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Abstract. The low-lying excitations of the asymmetricXXZ spin chain are derived explicitly
in the antiferromagnetic regime through the Bethe ansatz. It is found that a massless and
conformal invariant phase with central chargec = 1 is separated from a massive phase by a line
on which the low-lying excitations surprisingly scale with the lattice length as1E ∼ N−1/2. The
mass gap vanishes with an exponent1

2 as one approaches the massless phase. The connection
with the asymmetric six-vertex model and some physical consequences are discussed.

It is believed, although not rigorously proven, that the phase diagram of a classical statistical
model in d dimensions can be mapped onto that of a quantum Hamiltonian in(d − 1)

dimensions [1]. In particular, singularities of the classical free energy should correspond to
singularities of the quantum ground-state energy, while the mass gap of the latter should
scale, near criticality, as the inverse correlation length in thedth direction of the classical
modelm ∼ ξ−1

d . Well known examples are the 2d Ising and symmetric six-vertex models
with their associated Ising andXXZ spin chains. In most cases, tackling the lower
dimension quantum version turns out to be simpler, and one therefore expects the asymmetric
XXZ chain to be more tractable than the associated asymmetric six-vertex model (i.e. with
external fields). The six-vertex model was originally introduced to describe ferroelectric
and antiferroelectric phase transitions in hydrogen-bonded crystals [2]. Recently, there has
been renewed interest in the solution of its asymmetric version [3, 4], due to its relation
to models of crystals which describe the equilibrium shape of the interface between the
coexisting solid and vapour phases [5, 6].

The model is defined as follows: on a 2d square lattice, place on each vertical
(horizontal) edge an up (right) or down (left) arrow. The ice condition restricts the number
of allowed configurations to six [7], each being assigned a Boltzmann weightR

ββ ′
αα′ (u) (see

figure 1), so that the Yang–Baxter equations are satisfied and the transfer matrix

T (u){α},{α′} =
∑
{β}

N∑
k=1

R
βkβk+1

αkα
′
k

(u) (1)

forms a commuting family, [T (u), T (u′)] = 0 for any two different values of the spectral
parameteru [8]. Introducing the Pauli matricesσ z, σ± = 1

2(σ x ± iσy) and the vertical

polarization operatorSz = ∑N
k=1 σ z, the associated spin chain Hamiltonian is obtained

from the so-called extremely anisotropic limit (u → 0) of the transfer matrix

T (u) = eV Sz

T (u) H = − log(eV Sz

) − sinhγ
d

du
logT (u)|u=0 (2)
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which gives

H = −
N∑

j=1

[
ε coshγ

2
(1 + σ z

j σ z
j+1) + e9σ+

j σ−
j+1 + e−9σ−

j σ+
j+1

]
− V

N∑
j=1

σ z
j (3)

whereε = ±1. Since [H, T (u)] = 0, both can be diagonalized by the same Bethe ansatz.
Note that for real9 (6= 0), (3) is non-Hermitian [9].

Figure 1. Boltzmann weights in the notation with spectral parameteru compared to that of [3].
Note that hereV = β(h + v) in contrast to theV of [3].

It is our aim in this letter to study the low-lying excitations of this asymmetricXXZ

spin chain. Our motivation is twofold. On the one hand, the Bethe ansatz solution for the
asymmetric six-vertex model was originally published in a very concise letter by Sutherland
et al [10], and the phase diagram was determined from the analytical properties of the free
energy. More details were published in [3, 11–13], but the critical behaviour has not been
fully explored. On the other hand, the spin chain itself is of particular interest. In the
ferromagnetic regimeε = 1 and with the tuning9 = γ (stochastic line), this Hamiltonian
has been proposed as the time-evolution operator for a 1d two-species diffusion process
A+0 
 0+A [14, 15]. Under this conditionH is also of significance in the understanding
of Kardar–Parisi–Zhang-type growth phenomena [16]. Moreover, through a similarity
transformation, it can be shown that (3) is equivalent to anXXZ model with boundary
condition σ±

