQ(X), it preserves LQ, so we can form A† ∈ End(LQ). This coin-
cides with the usual adjoint A∗ ∈ End(V ) because ImH(Ax, y) = ImH(x,A∗y).
Therefore A∗ preserves the rational lattice LQ, and thus defines an element of
EndQ(X).

The restriction of ∗ to EndQ(X) is called the Rosati involution. Although
the construction would seem to be based on a linear algebra trick, there is a
way to make it more geometric. The map v 7→ H(v,−) induces an isogeny
φH between X and its dual X̂ = V ∗/L∗ introduced earlier. Thus we have an
isomorphism Φ : EndQ(X) ∼= EndQ(X̂). This can be realized geometrically by

identifying Pic0(X) = X̂. Then we have

Proposition 3.2.2. If L = L(H,α) for some semicharacter α, then φH(x) =
T ∗xL⊗ L−1 ∈ X̂.

Proof. [BL, M].

An endomorphism A : X → X induces a dual endomorphism Â : X̂ → X̂,
which can be identified with the map Pic0(X) → Pic0(X) given by M 7→
A∗M . This can be defined for A ∈ EndQ(X) by extension of scalars. Then

A∗ ∈ EndQ(X) is Φ−1(Â).
Given any finite dimensional Q-algebra R, and element r defines a vector

space endomorphism of R by left multiplication. This is the so called regular
representation. Thus we have a well defined trace Tr(r) ∈ Q. An involution ∗
on R is called positive if Tr(r∗r) > 0 when r 6= 0. Transpose on the algebra of
matrices has this property.

Theorem 3.2.3. The Rosati involution is positive.

3.3 Division rings with involution

In the first chapter, we showed that EndQ of an elliptic curve was either Q or an
imaginary quadratic field. In higher dimensions, things are more complicated,
but that they can be understood. Given a simple abelian variety X, EndQ(X)
is a finite dimensional division algebra with a positive involution. Our goal is
to describe all such rings with involution. Over R, things are much are easier.
There are only two (finite dimensional) division algebras over it the complex
numbers C and the quaternions H = R ⊕ Ri ⊕ Rj ⊕ Rk with i2 = j2 = −1
and ij = −ji = k. Both of these algebras have a positive involution given by
ordinary complex conjugation and quaternionic conjugation (x+yi+zj+wk)∗ =
x−yi−zj−wk. The construction of quaternions can be generalized to an algebra
H ′ by replacing R by an arbitrary field F , and by modifying the relations to
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i2 = a, j2 = b and ij = −ji = k for a, b ∈ F . There are two possibilities, either
H ′ is a division algebra, or it is the algebra of 2×2 matrices. The latter happens
precisely when ax2 + bx2 = 1 has a solution over F . For an explicit example,
choose a = b = 1. Then H ′ ∼= Mat2×2(F ) by

i 7→
(

1 0
−1 0

)
, j 7→

(
0 1
1 0

)
Over Q, there are 4 types division algebras with positive involution (written

out of order).

Type I. A totally real number field F is a finite extension of Q such any em-
bedding F ⊂ C lies in R. For example the real quadratic field Q(

√
d), d > 0, is

totally real. We give this the trivial involution x∗ = x.

Type III. A division algebra of type III is a division algebra D over a totally
real number field F such that D⊗F R ∼= H, as algebras, for every embedding of
F ⊂ R. Under this isomorphism the given involution should map to conjuga-
tion. For example, we could take a quaternion algebra with i2 = a, j2 = b, and
a, b ∈ F totally negative.

Type II. This is division algebra D over a totally real number field F such that
D ⊗F R ∼= Mat2×2(R) for every embedding. Here Mat2×2 is algebra of 2 × 2
matrices. The involution is conjugate to the transpose on the matrix algebra.

Type IV. A CM field is a quadratic extension F of a totally real field K such
that no embedding of F ⊂ C lies in R. For example, an imaginary quadratic
field is CM. A division algebra D of type IV is a division algebra whose centre
is a CM field F . For every embedding F ⊂ C, D ⊗F C ∼= Matd×d(C), for some
d, and the involution corresponds to conjugate transpose.

One way to distinguish the cases II and III is in terms of the Brauer group.
The set of isomorphism classes of finite dimensional division algebras with centre
F form a group called the Brauer group Br(F ). The identity of Br(F ) is simply
F . Alternatively, we can take Br(F ) to be the set matrix algebras over division
algebras modulo the relation that two algebras are equivalent if the underlying
division algebras are the same. The second description is better because the class
of matrix algebras is stable under various operations such as tensor product or
extension of scalars. In particular, given a field extension F ⊂ F ′ we have a
map Br(F )→ Br(F ′) given by D 7→ F ′⊗FD. We note that the Br(R) ∼= Z/2Z
with the generator given by H(R).

Then to summarize briefly:

Type I A totally real field.

Type II A quaternion algebra D which is totally indefinite in the sense that it lies
in the kernel of Br(F )→ Br(R) for every embedding of F ⊂ R.
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Type III A quaternion algebra D which is totally definite which mean that it never
lies in the kernel of Br(F )→ Br(R)

Type IV An algebra over a CM field.

Theorem 3.3.1 (Albert). The set of finite dimensional division algebras over
Q with a positive involution are exactly the ones described above.

Proof. [BL, M].

So we deduce

Corollary 3.3.2. The endomorphism algebra of a simple abelian variety must
be one of the above 4 types; the abelian variety is labelled accordingly.

We will see later that all of the categories I-IV occur for abelian varieties,
and almost all of the subcases. The idea is easy to explain for elliptic curves.. In
theorem 1.2.4, we saw that an elliptic curve E = C/Z+Zτ has either EndQ(E) =
Q (special case of type I) or EndQ(E) imaginary quadratic (special case of type
IV). Furthermore, in the second case, EndQ(E) = Q(τ). The converse is simple.

