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In this paper we analyze integrable systems from a Clifford algebra point of view.
This approach allows us to give a clear representation theoretic exposition of tech-
niques used in spin systems, thereby showing their naturality. We then extend this
approach to the analysis of the XX-model with nondiagonal boundaries which is
among others related to growing and fluctuating interfaces and stochastic reaction-
diffusion systems. With this rationale, it is possible to diagonalize the system and
find new hidden conservation laws. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2400831�

INTRODUCTION

The use of Clifford operators to “fermionize” a problem goes back to Ref. 1. The potential this
approach has in solving spin-chain problems was first demonstrated in Ref. 2; see Refs. 3–6 for
other early sources. There has been a lot of work in this direction, Refs. 7–11 to name a few. We
will first give a novel presentation of this “classic” connection between spin-chain Hamiltonians
and their fermionization using Clifford operators. This is done in a concise mathematical way
focusing on the Clifford algebra aspects. This allows us to explain properties, procedures, and
characteristics which appear complex and complicated in the spin-chain picture in a clean straight-
forward fashion as direct consequences of the mathematical setup. We hope that this treatment
may help to bring the two communities, the people working in mathematical physics using group
theory and the people working on integrable systems, closer together. We then show that going
beyond the classical quadratic Hamiltonians, we can in certain cases, namely the XX-model,
extend to include boundary terms. There are some subtleties here. First we have to actually enlarge
the chain to be able to obtain a quadratic Hamiltonian, one of whose sectors is the original
problem. Then, after the fermionization, we have to project to the smaller problem, which is
nontrivial in the fermion language. As we explain, the actual calculation of the fermionization is a
matrix valued problem due to the theorem1,12,13 about the uniqueness of the irreducible Clifford
module of the complex Clifford algebra based on an even dimensional vector space. We then go
on to analyze operators which commute with the XX-chain Hamiltonian with boundary terms.
These operators can be shown to commute, but due to the nonlocal nature of the Jordan-Wigner
transformation and the projection, they become highly nontrivial in the original spin-chain picture.
Lastly, we comment on how this operator behaves in the thermodynamic limit.

I. CLIFFORD ALGEBRAS AND SPIN CHAINS: A DIGEST

A. The Clifford algebra and fermions

A Clifford algebra C�W ,Q� is a universal algebra associated with a given R-vector space W
with a quadratic form Q. The universal property is that any linear map j :W→A of W to an
associative R-algebra A with unit 1 which satisfies j�w�2=Q�w�1 factors through C�W ,Q�
uniquely up to isomorphism. To be really careful of course the universal object C�W ,Q� comes
with a map ı :W→C�W ,Q� and j factors through ı. For W with dimR W=k and a basis �ei� of W,
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the algebra C�W ,Q� is a quadratic algebra generated by ei : i=1, . . . ,k and the relations
∀n ,m : �en ,em�=2�en ,em� where �·, ·� is the bilinear form associated with the quadratic form Q.
�Technically, for this one has to assume that one is not in characteristic 2. This is fine since we will
be working over R and C that is in characteristic 0.� We will usually not distinguish v and ı�v� in
our notation, but sometimes it will be necessary. It can easily be seen that dimR(C�W ,Q�)=2n for
W as above and any Q. See, e.g., Refs. 12 and 13 for these results.

The classical example is the Clifford algebra CkªC(Rk ,diag�−1, . . . ,−1�). This algebra can
be written as generated by en subject to the conditions en

2=−1,emen+enem=0. Now there are the
standard isomorphisms C2	H	su�2�. Where one sends e1� I ,e2�J, here I, J, and K are the
usual quaternions and in the last step one represents I and J by the usual 2�2 matrices. Alterna-
tively one can of course use the first two elements of any cyclic permutation of the matrices
representing I, J, and K.