N+1 = exp(±iωN)σ±
1 with ω = −i9. The case of a real phaseω has been

studied before [17]. For imaginaryω however, the physics is completely different.
In this letter we restrict ourselves to the antiferromagnetic regimeε = −1, V = 0 but9

arbitrary. Note thatV = 0 implies takingh = −v in the six-vertex weights (figure 1). We
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summarize our results as follows: we have solved the Bethe ansatz in the thermodynamic
limit and have found exact, analytic expressions for the ground-state energy, the mass gap
and the dispersion relation. Our solution shows that a massive phase extends from9 = 0
to a critical9c(γ ) where the mass gap vanishes asm ∼ (9c − 9)

1
2 . On the transition line

the spin chain is gapless with a dispersion relation at small momenta1E ∼ |1P | 1
2 , which

indicates that the low-lying states scale, on a finite but large lattice, as1E ∼ N− 1
2 . For

9 > 9c we find a massless and conformal invariant phase, excitations scaling as1E ∼ N−1

and a central chargec = 1 (Gaussian model). All these results have been checked through
extensive numerical analysis.

Before studying the low-lying excitations, we present some known results about the
Bethe ansatz equations. In a sector wheren spins are flipped with respect to the reference
state | ↑↑ . . . ↑〉 [18], the Bethe ansatz [19] gives for the eigenvalues of (3) and their
momentum

E = N coshγ − 2 sinhγ

n∑
k=1

φ(γ ; αk) − V (N − 2n) (4)

φ(γ ; α) = sinhγ

coshγ − cosα

eiP = e9n
n∏

j=1

sinh((γ /2) − (iαj/2))

sinh((γ /2) + (iαj/2))
(5)

where the rapidities{αk} are solutions of the Bethe ansatz equations[
sinh((γ /2) + (iαk/2))

sinh((γ /2) − (iαk/2))

]N

= (−1)n−1e9N
n∏

l=1

sinh(γ + (i/2)(αk − αl))

sinh(γ − (i/2)(αk − αl))
. (6)

Equation (4) is found by taking the logarithmic derivative, as in (2), of eigenvalues of the
transfer matrix. In the following we takeV = 0. After taking the logarithm of (6) we get

p0(αl) − 1

N

n∑
j=1

2(αl − αj ) = −i9 + 2π

N
Il (7)

with

p0(α) = −i ln

(
sinh((γ /2) + (iα/2))

sinh((γ /2) − (iα/2))

)
2(α) = −i ln

(
sinh(γ + (iα/2))

sinh(γ − (iα/2))

)
. (8)

{Il} is a set ofn integers (half-odd numbers) ifn is odd (even). Summing (7) overl and
taking the logarithm of (5), one gets for the momentum

P = −
n∑

l=1

2πIl

N
. (9)

The branch cuts of2(α) in the α-plane are taken from 2iγ to i∞ and from−2iγ to −i∞
and we choose2(0) = 0. The distribution of the integersIl already determines a given
state ofH . It is known that at9 = 0 the antiferromagnetic ground state is defined by a
closely packed sequence ofn0 = N/2 integersI 0

l which are symmetrically distributed with
repsect to zero, and a set of real rapidities distributed in [−π, π ] [19]. As 9 is increased,
the rapidities move away from the real axis to form a curveC in the complex plane with
endpoints−a+ ib anda+ ib. In the thermodynamic limit the integral equations determining
the ground-state energy are [3, 19, 20]

φ(γ ; α) − 1

2π

∫
C

dβ φ(2γ ; α − β)R(β) = R(α) (10)
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lim
N→∞

E0

N
= e0 = coshγ − 2 sinhγ

2π

∫
C

dα R(α)φ(γ ; α). (11)

Here the functionR(α) is defined by

R(αl) = lim
N→∞

1

N(αl+1 − αl)
. (12)

It describes the density of rapidities along the curveC and is to be determined by solving
(10). The endpoints ofC are functions of the field9 and the polarizationy = 1− (2n/N)

(eigenvalue of (Sz/N ). They are implicitly determined by

p0(a + ib) − 1

2π

∫
C

dβ 2(a + ib − β)R(β) = −i9 + π

2
(1 − y). (13)

For 9 less than some critical value9c, a = π and−γ < b < 0, so the analytical properties
of (10) allow one to deform the contourC to a straight horizontal segment and the ground-
state energy remains independent of9 [19],

e0 = coshγ − sinhγ

∞∑
n=−∞

exp(−γ |n|)
coshγ n

(14)

with the polarization remaining aty = 0 andb given by [3]

9 = −b − 2
∞∑

n=1

(−1)n

n

sinhbn

coshγ n
. (15)

This agrees with the fact that the free energy of the asymmetric six-vertex model does not
depend on9 in this region [3, 10, 11]. The critical value9c is reached atb = −γ . Note
that the series still converges.