Lemma 3.3.3. Given Q or an imaginary quadratic field, it arises as above.

Proof. To build an elliptic curve with E with EndQ(E) = Q(
√
−d) we can use

E = C/Z+Z
√
−d. For EndQ(E) = Q, suffices to take C/Z+Zτ with Q(τ) not

imaginary quadratic. For example, we can take τ transcendental.

It is clear that “most” E have EndQ(E) = Q. Making this idea work in
higher dimensions will require some understanding of moduli spaces.
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Chapter 4

Moduli spaces

4.1 Moduli of elliptic curves

Our goal is to describe all elliptic curves up to isomorphism. This is equivalent
to describing all lattices in C up to multiplication by a nonzero scalar; or all
based lattices modulo scalars and change of bases. We can form the set

B =

{(
ω1

ω2

)
∈ C2 | ωi are R-linear independent

}
of based lattices. We have GL2(Z) acting on the left, and t ∈ C∗ on the right
by (

ω1

ω2

)
7→
(
tω1

tω2

)
We observe that B has two connected components B± corresponding to whether
τ = ω1/ω2 is in the upper or lower half plane. We can simplify our task by
restricting B+ and its stabilizer SL2(Z). Then we can identify B+/C∗ with the

upper half plane H SL2(Z)-equivariantly. The action of

(
a b
c d

)
on H is given

by

τ 7→ aτ + b

cτ + d

Thus the quotient space A1 = SL2(Z)\H is what we are after. Since the −I
acts trivially, we can factor it out can view A1 = PSL2(Z)\H. We refer to A1

as the moduli space of elliptic curves, although at the moment it is just a set.

Theorem 4.1.1. SL2(Z) is generated by the matrices T =

(
1 1
0 1

)
and S =(

0 −1
1 0

)
. The region D = {z | |z| ≥ 1, |Re(z)| ≤ 1

2} is a fundamental domain

for the action i.e. all points in H lie in the orbit of a point of D and the orbits
of the interior of D are disjoint.

27



From this, we see that the quotient A1 carries a reasonable topology obtained
by identifying the sides of the domain D as indicated in the picture.

���
�

���
�

���
�

T

S

fixed pts

The quotient A1 can actually be identified with C. The can be done using
the j-function. Given an elliptic curve E in Weirstrass form y2 = 4x3−g2x−g3,
the j-invariant

j(E) = 1728
g3

2

g3
2 − 27g2

3

The strange normalization is explained by setting j(τ) = j(C/Z + τ) then ex-
panding

j(τ) =
1

exp(2πiτ)
+ 744 + . . .

we see that the leading coefficient is 1. As a function of τ , it is invariant under
PSL2(Z) by the way defined it.

Theorem 4.1.2. The j-function yields a bijection PSL2(Z)\H ∼= C.

Proof. [Se]

4.2 Moduli functors

We now we have a set A1 of isomorphism classes of elliptic curves, although this
is hardly saying anything, since any two sets with same cardinality are in bijec-
tion. The key property was discovered rather late in the game by Grothendieck
and Mumford. It involves changing to a more abstract viewpoint. A family of el-
liptic curves over a complex manifold T , is a proper holomorphic map f : E → T
with a section o := T → E such that every fibre Et = f−1(t) is an elliptic curve
with o(t) as its origin. A product of T with an elliptic curve would give a family
called a trivial family. The space

E(∞) = {(τ, x) | τ ∈ H,x ∈ C/Z + Zτ} (4.1)

with its projection gives a nontrivial family of elliptic curves over the upper half
plane H. Let Ell(T ) denote the set of isomorphisms classes of such families.
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Given a holomorphic map f : S → T and π : E → T ∈ Ell(T ), we obtain a new
family f∗E ∈ Ell(S) given by

f∗E = {(s, x) ∈ S × E | f(s) = π(x)}

Given a third map g : Z → S, we have g∗f∗E ∼= (f ◦ g)∗E . Thus Ell gives a
contravariant functor from the category of complex manifolds to sets.

We can now spell out the universal property that we would like to hold. A
fine moduli space of elliptic curves is a complex manifold M with U ∈ Ell(M)
which is universal in the sense that for any manifold T and E ∈ Ell(T ), there
exists a unique map f : T → M such that f∗U ∼= E . An equivalent way to
express this is:

Lemma 4.2.1. M is a fine moduli space for elliptic curves if and only if there
is a natural isomorphism

Ell(T ) ∼= Hom(T,M)

where the right side denotes the set of holomorphic maps from T to M . One
also says that Ell is representable by M .

The result is an entirely formal result in category theory called Yoneda’s
lemma.

Proof. If M was fine, then f ∈ Hom(T,M) 7→ f∗U ∈ Ell(T ) is a natural
isomorphism by definition.

Conversely, suppose that there was a natural isomorphism Ell(T ) ∼= Hom(T,M).
Let U ∈ Ell(M) denote the image of the identity id ∈ Hom(M,M). Suppose
that E ∈ Ell(T ). Then it corresponds to j ∈ Hom(T,M). Chasing the diagram

E Uoo_ _ _ _ _ _ _ _

Ell(T ) Ell(M)
j∗

oo

Hom(T,M)

=

Hom(M,M)
j◦

oo

=

j

LL

idoo

RR

shows that j∗U = E . This shows that it is universal.

The property of being a fine moduli space characterize the space up to
isomorphism. So there can be at most one. Now for the bad news

Lemma 4.2.2. A fine moduli space for elliptic curves does not exist.
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Proof. If such a space existed, we would have to have M ∼= A1 an f would just
be the function t 7→ j(Et). The bad news, is that there is no fine moduli space
because there are curves such as E = C/Z + Zi with extra automorphisms. To
see this, observe that existence of a universal family would imply that any family
with constant j-function would be trivial. However, if the generator σ ∈ Z/4Z
acts by multiplication by (i, i) on C∗×E, then quotient would give a nontrivial
family over C∗/σ with constant j-function.