We will consider the complexified Clifford algebra ClkªC�RCk. Notice that over the com-
plexes all nondegenerate forms are conjugate and we will only work with such forms. Thus the
Clifford algebras over C do not depend on the particular form of Q as long as it is nondegenerate.
In general it can even be shown that Cl2L	M2L�C�, the full matrix algebra, see, e.g., Refs. 12 and
13. To pass from one quadratic form to another one makes a base change on the underlying vector
space. This gives a change in presentation of the algebra. The algebra Cl2 for the quadratic form
diag�1,1�, for instance, is just M2�C�, and we can represent it via e1���x ,e2���y. Since �x
=−iK and �y =−iJ in their standard matrix representations (see, e.g., Ref. 13), we obtain an
isomorphism with Cl2=C�RC2 by using the permutation as mentioned above to represent the
Clif ford algebra and then use the complex base change ej�= �−i�ej. Of course JK= I and
�x�y =−KJ= I= i�z.

In general, there are two standard quadratic forms: the first is given by the k�k matrix 1k

=diag�1, . . . ,1� and the second one which exists on C2L is �2L= 1
2
� 0 1L

1L 0
�. The factor 1

2 is added to
cancel the factor of 2 in the relations. In the case that we are in even dimension that is in R2L or
after complexification in C2L, we fix the following notation for the basis elements. In the first case
we denote the basis vectors c1

+ , . . . ,cL
+ ,c1

− , . . . ,cL
−, and in the second case we will enumerate basis

vectors b1 , . . . ,bL ,a1 , . . . ,aL. This means that in the case of C2L for the first basis we get the
relations

�cm
�,cn

�� = 2�m,n
�,� �1�

for the generators of the Clifford algebra Cl2L corresponding to this basis. These operators are
usually called Clifford operators. For the second basis of C2L we obtain the following relations for
the generators of the Clifford algebra Cl2L

�bn,am� = �n,m, �bn,bm� = 0, �an,am� = 0. �2�

These operators are usually called fermion operators. �In a matrix representation one frequently
also postulates an

†=bn. We will not impose this at the moment.� One can think of the bn as creation
and the an as annihilation operators of the nth fermion. The operator Nn=bnan then has eigenval-
ues of 0 or 1 corresponding to whether the fermion is present or not. The fermions can also just be
seen as a representation of Cl2L on the exterior algebra �*CL. In the presentation of Eq. �2� we can
write the Clifford algebra as Cl− � Cl0 � Cl+, where Cl− is the subalgebra generated by the an, Cl+

is the one generated by the bn, and Cl0 is the center generated by C. The Fock space representation
RFock is then given as follows; let R
vac� be the one-dimensional representation of Cl0 � Cl− on C
=C 
vac� for which 1 
vac�= 
vac� and Cl− 
vac�=0 then RFock=Cl�Cl0�Cl−R
vac�. Here RFock

	�*CL as vector spaces and the Cl module structure is given by left multiplication.
The two sets of generators of Cl2L are related by the simple base change on W=C2L,

bn =
1

2
�cn

+ + icn
−�, an =

1

2
�cn

+ − icn
−� ,
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cn
+ = bn + an, cn

− =
1

i
�bn − an� . �3�

In the Clifford operator basis the role of the operator Nn is played by icn
−cn

+ which has eigenvalues
±1.

B. Spin chains

A spin chain of length L is a C-vector space V which is a tensor product of L copies of a su�2�
representation. A spin-chain Hamiltonian is an operator H which acts on such a V. �Sometimes a
spin chain is taken to mean V together with H.� We will only be concerned with spin 1

2 . That is,
V= � i=1

L C2 and H :V→V which means that H�GL�2L ,C�. �Although the notation H is suggestive
of both Hermitian and Hamiltonian, we will not restrict to the case that H is Hermitian.� The
copies of C2 are usually called sites. Many of the interesting Hamiltonians are obtained by using
linear and quadratic expressions in the Pauli-spin matrices �x, �y, and �z. It is well known that the
Pauli matrices together with the identity matrix with C coefficients form a basis of M2�C�	C
� H	C4 as vector spaces.

Examples of such spin chains are the XX, XY, and XYZ or Heisenberg model. In particular,
the XX chain has the Hamiltonian:

HXX =
1

2�
j=1

L

�� j
+� j+1

− + � j
−� j+1

+ � . �4�

Here we adopted the usual notation � jª12 � . . . � 12 � �

j

↓
� 12 � . . . � 12, where � is inserted at the

jth spot.