We now extend the old results to the calculation of the low-lying excitations. A complete
study of the solutions of (6) is missing and would be desirable. Supported by numerical
evidence we conjecture that, as for9 = 0, the lowest excitations are given by holes in the
ground-state distribution [11]. In particular we choose (independently of the parity ofn)
two sets of states, in the sectorn = (N/2) − 1 = n0 − 1, defined by quantum numbers{Il}

Il = I 0
l + σ

2
(16)

with σ = ±1, but with oneI 0
l absent [11] (it is understood that in the sectorsn < (N/2)−1,

one might as well consider multi-hole excitations, whose energy would be the sum of single
hole energies. This quasi-particle feature is typical of Bethe ansatz solvable models). The
corresponding rapidities are shifted from their ground state set{α0

l } to a new set{αl} where
one rapidity is missing (hole). To calculate the excitation energy and the difference in
momentum between the ground state and the excited state, we define a ‘shift’ function [21]

j (αl) = lim
N→∞

αl − α0
l

α0
l+1 − α0

l

(17)

and obtain the following equations in the thermodynamic limit

Eexc − E0 = 1E = −2 sinhγ

∫
C

dα φ′(γ ; α)j (α) + 2 sinhγφ(γ ; α(h)) (18)

1P = i9 + p0(α(h)) −
∫

C

dα φ(γ ; α)j (α) (19)

j (α) + 1

2π

∫
C

dβ φ(2γ ; α − β)j (β) = σ

2
− 1

2π
2(α − α(h)) (20)
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whereα(h) is the position of the hole on the curveC andj (α) is to be determined by solving
equation (20). It follows from (9) and (16) that1P ∈ [−π, 0] for σ = 1 and1P ∈ [0, π ]
for σ = −1.

When−γ < b < 0 the contour in (18)–(20) can still be deformed to a straight horizontal
segment, after which these equations can be dealt with in the usual way [21]. Whenb = −γ ,
to avoid the pole ofφ(γ, α) at α = −iγ one should close the contour by including the
real segment [−π, π ] and the two vertical parts along Re(α) = ±π . We note that this
alternative detour could be adopted for9 < 9c, too.

As in the case9 = 0, elliptic functions and elliptic integrals naturally appear in the
final expressions. We define the elliptic modulusk by [11, 22]

γ

π
= K ′(k)

K(k)
(21)

whereK(k) andK ′(k) are the complete elliptic integrals of first kind with modulusk andk′

with k2 +k′2 = 1 [11, 22]. Energy and momentum, as functions ofα(h), can be expressed in
terms of the elliptic dn and am functions and it can be checked that Re(1E) is non-negative.
It is more instructive though to eliminateα(h) from the two relations (18) and (19) and to
look at the single particle dispersion relation which we find to be

1E(1P) = 2 sinhγK(k)

π

[
(1 − k2 sin2

(
1P + πσ

2
+ i9

2

)] 1
2

+2 sinhγK(k)

π

[(
1 − k2 cosh2

(
9

2

))] 1
2

. (22)

The mass gap is obtained by taking the minimum of this expression, i.e. by setting1P = 0
(or ±π ) in (22). This is in accordance with our numerical solution of the Bethe ansatz
equations which show that the lowest-lying excitations are obtained when the hole in the
distribution of rapidities is lying at the endpoints of the curveC. We obtain, therefore,

m = 4 sinhγK(k)

π

[(
1 − k2 cosh2

(
9

2

))] 1
2

(23)

which gives for the critical field

cosh

(
9c

2

)
= k−1 (24)

alternative to the expression obtained by takingb = −γ in (15). The equality of (24) and
(15) for 9 = 9c has been checked numerically. They reproduce the same critical curve.
Figure 2 shows this curve in theγ –9 plane. From (24), for large values ofγ , we obtain a
linear dependence9 ∼ −2 ln 2+ γ + O(e−γ ), as can be seen from figure 2. The occurence
of the transition is intuitively clear since the terms e9σ+σ− and e−9σ−σ+ tend to destroy
the antiferromagnetic order present at9 = 0.