We have to settle for a weaker property. A coarse moduli space of elliptic
curves is a complex manifold M with a morphism of functors J : Ell(T ) →
Hom(T,M), which is universal in a suitable sense1, and induces a bijection
when T is a point.

Lemma 4.2.3. A1 = C is the coarse moduli space of elliptic curves.

Indeed given E ∈ Ell(T ), we get holomorphic map T → C given by t 7→ j(Et).
This induces a bijection with Ell(point) as we have seen.

4.3 Level structure

For some purposes, the coarse moduli property is too weak. There are a couple
of ways to fix this. The first method is consider instead of just Ell(T ), elliptic
curves with enough extra structure to kill the automorphism group. For ex-
ample, we can consider elliptic curves together with a basis of first homology.
Then H is the fine moduli space, with universal family given by (4.1). However
H lies outside of the realm of algebraic geometry. It is more convenient to use
a basis modulo n� 0 (actually n > 2 is enough). This is referred to as level n
structure. More explicitly, if E = C/L, then the

H1(E,Z/nZ) ∼=
1

n
L/L ∼= n-torsion of E

So a level n-structure can be understood as a basis for the n-torsion points as
an Z/nZ-module. Obviously the set {1/n, τ/n} gives a level n-structure for the
curve C/Z + Zτ . The principal congruence subgroup Γ(n) = ker[SL2(Z) →
SL2(Z/nZ)] preserves this structure. We define the modular curve Y (n) =
Γ(n)\H. The points correspond to elliptic curves with level n-structure. We
have map Y (n)→ A1, induced by the inclusion of groups Γ(n) ⊂ SL2(Z), which
is finite to one. This corresponds to forgetting the level structure. This can be
used to show that Y (n) is an affine algebraic curve. The coordinate ring can be
described using modular forms.

From the group theory perspective, the fact that A1 is not a fine moduli
space is related to the fact that SL2(Z) acts on H with fixed points, namely the
i, exp(2πi/3) and their orbits.

1Any other natural transformation Ell(T ) → Hom(T,N) must be induced by a unique
holomorphic M → N .
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Proposition 4.3.1. When n > 2, Γ(n)/{±I} is torsion free.

Proof. See [Se].

Corollary 4.3.2. Γ(n)/{±I} acts on H without fixed points.

Proof. The isotropy group of any fixed point would consist of torsion elements.

Given Ai =

(
ai bi
ci di

)
∈ SL2(Z), we let it act on H × C by

(τ, z) 7→ (
aiτ + bi
ciτ + di

, (ciτ + di)
−1z)

A calculation shows that

A1(A2(τ ; z)) = (A1A2 · τ ; [(c1a2 + d1c2)τ + (c1b2 + d1d2)]−1z)

= (A1A2)(τ, z)

as required. The group Z2 acts on H × C by (τ, z) 7→ (τ, z + m + nτ). The
quotient E(∞) = H ×C/Z2 is the same space described in (4.1). We claim that
the action of SL2(Z) given above induces a well defined action on E(∞). This
follows from the next lemma and some calculation.

Lemma 4.3.3. Suppose that H,G are groups acting on X such that for all
g ∈ G, h ∈ H, there exist h′ ∈ H for which ghx = h′gx for all x ∈ X. Then G
induces an action on X/H.

Let E(n) be the quotient of E(∞) by the action of Γ(n). Alternatively, we
can do this in one step by defining action of the semidirect product and then
taking the quotient

E(n) = (Γ(n) n Z2)\H × C→ Y (n)

This is a family of elliptic curves over Y (n) when n > 2. This has a pair of
sections 1/n, τ/n which give a level n-structure on the fibres.

Theorem 4.3.4. Let n > 2, then E(n) is a universal family of elliptic curves
over Y (n). Therefore Y (n) is a fine moduli space for elliptic curves with level
n structure.

Sketch. Suppose that E → T is a family of elliptic curves with level n-structure.
This gives a basis for H1(Et,Z/nZ) which varies continuously with t. In gen-
eral, there is no way to extend this to basis of H1(Et,Z) because the so called
monodromy representation of ρ : π1(T, t)→ Aut(H1(Et,Z)) may be nontrivial.
However, we can find a such an extension for the pull back Ẽ of E to the uni-
versal cover T̃ → T . This determines a map p : T̃ → H such that Ẽ = p∗E(∞).
The map can be assumed to be equivariant in the sense that γt = ρ(γ)p(t).
Note that by assumption the image of ρ lies in Γ(n). Thus p descends to map
q : T → Γ(n)\H = Y (n) such that E = q∗E(n).
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4.4 Moduli stacks

If we identify A1 = PSL2(Z/nZ)\Y (n) but keep track of the fixed points and
their isotropy groups, we get the notion of an orbifold. A related but more
general notion was given by Deligne and Mumford [DM]; it is now known as
Deligne-Mumford or DM stack. The precise definition is extremely technical,
so we will just try to convey the basic idea. (A detailed reference with proofs
is [LM].) Let us describe what is in some sense the prototypical example of
the quotient of a complex manifold M by a finite group G of holomorphic
automorphisms. We denote the quotient stack by [G\M ] to distinguish it from
the usual quotient G\M . A point of G\M is just a G-orbit of an x ∈M . While a
point of [G\M ] would be a G-orbit together with its isotropy group Gx. Clearly
it is more than a set. The most convenient way to encode this information is
in terms of groupoids. A groupoid is a category where all the morphisms are
invertible. For example, a set can be regarded as a groupoid in which the only
morphisms are the identities. However, groupoids are more general. To each
object x of a groupoid, one can attach the isotropy group Gx = Hom(x, x).
The groupoid is equivalent, in the sense of category theory, to a set if and
only if all the isotropy groups Gx are trivial. Yoneda’s lemma (cf 4.2.1), says
that a complex manifold M is determined by the functor T 7→ Hom(T,M)
on the category of complex manifolds. So to understand what [G\M ] is, we
should describe the holomorphic maps to it from any manifold T . However,
Hom(T, [G\M ]) is a groupoid rather than just a set:

Objects = {T f← T̃
p→M | T̃ is a manifold with a free G-action,

and p is equivariant and holomorphic}

Morphisms =


T̃ //

��

∼=

��?
??