C. The Jordan-Wigner transformation

We recall that all the Clifford algebras are Z /2Z graded. This can either be seen by using the
involution on C�W ,Q� generated by ı�w��−ı�w� for w�W or the fact that the algebra is qua-
dratic and hence the Z grading of the tensor algebra descends to a Z /2Z grading on C�W ,Q�. This
splits the Clifford algebra into its even and odd parts, C�W ,Q�=C�W ,Q�even � C�W ,Q�odd.

A wonderful fact about Clifford algebras is that they satisfy C�W � W� , P � Q�	C�W , P�
�̂C�W� ,Q�. Here it is important that we used �̂ , that is, the tensor product as Z /2Z graded spaces.

Using this property, we see that Cl2L	Cl2
�̂L	M2�C��̂L. But we should be careful that M2�C��̂L

�M2�C��L. So we cannot directly identify the spin-chain operators with Clifford operators, since
the former are nongraded tensor products while the latter are graded. This is easily seen since �i

commutes with � j for i� j in the spin-chain case, while they should anticommute if they would be

Clifford operators. Indeed this is forced by considering �̂ .
This obstacle was overcome by Ref. 1 �see Ref. 2� by the following isomorphism of Cl2L

→Cl2
�L:

� j
+,− = �

i=1

j−1

�i
z�� j

x,y . �5�

It can easily be checked that these operators satisfy Eq. �1�. As noticed in Ref. 1, see also Ref. 13,
this is the only irreducible module of Cl2L—up to isomorphism of course. This can most quickly
be seen by using the fact that Cl2L is a matrix algebra over C and hence Morita equivalent to C.

D. Free fermions and fermionization

Comparing the two paragraphs, we see that the Clifford operators, that is elements of Cl2L

after using the Jordan-Wigner transformation, are operators on the spin-chain vector space V.
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Moreover, using the operators defined in Eq. �5�, we have Clifford operators on the spin chain and
using the transformation �3�, we obtain fermion operators. This allows us to write down “simple”
Hamiltonians,

H = �
n=1

L

�ni�n
−�n

+, �6�

or in terms of the associated fermion operators:

H = �
n=1

L

2�nbnan − �
n=1

L

�n = �
n=1

L

2�nNn + E0. �7�

In this form it is clear that H is the Hamiltonian of L free fermions whose energies are �n. The
second summand is the constant term corresponding to the Fermi sea.

Now as mentioned the representation �5� is unique up to isomorphism, so we could also first
apply a base change to the operators �m,n

�,� to obtain operators Tm,n
�,�. Since the � are images of the

basis elements of W, this amounts to using a change of basis � on the underlying vector space W
of the Clifford algebra. Notice that W is different from V= �C2��L and that dim W=2L, so that �
is a 2L�2L matrix. If we want that the operators T are still Clifford operators, that is they obey
Eq. �1�, then � has to be an orthogonal transformation, that is, �t�=12L. Of course, in the
fermionic case �7�, the change of basis transformations � preserving the relations �2� is the one
that preserves �: �t�2L�=�2L.

Using these transformations, we obtain a class of Hamiltonians of the form

H = �
n=1

L

�niTn
−Tn

+. �8�

Unravelling the definitions, we thus obtain spin chains describing free fermions. As spin-chain
Hamiltonians, that is, expressed in terms of the �-matrices, the form of H is highly nontrivial due
to the nonlocal nature of the Jordan-Wigner transformation.

The fermionization problem is the inverse problem: When can I write a given spin chain in
terms of free fermions? There is a way to go about this in case the Hamiltonian is a quadratic form
in the elements �,

H =
1

2 �
�m,��,�n,��

s.t.�m,����n,��

Mm,n
�,��m

��n
�. �9�

This is, for instance, the case if H is quadratic in the �±, H=�Am,n
�,��m

��n
�, and one has only nearest

neighbor interactions: Am,n
�,� =0 if 
m−n 
 �1. Although we postulated that there are no diagonal

entries, these entries would not pose any real problems, since due to the equation ��m
��2=1 they

would just contribute a constant term.
In this case, we can think of M as a quadratic form on the image ı�W� of W. Now due to the

grading ı�W� is an odd vector space, so that the matrix M for a “symmetric” quadratic form will
be skew symmetric. The aim now is to find a transformation of basis on W which makes H
diagonal in the Clifford basis corresponding to the new basis as in Eq. �8�. Let �
=diag��1 , . . . ,�L�, then the matrix problem one has to solve is �tM�= � 0 i�

−i� 0
�. Recalling that in

order to preserve the fermion presentation of the Clifford algebra �t�=1, this reads

M� = �� 0 i�

− i� 0
� . �10�

This is the type of equation that is usually obtained by calculating the commutators of the opera-
tors T with the Hamiltonian;2,7–11 here we find it by purely Clifford algebra considerations. Trans-
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forming to the equations by writing �= ��+�−� and �+=�++ i�− ,�−=�+− i�−, the equations
become the eigenvalue problem:

M�± = ± �±� . �11�

Since the matrix � is a base change on W which was of dimension 2L, we get 2L eigenvalues.
These come in pairs of ±�n. This is clear from the skew symmetry of M. Moreover looking at Eq.
�8�, we see that the change from �n to −�n does not affect the spectrum of H. This symmetry
corresponds to sending one of the Tn→−Tn.

II. THE XX-MODEL WITH BOUNDARIES

Now the above procedure works well for Hamiltonians such as the Ising, XX, XY,
Heisenberg-Ising chains,2,15 and other models.

With some work one can also sometimes include boundary terms. For this we consider the
Hamiltonian of Ref. 14 specialized to

H =
1

2 �
j=1

L−1

�� j
+� j+1

− + � j
−� j+1

+ � +
1
�8

��1
− + �1

+ + exp�i	��L
+ + exp�− i	��L

−� . �12�

A. Extending the chain

The H of Eq. �12� is not quadratic. On the other hand we can add the sites 0 and L+1 as in
Refs. 16 and 17 and consider the Hamiltonian

Hlong =
1

2 �
j=1

L−1

�� j
+� j+1

− + � j
−� j+1

+ � +
1
�8

��0
x�1

− + �0
x�1

+ + exp�i	��L
+�L+1

x + exp�− i	��L
−�L+1

x � ,

�13�

which acts on Vlong= � i=0
L+1C2. We see that Hlong is of the form �9�, since it is quadratic in the � and

has only nearest neighbor interactions. Thus we can apply the procedure of Sec. I D and express
Hlong in terms of L+2 fermions. From the form of Hlong we see that the matrices �0

x and �L+1
x

commute with Hlong, so the spectrum of Hlong decomposes into four sectors corresponding to the
eigenvalues ±1 of �0

x and �L+1
x . That is, we can write Vlong= � ��,����Z / 2Z�2V��. Here the notation

V�� naturally means that �0
x 
V��=�id and �L+1

x 
V��=�id. We can embed V into Vlong via
v�v+ � v � v+, where v+= � 1

1
� is the eigenvector of �x with eigenvalue of 1. The isomorphic

image of V is V+. Under this embedding we see that H� 
Hlong
V++ and hence the spectrum of H
is that of 
Hlong
V++

. The left inverse to the embedding map is the projection map 
 :Vlong→V
which simply projects out the first and last tensor factors.

B. Femionization of the extended chain

After substituting Eq. �5� into Eq. �13�, the matrix M of Eq. �9� becomes

M =�
0 G

− GT 0 F

− FT 0 F

� � �

− FT 0 K

− KT 0

� , �14�

where F=1/4� 0 i
−i 0

� and G=1/2� 0 2i/�8
0 0

� and K=1/2� 0 �i/�8�2 cos�	�

0 �i/�8�2 sin�	� �. The corresponding diagonaliza-

tion problem can be solved explicitly, see Ref. 14.
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C. Projection to the original chain

Notice that the projection/restriction to V++ is clear in the spin-chain picture but not so
obvious in the fermion language. The basic idea is to find the ground state which is in V++ and act

on it by operators b. Let B̄�Cl2L+2
+ be the subalgebra generated by b1 , . . . ,bL+1, then B̄= B̄even