As 9 approaches the critical value from below we obtain

m ∼ 4 sinhγK(k)

π
(k′)

1
2 (9c − 9)

1
2 + O(9c − 9). (25)

Alternatively, one can keep9 fixed and changeγ , until the gap vanishes atγc(9). Since
(21) defines a regular functionk(γ ) such thatk ∈ (0, 1) asγ ∈ (0, ∞), we have likewise

m ∼ c0(γ − γc(9))
1
2 + O(γ − γc(9)). (26)

The identificationm ∼ ξ−1 would, therefore, give a correlation length exponentν = 1
2

becauseγ is a regular function ofT [3]. We observe that the transition to a massless
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Figure 2. Phase diagram in theγ –9 plane; the full line corresponds to the critical line (24).

regime is different from the one occuring at9 = 0, γ = 0 (level 1SU(2) Wess–Zumino–
Witten model [23]) where, asγ → 0+, the gap vanishes as

m = 4 sinhγK(k)

π
k′ ∼ 8π exp(−π2/2γ ) for γ → 0+. (27)

It is also instructive to compare (26) with the result atV 6= 0. From (3) it is clear that
addingV brings a contribution−2V to the excitations in the sectorn = n0 − 1. In this
case the gap would vanish linearly inV at the critical valueVc = m/2, wherem is given
in (23). Therefore (26) describes a qualitatively new phase transition.

We now study the characteristics of the modelon the critical line, i.e. at9 = 9c. At
small momenta we find for the dispersion relation

1E ∼ 4 sinhγK(k)

π
(k′)

1
2 (1 ± i)|1P | 1

2 (28)

where positive (negative) imaginary part should be taken for1P > 0(< 0). On a finite
lattice, the momentum is quantized in units of 2π/N , and (28) suggests that low-lying
excitations should have gaps that scale likeN− 1

2 . This behaviour has been confirmed, at
least for the real part, by solving (6) numerically up to 80 sites and diagonalizing (3), also
numerically, up to 16 sites. We note that theN− 1

2 scaling differs from the one predicted for
conformally invariant models where the energy gaps scale asN−1 [24]. Unusual exponents
like − 3

2 for the scaling of the gap with the lattice length have also been found in the
ferromagnetic regime [14].

Above the curve (24) (see figure 2) we find a massless and conformal invariant phase.
Our numerical solutions show indeed that this phase is characterized by a central charge
c = 1. In the thermodynamic limit, the ground and excited states scale asN−1, with a
compactification radiusR of a free massless boson field, which depends on9 and γ . It
is interesting to note that approaching the curve9 = 9c(γ ) the compactification radius
takes the value12. The breaking of conformal invariance at this value ofR can probably be
related to a similar phenomenon occurring in theXXZ model in a magnetic field (9 = 0,
V 6= 0) where conformal invariance is again broken, leading to a Prokovskii–Talapov phase
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transition curve [25]. This phenomenon takes place atR = 1 which is dual to our value
R = 1

2. The same phenomenon occurs for higher spin chains [26].
Our results lead to an interesting question, namely, how in the thermodynamic limit

and in the context of the Coulomb gas picture can one account for the fact that a massless
and conformal invariant phase ends on a curve which is also massless but exhibits different
physics? A hint in this direction is the following observation. One expects this behaviour
to be somehow manifest in terms of symmetry breaking. We have indeed noticed this
numerically by diagonalizing (3) exactly for finite lattices. Above the curve (24) (see
figure 2), in the massless and conformal invariant phase we find a high degeneracy in the
energy spectrum which appears in the form of doublets and quadruplets. On the transition
curve this degeneracy is lifted and many (but not all) of the doublets break up into singlets,
while some quadruplets go over into a doublet plus singlets, a picture which remains valid
in the whole massive phase. It is worth noting that this feature is already observable at
finite lattice sizes.

This and other points are currently being investigated. The full details of our calculations
will be given in a future publication.

After this work had been completed, Kim and Noh [27] analysed with more detail the
operator content in the massless regime.

We would like to thank V Rittenberg for valuable suggestions and constant support. We
would also like to acknowledge F C Alcaraz, H van Beijeren, A Berkovich, F Essler,
B McCoy, M Scheunert and A B Zamolodchikov for useful discussions.
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