??
??

? M

T T̃ ′

OO

oo


So we can identify [G\M ] with the groupoid valued functor given above. Note
that we are suppressing some technicalities here; this is not quite a functor but
rather a pseudo-functor. Alternatively, this can be understood in the language
of fibered categories, which is explained in the previous references.

At first, [G\M ] looks like a strange beast. So let us consider some special
cases. When G is trivial, [M ] = [{1}\M ] is nothing but the functor represented
by M , so essentially M = [M ] by Yoneda’s lemma. Next suppose that G is
nontrivial, but that the action is free. Then G\M has the structure of complex
manifold. Given a map f : T → G\M , the fibre product T̃ = T ×G\M M gives
an element of [G\M ]. In fact, [G\M ] is equivalent to the functor represented by
G\M in this case. In general, however, [G\M ] should be thought of as a kind of
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idealized quotient; it is usually a richer invariant than the quotient space. This
is clear in the extreme example, where M = pt consists of a single point. The
functor represented by pt is trivial. Whereas the stack BG := [G\pt] is not.
Hom(T,BG) consists of all possibly disconnected G-coverings of T .

The class of quotient stacks [G\M ] is too restrictive for many purposes. For
example, the disjoint union [G1\M1]

∐
[G2\M2] is usually not a quotient by

any group. It is however a quotient of M1

∐
M2 by a groupoid. To elaborate,

a groupoid in the category of complex manifolds consists of manifold M of
“objects”, a manifold R of “morphisms” and various holomorphic structure
maps: source s : R→M , target t : R→M , composition R×s,M,t R→ R etc2.
If a group G acts on M we can form a groupoid R = G×M with s, t given by
the projection and action maps. The group law determines the remaining maps.
We can modify this to handle the previous example by taking the groupoid
R = G1 ×M1

∐
G2 ×M2. We have now almost arrived at the notion of a DM

stack in general. An analytic DM stack is determined by a groupoid in the
category of complex manifolds such that s, t are finite unramified coverings. To
complete the picture, we should say in what sense the stack is determined by the
groupoid, or equivalently when do two groupoids yield the same stack? This part
of the story is somewhat technical, and so we give the broad outline, referring
to the above references for precise details. As above, we may view a stack as a
groupoid valued functor or more accurately pseudo-functor, on the category of
manifolds. It is clear that given an analytic groupoid G = (M,R, . . .), we get
a such a functor T 7→ pre-StkG(T ) = (Hom(T,M), Hom(T,R), . . .). However,
when applied to the groupoid (M,G × M, . . .), this will not give us [G\M ].
There is an extra step, analogous to sheafication, that needs to be performed
on pre-StkG before we get the correct groupoid valued functor, i.e. the actual
stack StkG . In particular, two analytic groupoids G,G′ give the same stack, if
StkG and StkG′ are equivalent.

Returning to elliptic curves. We define the moduli stack of elliptic curves by
A1 = [SL2(Z/nZ)\Y (n)] for some fixed n > 2. Note that n plays an auxillary
role.

Proposition 4.4.1. Given T , Hom(T,A1) is the category of all families of
elliptic curves and isomorphisms between them.

Sketch. In one direction, given T ← T̃ → Y (n), we can pull E(n) back to T̃ and
quotient out by SL2(Z/nZ) to get a family of elliptic curves over T .

Conversely, given a family of elliptic curves E → T , we have an associ-
ated monodromy representation ρ : π1(T ) → SL2(Z). Let ρn : π1(T ) →
SL2(Z/nZ) = G denote the induced map, and let N denote the index of
ρn(π1(T )) in G. Let T ′ denote the cover of T corresponding to ker ρn. And
let T be the disjoint union of N copies of T ′. By identifying T with (G×T ′)/H,
with h ∈ H acting by (g, t) 7→ (gh, h−1t), we see that G acts freely on T̃ with
T as a quotient. Thus T ← T̃ → Y (n) defines an element of Hom(T,A1).

2Further conditions need to be imposed to ensure that the fibre product R ×s,M,t R is a
manifold, or else one could interpret this as analytic space
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A1 is the closest approximation to A1 by an ordinary manifold, but for some
problems A1 is the better object. To get a sense of how the difference manifests
itself in geometric problems, let us study line bundles on these spaces. On
A1
∼= C, all line bundles are trivial. For A1, we first need to explain what

a line bundle means. Since A1 is the universal space, any line bundle would
pullback to a line bundle on any T equipped with a family of elliptic curves.
Conversely, any natural family of line bundles would have to come from A1.
Here is an example. Given a family of elliptic curves π : E → T , the pullback
of the relative canonical sheaf σ∗Ωdim E

E/T along the zero section yields family of
line bundles. By explicit calculation, this is nontrivial for suitable E → T .
Therefore:

Lemma 4.4.2. A1 carries a nontrivial line bundle.

4.5 Moduli space of principally polarized abelian
varieties

We want to generalize the construction from elliptic curves to higher dimensions.
Recall that the Siegel upper half plane

Hg = {Ω ∈Matg×g(C) | Ω = ΩT , Im(Ω) > 0}

This is an open subset of the space of symmetric matrices. So its dimension is
g(g + 1)/2.