� B̄odd. There are vectors v± which satisfy �0
xv±= ±v± and either �1� �L+1

x v±= ±v± or �2� �L+1
x v±

= �v±. Accordingly either

V++ = Bevenv+ or V++ = Boddv−. �15�

We refer to Ref. 14 for the details. There is something interesting going on here that we would
like to point out, although we do not fully understand the situation as of yet. The fact that V++ is
generated by even or odd excitations seems to suggest that we are actually dealing with modules
over Cl2L+2

even �Cl2L+2�Cl2L+4, where Cl2L+2 is generated by the ai and bi : i=1, . . . ,L+1. Now it is
well known that Cl2L+2

even �Cl2L+1.12,13 The dimension of the V++ is 2L so it is tempting to conjecture
that it is actually one of the spin representations and �L+1

x corresponds to the operator that distin-
guishes the two spin representations. This operator is t= in j=1

L+1ej in the standard notation. A quick
calculation shows that t� j=1

L+1� j
z, so things are in reality a little more complicated, but the dimen-

sional analysis and the fact that there are two representations distinguished by an operator with
eigenvalues of ±1 remain true. It would be interesting to find a complete representation theoretic
explanation for the projection mechanism.

III. SUPERSELECTION SECTORS AND THE THERMODYNAMIC LIMIT

A. Operators commuting with H

Just as we derived nontrivial spin chains from free fermions and vice versa found free fermion
representations of nontrivial spin chains, we can take operators which obviously commute with the
free fermion Hamiltonian and transform them back to the spin chain to obtain nontrivial conserved
quantities and hence superselection rules. One such operator is the total fermion number operator;
another operator of this kind is treated in Ref. 18.

To exhibit this strategy, we will now apply these observations to the XX-model with bound-
aries discussed in the last section. Moreover, as we explain in the next paragraph, this operator is
key to understanding the spectrum of H and its dependence on the parameter 	. Recalling that the
fermions entering the original chain are those labeled by 1, . . . ,L+1 �see Sec. II C�, the total
fermion number for the spin chain H is given by the projection of the operator:

Ftot
long = �

n=1

L+1

Nn = �
n=1

L+1

bnan. �16�

We note that a priori it is not clear that this operator can actually be “projected.” A posteriori this
follows either from the explicit form, Ftot

long=�0
x

� Ftot � �L+1
x , whose calculation we describe be-

low, or from the results about the spectrum being given by an even or odd number of fermion
excitations �see Sec. II C�.

Denoting the entries of the matrix �= ��+�−� appearing in Eq. �11� by �n
�� j

�, that is, �n
�� j

�

with n and �= ±1 fixed, �= ±1, and j=0, . . . ,L+1 is the eigenvector to the eigenvalue ��n, we
can write

Ftot
long =

1

4 �
n=1

L+1

�
j,k=0

L+1

�
�,�=±1

�n
−� j

��n
+�k

�� j
��k

�. �17�

Now the explicit form of the eigenvectors , which are known,14 allows us to compute this
expression projected to the short chain V in terms of the � matrices of the original spin-chain
picture �see Ref. 19 for the details�,
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Ftot =
1

4L + 4 �
j,k=1

j+k odd,j�k

L

�− 1��j+k+1�/2�� j+1
z

¯�k−1
z � � �� sin„	�j − k�/�L + 1�…

sin„
�j − k�/�2L + 2�…

+
sin„	�j + k�/�L + 1�…

sin„
�j + k�/�2L + 2�…��� j
x�k

y − � j
y�k

x� + � cos„	�j + k�/�L + 1�…
sin„
�j + k�/�2L + 2�…��� j

y�k
y − � j

x�k
x��

+
1

�8�L + 1�� �
k=1

k odd

L−1

�− 1��k+1�/2� cos„	k/�L + 1�…
sin„
k/�2L + 2�…

�1
z�2

z
¯�k−1

z �k
x�

+ �
k=2

k even

L ��− 1��L+k+2�/2 cos„	k/�L + 1�…
cos„
k/�2L + 2�…

�k
x + �− 1��k+L�/2 sin„	k/�L + 1�…

cos„
k/�2L + 2�…
�k

y�
���k+1

z
¯�L−1

z �L
z �� . �18�

In Eq. �18�, we have taken the projection to the original chain H by using the equation
Ftot

long=�0
x

� Ftot � �L+1
x . The fact that Ftot

long has this special form is the a fortiori reason that indeed
the total fermion number is a quantity that is well defined on the original chain.

