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Clifford algebras, Fermions and Spin chains
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Abstract. We show how using Clifford algebras and their representa-
tions can greatly simplify the analysis of integrable systems. In par-
ticular, we apply this approach to the XX-model with non-diagonal
boundaries which is among others related to growing and fluctuating
interfaces and stochastic reaction-diffusion systems. Using this ap-
proach, we can not only diagonalize the system, but also find new
hidden symmetries.
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1 Introduction

There are three complex vector spaces which happen to have the same
dimension 2% (1) V; = (C?)®F (2) V, = A*CE and (3) V3, the unique
irreducible representation of the complex Clifford algebra Clyp (see
e.g. [1] for the last statement). These three vector spaces are basi-
cally studied by two groups of people, the ones working in integrable
systems and the ones working on math/physics related to group the-
ory. Each group has their own intrinsic reasons and interpretation for
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each of these spaces. Our aim is to bring these two groups of people
together by providing a general framework linking these spaces and
interpretations together. We apply this philosophy to a concrete prob-
lem of the boundary XX—chain and present new results that can be
obtained by systematically following this connection which we first
explicate.

2 Clifford algebras and Spin Systems: A digest

The shortest way to define the Clifford algebra for a given R—vector
space W of dimension n with a fixed quadratic form Q is to give a
presentation in terms of generators and relations. Let e; be a basis of
W and let (, ) be the bilinear form associated to Q. Then C(W, Q) :=
(e; : {eiej} = 2{eie;) ); in particular C; := C(R¥,—1;) and Cl; :=
C®RCy. Here {e;,e;} = ejej —eje; and 1l is the k x k identity matrix.
Notice that for all non—degenerate Q, C Rgr C (Rk,Q) ~ Cl.

We will first focus on two “standard” quadratic forms on C2L.
The firstis Q = 1, = diag(1, ...,1) where we used the basis cT, ey
czr, ¢y»...,cp. The algebra Clpy is then presented as

{emcnt =28 D

The generators in this presentation are usually called “Clifford Oper-
ators”. The second form is O = @y, = % ( ](I)L HOL

basis by, ..., b1, ay,...,ar. Thisleads to the “Fermion” representation

{bn’am} = Sn,mu {bn,bm} = 07 {an’am} =0 2)

where we used the

These two presentations of the same algebra are related by

1 - 1 _ |
b, = E(C,J{—l-lcn ) an = E(c,;L —ic,); cf =by,+ayc, = ;(bn—an)
A (spin 1/2) spin—chain is an operator H € End((C?)®"). Notice
that due to the general properties of Clifford algebras [1, 2] Clyy ~
' We will usually not distinguish in notation between elements of W and ele-

ments in the Clifford algebra. If this becomes necessary, we denote the inclusion of
W into C(W, Q) by 1.
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Clgu ~ M(C)®E. Here & is the tensor product for Z/2Z—graded
algebras. So, although Cl, ~ End(C?) = M,(C) the Clifford algebra
CI; does not readily act on V = (C?)®~ due to the inequality of graded
® and non-graded ® tensor products. The remedy is the Jordan—
Wigner transformation (JWT) [3] which is “highly non—local”.

j—1
Chr—CI5% 7 = ([]o)o}? (3)
i=1

Here 0*, 6”7, 6% are the Pauli—-Spin—matrices and we used the notation
i—1 :
o= ®,](:1 I, ® G®®£:j+1 1,; we also set o+ = %(G"izdy).

3 Fermionization of Spin chains

With the help of the JWT one can write many spin—chain problems
in terms of Fermions [4, 5] (see also [6, 7] for more examples). The
main point is that simple quadratic forms in the non—local operators 7

L L L L
H=Y Ait, 77 =) 2Aubpan— Y A=Y 2AN,+Ey (4)
n=1

give rise to physically interesting operators which are naturally writ-
ten in terms of the ¢ matrices and vice—versa. The problem of Fermi-
onization is to determine if a given Hamiltonian can be brought into
the form H = %Z’ M#,j,‘,’ T 7, and then diagonalized, i.e. brought into
the form (4). Here Y is the sum over all (m,u) # (n,v). In this ex-
pression H is a symmetric form on the odd vector space 1(C*L). This
problem is equivalent to “diagonalizing” the anti—symmetric form M
on the even vector space C?L. This is done by a change of base
Y. With A = diag(Ay, ..., Ar) the resulting matrix equation reads

Y'MY = <_? A if)\). In order to preserve the Clifford presentation

(1), we also need that ¥'W = 1l,;. Notice if we work with Fermions
instead then a base change ¥ would have to satisfy ®' @,; ® = wy;.
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4 The XX-chain with boundaries and a new conserved quantity

By enlarging the vector space to C? ® C®L' ® C? [8] the rationale of
the sections above can be applied to the XX—chain with boundaries[9]

H=3 ¥ |oj o toyof| +claof +aiof +acof+B.of +p oy +h:0]
j=1

The projection to the original problem [9] is non—trivial and its
understanding in terms of Clifford representations is still an interest-
ing open problem; in particular, since it seems that complex Clifford
algebras of odd dimensional vector spaces make an appearance [10].

Having obtained this we can “pull-back™ operators that com-
mute with H in the form (4) to get new conserved quantities. One
such operator is total Fermion number operator .Zo; = Zﬁill byay, (for
another such operator see [11]). We include the expression in terms
of the o matrices [12] to show the power of the transformation.

Jkt1
ﬁmt:m ;1 (=1) 2 (0544 0¢y)
i odd j<k
sin(4) sin(E) s
[(- 200, T o a0 % — 050+ (—g)(00 — o) o)
sin(575)  sin(5757) sin(7127)
1 L1 k+1 COS(%)
t—e——q ) (-1) 7 | 0{0}...00_0f
VL) | & sin(27%55)
L Xk . xk
L+k+2 COS(m) ktL Sln(L_—i—l>
+ X O e (D el (o o 0f)
= wostatz e
o)

Since we have super-selection rules for the state space, we can
look at the partition function %, of H restricted to the sector with m
Fermions. In the continuum limit [13], we obtain (see [12] for further
details)

% In ngm +(1—z’”)zw
Py = lim (tr z7 Ln-o?hle) — 77 +%
T ) (I=2)(1=22)...(1—zm)

(6)
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