Given Ω ∈ Hg we can construct a torus XΩ = Cg/ΩZg + Zg. This carries
a principal polarization HΩ represented by the matrix Ω−1. The associated
symplectic form E = ImHΩ is the standard one

E =

(
0 I
−I 0

)
Thus (XΩ, HΩ) is an abelian variety with principal polarization. There is an-
other representation of Hg which is often convenient. Consider the set of 2g× g
Pg matrices satisfying the conditions of proposition 1.4.2. Then M ∈ Glg(C)
acts by M 7→ (MA,MB). Matrices of the form (Ω, I) lie in Pg if and only if
Ω ∈ Hg. Therefore we can identify Hg with the quotient of Pg by Glg.

Lemma 4.5.1. Given any g dimensional principally polarized abelian variety
(X,H), there exists Ω ∈ Hg and an isomorphism (X,H) ∼= (XΩ, HΩ). That is
there is an isomorphism of vector spaces, which carries the lattice to the lattice,
and H to HΩ.

Proof. We apply proposition 1.4.2 to write X = Cg modulo the lattice generated
by the columns of Π as given there. Now do a change of basis to get Π = (Ω, I)
for some Ω ∈ Hg.
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This suggests that the natural moduli problem should involve pairs (X,H).
The proposition gives the first step. The next problem is to deal with the
nonuniqueness of (XΩ, HΩ). A point of Hg gives rise to a polarized abelian vari-
ety with a preferred basis (Ω, I) for the lattice. We need to mod out the choice
of basis. It is important to restrict to change of bases which are compatible
with the polarization. For any commutative ring R (e.g. Z,Q,R,C) we define
the symplectic group

Sp2g(R) =

{
M ∈ GL2g(R) |MT

(
0 I
−I 0

)
M =

(
0 I
−I 0

)}
In other words, this is the group of matrices with preserves the symplectic form
E.

Lemma 4.5.2. Given Ω ∈ Hg and M =

(
A B
C D

)
∈ Sp2g(R)

(AΩ +B)(CΩ +D)−1 ∈ Hg

This defines an action of Sp2g(R) on Hg.

Proof. For M as above, one checks the following identities: ATC and BTD are
symmetric, and ATD − CTB = I. Let M(Ω) = (AΩ + B)(CΩ + D)−1. After
expanding, using the above identities, and canceling, we obtain

(CΩ +D)T (M(Ω)−M(Ω)T )(CΩ +D) = Ω− ΩT = 0

Therefore M(Ω) is symmetric. Similarly

(CΩ +D)T ImM(Ω)(CΩ +D) = ImΩ > 0

which implies that M(Ω) is positive definite.

One can put the Siegel space in the more general framework of symmetric
spaces using the following:

Lemma 4.5.3. The action of Sp2g(R) on Hg is transitive and the stabilizer of
iI is {(

A B
−B A

)
| ABT = BAT , AAT +BBT = I

}
∼= Ug(R)

where the isomorphism is given by sending(
A B
−B A

)
7→ A+ iB

Proof. Let Ω = X + iY ∈ Hg. Since Y is symmetric and positive definite, we

can find an A ∈ GLg(R) so that Y = AAT . Then M =

(
A X(AT )−1

0 (AT )−1

)
sends

iI to Ω. The formula for the stabilizer can be checked by calculation.
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Corollary 4.5.4. Thus Hg
∼= Sp2g(R)/Ug(R).

We define

Ag = Sp2g(Z)\Hg = Sp2g(Z)\Sp2g(R)/Ug(R)

An easy modification of previous arguments shows:

Lemma 4.5.5. XΩ
∼= XΩ′ if and only if there exists M ∈ Sp2g(Z) with Ω′ =

M ·Ω. In particular, Ag can be identified with the set of isomorphism classes of
principally polarized abelian varieties.

At the moment this is just a set. However:

Lemma 4.5.6. The action of Sp2g(Z) is properly discontinuous. Therefore the
quotient is a Hausdorff space.

Proof. Given compact sets K1,K2 ⊂ Hg, we have to show that S = {M ∈
Sp2g(Z) | M(K1) ∩ K2 6= ∅} is finite. Let us identify Hg = Sp2g(R)/Ug(R)
as above. Note that the group Ug(R) is compact, so that the projection p :
Sp2g(R) → Hg is proper. M ∈ Sp2g(Z) lies in S if and only if Mp−1K1 ∩
p−1K2 6= ∅ if and only if M ∈ T = (p−1(K1))−1p−1(K2). Now T is compact
because it is the image of K1 ×K2 under (M1,M2) 7→M−1

1 M2. Therefore S is
the intersection of a compact set with a discrete set, so it’s finite.

As in the case of elliptic curves, Ag is only a coarse moduli space. The
problem stems from nontrivial automorphisms. The remedy, as before, is to
add a level structure. A level n-structure on an abelian variety A = Cg/L is a
choice of symplectic basis

H1(A,Z/nZ) ∼= Hom(L,Z/nZ)

The key fact is the following

Proposition 4.5.7. Let n ≥ 3. Suppose that γ is an automorphism of a prin-
cipally polarized abelian variety (A,H) which acts trivially on the lattice mod n.
Then γ = 1.

Proof. We assume that γ 6= 1. Then it has finite order, which we can assume
is a prime p, by replacing γ a power. Then by assumption, 1 − γ = nφ where
φ ∈ End(A). Let ζ be a nontrivial eigenvalue of γ, and let η be the corresponding
eigenvalue of φ. ζ is a primitive pth root of unity and η is an algebraic integer
in the cyclotomic field Q(ζ). We have a relation nη = 1 − ζ. Taking the norm
with respect to Q(ζ)/Q yields an equality of integers

np−1N(η) = (1− ζ)(1− ζ2) . . . (1− ζp−1) = p

But this impossible because p is prime and n ≥ 3.
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Let
Γ(n) = ker[Sp2g(Z)→ Sp2g(Z/nZ)]

and define
Ag,n = Γ(n)\Hg

Lemma 4.5.8. Ag,n can be identified with the set of isomomorphism classes of
principally polarized g-dimensional abelian varieties with level n-structure.