Depending on which case one is in �see Sec. II C�, the eigenvalues are either odd or even. It
is clear that it would be impossible to find this operator, which is a novel conserved quantity
corresponding to a hidden symmetry for the spin chain, relying solely on the spin-chain picture.

B. The thermodynamic limit

Since we have superselection rules for the state space, we can look at the partition function Zm

of H restricted to the sector with m fermions. The relevant eigenvalues are given by14,19

�n =
1

2
sin� 	

L + 1
+

�2n − 1�
L + 1




2
�, n = 1, . . . ,L + 1. �19�

Since limL→��2L�n /
�=	 /
+1/2+n−1, in the thermodynamic limit,20 we obtain

Zm = lim
L→�

�tr z�L/
��n=1
L+12�nNn� = zm	/
+m/2 �

n1,n2,. . .,nm

zn1−1+n2−1+¯+nm−1

= zm	/
+m/2��
l

pm�l�zl + �
l

pm−1�l�zl�
= zm	/
+m/2� zm�m+1�/2 + �1 − zm�z�m−1�m/2

�1 − z��1 − z2� ¯ �1 − zm� �
=

zm	/
+m2/2

�1 − z��1 − z2� ¯ �1 − zm�
. �20�

Here pm�l� counts the number of ways the integer l can be expressed as a sum of m distinct
nonzero integers. The second term involving pm−1 takes into account that one of n1−1 in the sum
before might be zero and the second equality follows from the formula

�
l

pm�l�zl =
zm�m+1�/2

�1 − z��1 − z2� ¯ �1 − zm�
. �21�

123509-7 Clifford representations in integrable systems J. Math. Phys. 47, 123509 �2006�

Downloaded 06 Aug 2009 to 128.210.4.15. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



The complete partition function Z will then be a sum over all the even or the odd m depending
on 	. On the other hand Z has been calculated,21 so that equating the two expressions, one obtains
an interesting combinatorial identity.

What we gain from the calculation of Zm is that we now know that in the sector with fixed
fermion number, the dependence of Zm on 	 is given by a factor of zm	/
. This simply induces a
uniform shift off the usual spectrum. Notice that the factor is different though for different m, so
that the eigenspaces of the thermodynamic limit of the operator Ftot play a special role, since the
shift can precisely be factored out on these spaces. The reason for this factorization is the special
distribution of the eigenvalues �19�.

Another way to phrase this result is as follows. Consider the polynomial ring in infinitely
many fermionic variables which are indexed by half integers F=C��i� : i�N0+ 1

2 . This space comes
equipped with a natural bigrading. The first grading is by the usual degree where deg��i1

¯�im
�

=m. The second is by the weight wt where wt��i1
¯�im

�=� j=1
m ij. Thus we can decompose F=

�dFd according to the degree or according to the weight F= �wFw. We will set Fd
w to be the

bigraded piece of pure degree d and pure weight w and we will let 
d denote the projection of F
onto its summand Fd. It is an elementary calculation to show that the dimension of Fm

l+m/2 is
pm�l�+ pm−1�l� and likewise the dimension of Fm

l−m/2 is just pm�l�.
Furthermore there are the two subspaces Feven and Fodd spanned by polynomials whose degree

is either even or odd. Now the state space of H in the thermodynamic limit is abstractly isomor-
phic to one of the two subspaces Feven or Fodd of F �see Sec. II C�. The isomorphism is given by
sending the state 
n1 , . . . ,nm�, which is the state with fermions ni, to the monomial �n1−1/2¯�nm−1/2.
�Recall that the ni are positive integers and the indices of the � start at 0+ 1

2 .� In this language, the
partition sum is the partition function tr z��	� for the operator ��	�ª 
��m��m	 /
�id+wt�
�
m�
Fodd/even. So we see that the eigenspaces are exactly the Fm

l+m/2 with the eigenvalues given by
m	 /
+m /2+ l and hence 	 tunes the eigenvalue uniformly in each of the given sectors.

Now, in the original spin chain, this essential grading operator is given by the limit of Eq.
�18�. More details are contained in Ref. 19.
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