Theorem 4.5.9. Suppose that n ≥ 3. Then the action of Γ(n) on Hg is fixed
point free. Therefore Ag,n is a manifold. The semidirect product Γ(n) n Zg
acts naturally on Hg×Cg and the quotient is the universal family of principally
polarized g-dimensional abelian varieties with level n-structure. In particular
Ag,n is a fine moduli space.

Proof. Suppose that γ ∈ Γ(n) fixes a point of Ω ∈ Hg. Then γ fixes XΩ with its
standard level n-structure. Therefore By proposition 4.5.7 γ = 1. So the action
is free. It is also properly discontinuous by lemma 4.5.6. Therefore the Ag,n is
a manifold. The remaining statements are similar to case of g = 1 discussed
earlier.

We can also define the DM stack of abelian varieties Ag by taking the quo-
tient of [Sp2g(Z/nZ)\Ag,n].

4.6 Algebraic construction of Ag

Although Ag was constructed analytically above, we have the following impor-
tant result.

Theorem 4.6.1. Ag is a quasiprojective variety.

Mumford gave a direct algebro-geometric construction of Ag which has the
advantage of working over any field or even over Z. The idea is best explained
in the case g = 1, which was known before. Any elliptic curve is given as double
cover of P1 branched at 4 distinct points. Let

U = {{p1, . . . , p4} ⊂ P1 | pi 6= pj}

be the set of distinct unordered 4-tuples. Then

A1 = U/PGL2(C)

provided we understand how to make this into a variety. Making sense of this,
is precisely what Mumford’s geometric invariant theory (GIT) is all about. For-
tunately this case can be done explicitly. U can be identified with the subset
of the projective space P4 of homogenous quartic polynomials in x, y. We have
PGL2(C) = SL2(C)/{±I}, and it is more convenient to work with SL2(C).
This acts on P4 by the substitutions

a0x
4 + a1x

3
0x1 + . . . = f(x, y) 7→ f(ax+ by, cx+ dy)
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It is reasonable to try to define P4/SGL2(C) first, and then pass to A1. It is
natural to identify the second space with the projective variety (i.e. Proj) of
the graded ring R = C[a0, . . . , a4]SL2(C) of invariants. The ring R is known to be
generated by an explicit quadratic polynomial P and a cubic polynomial Q with
no relations. It follows that R is a polynomial ring, although with a nonstandard
grading, but in any case ProjR = P1. The geometry underlying this is more
subtle. First of all, there are no nonconstant maps from P4 to P1, so there is
no quotient map. A point p ∈ P4 is called semistable if there exists a constant
polynomial f ∈ R such that f(p) 6= 0. A point is called stable if in addition, the
orbit is closed and the isotropy group is finite. There is a map from the locus
P4
ss of semistable points to P1, and one usually writes P1 = P4

ss//SL2(C) to
distinguish it from the orbit space P4

ss/SL2(C) which is different. However, on
the stable locus, the quotients P4

s//SL2(C) = P4
s/SL2(C) The set U consists of

points, where the discriminant ∆, which is known to equal P 3−6Q2, is nonzero.
Thus U ⊂ P4

ss. In fact, U lies in P4
s. Under the quotient map P4

ss/PG2(C)→ P1,
U/PGL2(C) is identified with C ⊂ P1.

The case of g = 2 was also studied prior to Mumford by Igusa. One way
to get two dimensional abelian varieties are as Jacobians of genus two curves.
Any genus two curve is a double cover of P1 branched at 6 points. Proceeding
as above, the set of unordered 6-tuples can be identified with the space of U of
degree 6 polynomials with distinct roots. The moduli space of genus two curves

M2 = U/PGL2(C)

The invariant theory is harder, but it can still be worked out explicitly (and
indeed much of this was done in the 19th century). The key facts are that
M2 exists as a variety with dimM2 = dimU − dimPGL2(C) = 3. We have
dimA2 = 2(2 + 1)/2 = 3, and in fact M2 is contained in A2 as an open set.
Igusa gave a much more precise analysis of this case.

Mumford’s construction in the general case, uses Grothendieck’s theory of
Hilbert schemes. U above should be replaced by the so called Hilbert scheme of
g dimensional principally polarized abelian varieties (A,Θ) embedded in some
big projective space say PN , using kΘ for k � 0. Then

Ag = U/PGLN+1(C)

Mumford used his GIT methods to show that the right side is a quasiprojective
variety.

The last step above is quite hard, since the verification of the stability con-
dition is very delicate. Fortunately, there now exist alternative methods for
constructing moduli spaces in algebraic geometry. The first step is to enlarge
the class of varieties. This is necessitated by the following example:

Example 4.6.2 (Hironaka). There exists an algebraic variety X with an action
by finite group G such that quotient is not an algebraic variety over even a
scheme.
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Artin constructed the theory of algebraic spaces which is big enough to
contain such finite quotient examples. We won’t give the precise definition, but
it is very close to the definition of a stack, but less radical in the sense that
the associated functor is set valued rather than groupoid valued. Over C, a
compact algebraic space is the same thing as a Moishezon manifold, which is
a compact complex manifold with as many meromorphic functions as possible.
With this preparation, the quotient problem can now be handled using the
following general result:

Theorem 4.6.3 (Keel-Mori [KM]). Suppose that an algebraic group G acts
properly with finite isotropy groups on a scheme X of finite type, or more gen-
erally an algebraic space. (Properness means that the map G × X → X × X,
given by (g, x) → (x, gx) is proper.) Then the quotient exists as an algebraic
space.

4.7 Endomorphism rings of generic abelian va-
rieties

With the basic moduli theory in hand, we can now go back and tie up some
loose ends. Up to now, we have not proved that simple higher dimensional
abelian varieties exist. We do so now. A g dimensional principally polarized
abelian variety A is isogenous to a product A1 × A2 with gi = dimAi > 0.
A simple dimension count shows that a typical p.p. abelian variety is a least
not isomorphic to a product. The dimension of Ag is g(g + 1)/2. While the
dimension of the space of abelian varieties which are products with factors of
dimension gi is

dimAg1 + dimAg2 =
g1(g1 + 1)

2
+
g2(g2 + 1)

2
<
g(g + 1)

2

In fact, there is a more direct argument which proves more. A subset of a
complex manifold such as Hg is called analytic if it is given as the zero set of a
collection of analytic functions.

Theorem 4.7.1. For every g, there exists a countable union of proper analytic
sets S ⊂ Hg such EndQ(XΩ) = Q for Ω ∈ Hg − S where XΩ = Cg/ΩZg + Zg.

Corollary 4.7.2. For every g, there exists a simple g dimensional abelian va-
riety X with EndQ(X) = Q.

Proof. A proper analytic set is nowhere dense. Therefore Hg − S 6= ∅ by the
Baire category theorem. Take X = XΩ with Ω ∈ Hg − S, then End(X)Q = Q
and this implies simplicity.

Given e ∈ EndQ(XΩ), we can view this as an endomorphism of Cg which
takes the lattice ΩZg +Zg to itself. Thus e can be represented by g×g complex
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matrix E = Ee,Ω or a 2g × 2g rational matrix M = Me,Ω. These are related by
the matrix equation

E(Ω, I) = (Ω, I)M (4.2)

To each matrix M ∈M2g×2g(Q), let

S(M) = {Ω | ∃e ∈ EndQ(XΩ),M = Me,Ω}

The theorem will follow from

Proposition 4.7.3. If M is not scalar matrix, then S(M) is a proper analytic
set.

Proof. Let M =

(
A B
C D

)
. Then expanding (4.2) yields

EΩ = ΩA+ C, E = ΩB +D

and therefore
(ΩB +D)Ω = ΩA+ C (4.3)

It follows that S(M) is an analytic set. Suppose that it is all of Hg. Setting
Ω =

√
−1tI, with arbitrary t ∈ R>0, shows that B = C = 0 and D = A.

Substituting back into (4.3), taking the real part and setting Z = ReΩ, shows
[Z,A] = 0. Since Z can be chosen to be an arbitrary symmetric matrix, this
forces A to be scalar matrix aI. Therefore M = aI2g.

4.8 Hilbert modular varieties

We turn now to the converse to corollary 3.3.2 for algebras of type I, i.e. for a
totally real number field K. Let n be the degree K over Q. We have n distinct
embeddings σj : K → R. Let OK be the ring of integers, which is the integral
closure of Z in K. More explicitly,

OK = {x ∈ K | ∃ai ∈ Z, xN + aN−1x
N−1 + . . .+ a0 = 0}

An example to keep in mind is K = Q(
√

2), OK = {a + b
√

2 | a, b ∈ Z}. In
general, as a Z-module, OK ∼= Zn. For each vector τ = (τj) ∈ Hn define
Lτ ⊂ Cn to be the image of (OK)2 under the map

ιτ (α, β) = (σj(α)τj + σj(β))

Proposition 4.8.1. Lτ is a lattice, and the quotient Aτ = Cn/Lτ is an abelian
variety with K ⊆ EndQ(Aτ ).

Proof. We note that K ⊗Q R ∼= Rn where the projections to the factors are the
σj . It follows that OK ⊂ K ⊂ Rn is lattice, and therefore so is Lτ ⊂ Cn. Thus
Aτ is a torus. It is an abelian variety because it has a polarization given by

E(u, v) =
∑ 1

τj
Im(uj v̄j)
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Finally, we have an embedding OK ⊂ Mn×n(C) which sends α to the di-
agonal matrix with entries σj(α). Lτ is stable under the resulting OK-action.
Therefore OK ⊂ End(Aτ ), so that K ⊂ EndQ(Aτ ).

Theorem 4.8.2. The subset of τ ∈ Hn where K 6= EndQ(Aτ ) is a countable
union of proper analytic subvarieties.

Proof. This is similar to the previous argument, cf [BL, §9.9].

Corollary 4.8.3. There exists τ such that K = EndQ(Aτ ).

Proof. This follows by the Baire category theorem.

Although this solves the original problem, there is much more to the story.(
a b
c d

)
∈ SL2(OK) acts on Hn by

(τj) 7→ (
σj(a)τj + σj(b)

σj(c)τj + σj(d)
)

The quotient
SL2(OK)\Hn

can be viewed as the moduli space of n-dimensional principally polarized abelian
varieties with endomorphism algebra containing OK . It and related spaces are
referred to as a Hilbert modular varieties or sometimes Hilbert-Blumenthal va-
rieties. As in the previous cases, this is not too far from a manifold. Namely,
a suitable finite index subgroup Γ ⊂ SL2(OK) will act freely and properly dis-
continuously, so therefore Γ\Hn is a manifold.

We can consider the same problem, where the dimension g might be bigger
than n. In general, n|g. Setting m = g/n, we have an n homomorphisms
hi : Sp2m(OK) → Sp2m(R) induced by σ1, . . . , σn. Then we have an action of
Sp2m(OK) on Hn

m, where it acts on the ith factor through hi. The quotient

Sp2m(OK)\Hn
m

gives the coarse moduli space of g-dimensional principally polarized abelian
varieties with endomorphism algebra containing OK . This general construction
goes back to Shimura [Sh], and it is now known as a Shimura variety. Note that
this class includes Hilbert modular varieties as well as Ag. An introduction to
the general topic is given in [Mi].

4.9 Some abelian varieties of type II and IV

We will be content to work out a few more cases of the converse to corollary
3.3.2. To start off, let us say K = Q. Fix totally indefinite quaternion division
algebra D, or algebra of type II, over Q. Recall that this means that D ⊗ R =
Mat2×2(R). Choose a lattice M ⊂ D, M can be viewed a lattice in Mat2×2(R)
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via the embedding D ⊂ Mat2×2(R). We choose τ ∈ H. Then M generates a

sublattice M

(
τ
1

)
⊂ C2. Let

Xτ = C2/M

(
τ
1

)

This is polarized by the form represented by the matrix

(
1/Imτ 0

0 1/Imτ

)
.

Finally, note that M ⊗Q = D is stable under the obvious action of F , so that
EndQ(Xτ ) ⊆ D. For a general choice of τ we will have an equality.

This can be generalized to any algebra of type II. Let us fix a totally real
number field K of degree n, and a totally indefinite quaternion division algebra
D over K. Choose a lattice M ⊂ D and a vector (τi) ∈ Hn as above. We
have an embedding D ⊂ (Mat2×2(R))n given as a product of the maps D ⊂
D ⊗σi

R ∼= Mat2×2(R) over the embeddings σi : K → R. Thus elements of D
will act on C2n = (C2)n. The image L = M(τ1, 1, τ2, 1, . . .)

T will be a lattice in
C2n. The quotient X = C2n/L will be an abelian variety, and EndQ(X) = D
when (τj) is general.

***

We now turn the case of type IV. We concentrate on the important special
where the algebra is a CM field F . This means that there is totally real field
K and a totally positive element β ∈ K, such that F = K(

√
−β). Let suppose

that the degree of K is n, then F has degree 2n. Choose n distinct embeddings
σ1, . . . , σn of F ⊂ C, so that σi 6= σ̄j . In fact, this is the only choice. There
are no parameters. Let OF be the ring of integers of F . We embed OF ⊂ Cn
as a lattice, by sending λ 7→ (σi(λ)). We form the torus X = Cn/OF . This is
polarized by the form represented by the diagonal matrix with σi(

√
−β) down

the diagonal. We have EndQ(X) = F . Such an abelian variety is a called an
abelian variety with complex multiplication.

***

The reason why we skipped over type III, is because there is no really easy
case. The simplest algebra of this type is the standard quaternion algebra
D = Q ⊕ Qi ⊕ Qj ⊕ Qk over Q. The natural thing to do is form the lattice
L = Z ⊕ Zi ⊕ Zj ⊕ Zk. We can view this as a lattice in C2 = C ⊕ Cj. Then
X = C2/L gives an abelian variety with EndQ(X) ⊃ D. So far, so good. But
X ∼= (C/Z + Zi)2 so that

EndQ(X) = Mat2×2(Q(i)) 6= D

In fact, one cannot achieve equality with such a construction unless the dimen-
sion is large with parameters chosen generically.
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4.10 Baily-Borel-Satake compactification

We want to generalize an earlier result:

Theorem 4.10.1 (Baily-Borel). Ag, and the various related Shimura varieties,
are quasiprojective varieties.

This means that Ag is a Zariski open subset of a projective variety Āg. Let
us first look at the case, when g = 1. Then Ag = C and Ā1 = P1 = A1 ∪ {∞}.
It useful to see how this works group theoretically. The action of SL2(Z) on H1

extends to the boundary R∪{∞}. The orbit of 0 is easily to consist of Q∪{∞}.
Define the extended half plane by H∗1 = H1 ∪Q ∪ {∞}. The quotient can then
be identified with Ā1 as a set. The set H∗ can

be endowed with a topology that makes the projection continuous. The basic
neighbourhoods of ∞ are strips

{z ∈ C | Imz > C} ∪ {∞}

The higher dimensional case, due to Satake, is more complicated but follows
same idea. Baily and Borel [BB] gave a more general construction that applies
all Shimura varieties such as Hilbert modular varieties. This case is a lot easier
to describe, so we start with this. Suppose we are given a totally real field K of
degree n, with embeddings σi : K → R. We add σi(K ∪{∞}) to the ith copy of
H, to get a new space (Hn)∗. The action of SL2(K) will extend to this space,
with the boundary constituting a single orbit. We extend the topology from Hn

to an SL2(K)-invariant topology on (Hn)∗. It is enough to say what the basic
neighbourhoods are for one point on the boundary. For ∞, we use sets of the
form

{(z1, . . . , zn) ∈ Cn |
∏

Im(zi) > C} ∪ {∞}

A Hilbert modular form of weight k ∈ N is a holomorphic function f : Hn → C
such that

f(

(
a b
c d

)
· z) =

∏
(σi(c)zi + σi(d))kf(z)

for all matrices in SL2(OK).

Theorem 4.10.2 (Baily-Borel). The quotient topology of Y = SL2(OK)\(Hn)∗

is compact and Hausdorff. Y can be embedded into some PN as a projective
variety by using Hilbert modular forms of sufficiently large weight.

Returning to Ag, we follow the same method. We wish to extend Hg by
adding extra points on the boundary. To describe this more precisely we switch
to the disk model:

Lemma 4.10.3. Hg is isomorphic to

Dg = {Z ∈Matg×g(C) | ZT = Z, I − Z̄Z pos. definite}

by sending
Ω 7→ (Ω−

√
−1I)(Ω +

√
−1I)−1
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Let D̄g denote the closure of Dg in the set of symmetric matrices. For r < g,
we can embed Dr ↪→ D̄g by identifying it with

{
(
Z 0
0 I

)
| Z ∈ Dr}

Let D∗g denote Dg union the of images of Dr under Sp2g(Z) for all r < g. Then
define

Āg := Sp2g(Z)\D∗g
which for the moment is only a set.

Theorem 4.10.4 (Satake, Baily-Borel). Āg has a structure of a normal pro-
jective variety such that Āg ⊃ Ag as an open subvariety, and the boundary can
be stratified as Ag−1 ∪Ag−2 ∪ . . ..
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