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Abstract. The spectrum of the non-Hermitian asymmetricXXZ-chain with additional non-
diagonal boundary terms is studied. The lowest-lying eigenvalues are determined numerically.
For the ferromagnetic chain the temporal correlation length shows the same properties as the
spatial correlation length. For the antiferromagnetic chain, we find a conformal invariant
spectrum where the partition function corresponds to the one of a Coulomb gas with only
magnetic charges. This is in contrast to the case of diagonal boundary terms where one finds
only electric charges. Similar results are obtained in a toy model that can be diagonalized
analytically in terms of free fermions.

1. Introduction

In the study of reaction-diffusion processes non-Hermitian chains appear in a natural way.
However, their properties have not yet been studied extensively. For instance, the effect of
boundary conditions on the spectrum of non-Hermitian Hamiltonians is unknown. In this
article we study an asymmetricXXZ-chain with modified boundary terms and we show
that these boundary terms give rise to new and interesting features.

In this article two examples are treated that both show the appearance of boundary-
induced phase transitions. As a first example, we study the Hamiltonian of the asymmetric
diffusion model on a one-dimensional lattice with open boundaries, injection and ejection
of particles at the edges of the chain. In this model, particles of one species can diffuse on
the lattice with lengthN with a ratep to the right andq to the left. Particles are injected
at the left boundary with a rateα and extracted with a rateβ at the right boundary. The
Hamiltonian of this model is given by the following expression [1]:

H = −
N−1∑
j=1

[
qσ−j σ

+
j+1+ pσ+j σ−j+1+

p + q
4

(σ zj σ
z
j+1− 1)+ q − p

4
(σ zj+1− σ zj )

]
+ B1+ BN

(1.1)

with

B1 = α

2
(σ z1 − 2σ−1 + 1) and BN = −β

2
(σ zN + 2σ+N − 1). (1.2)
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The bulk term of this Hamiltonian corresponds to the asymmetricXXZ-Hamiltonian. This
model, and versions of it, have been studied extensively [1–7], but very few results are
known about its temporal evolution.

The first part of this article deals with the analysis of the spectrum ofH for q = 0.
The Hamiltonian is known to be integrable [8], but because of the lack of a reference
state, the Bethe ansatz equations have not yet been obtained. Therefore numerical methods
are applied here. We were interested in determining the correspondence between the spatial
correlation lengths already known from previous work [2, 3] and the dynamical properties of
the Hamiltonian, i.e. the time correlation lengthτ given by the inverse of the smallest energy
gapEG. EG is determined for lattice lengths of 26 N 6 18 sites and then extrapolated to
the thermodynamical limit. The boundary induced phase diagram known for the stationary
state [3, 2] is reproduced by the spectrum of the Hamiltonian which is not always the case
[9].

The second part of the paper is devoted to the antiferromagnetic version of the
Hamiltonian. It can be obtained from the logarithmic derivative of the transfer matrix of the
six-vertex model [10] and it can be used to describe the equilibrium shape of a crystal [11].
The phase diagram of the antiferromagnetic chain with periodic boundary conditions has
recently been determined [12], partition functions for this system were derived in [13]. The
boundary conditions we analyse in this paper (with additional non-diagonal boundary terms)
have not been treated before. Our new results are obtained by determining the lowest-lying
eigenvalues of the Hamiltonian up to 18 sites in the general case and 21 sites in the CP-
invariant case (α = β) using a version of the deflated Arnoldi algorithm [14]. The Arnoldi
algorithm was already used for the study of non-Hermitian quantum chains in [15] whereas
a Lanczos technique was used in [16].

The analysis of the spectrum forp > q andα, β > 0 suggests surprisingly the partition
function of a Coulomb gas [17] that has only magnetic chargesm

Z = lim
N→∞

tr z
N
πξ
(H−f∞−e∞N) = z− 1

24

∑
m∈ Z2

zR
2(m+i(x+Ny))25V (z) (1.3)

with

5V (z) =
∞∏
i=1

(1− zi)−1. (1.4)

Notice that the magnetic chargem is shifted by the amount i(x +Ny) wherex depends on
both bulk and boundary parameters whereasy is a function of the bulk ones only.

For lattices with an even (odd) number of sitesm takes half-integer (integer) values.
Since forαβ = 0 the spectrum is massive, we can conclude that the boundary terms give
rise to the conformal invariant structure of the spectrum.

We also studied a toy model consisting of a simplified version of the Hamiltonian (1.1)
that can be diagonalized in terms of free fermions. Analytic calculations give similar results
to those previously obtained by numerical calculations.

This paper is organized as follows. In section 2, we define the model. We present our
numerical results for the temporal correlation length in section 3 and compare them with
the phase diagram of the stationary state and the known expressions for spatial correlation
lengths. Section 4 deals with the antiferromagnetic case. The finite-size scaling behaviour of
the lowest-lying energy levels suggests the partition function (1.3). In section 5 we present
our analytical results obtained by diagonalization of the toy model which reproduces the
results of section 4. Section 6 closes the paper with a discussion on our results.
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2. Asymmetric diffusion model with boundary terms

We consider a model defined on a chain withN sites. Each site can be either occupied by
a particle of speciesA or empty. For the dynamics we consider only processes that involve
two neighbouring sites. The following processes are allowed:

diffusion to the right:A+ 0→ 0+ A with ratep

diffusion to the left: 0+ A→ A+ 0 with rateq.
(2.1)

Additionally we allow processes that occur only at the two edges of the chain:

injection at the left edge: 0→ A with rateα

extraction at the right edge:A→ 0 with rateβ.
(2.2)

The time evolution of the system is described by a master equation [18] for the
probability distributionP({γ }, t) to find a configuration{γ } of occupied and empty sites
on the lattice at timet

∂

∂t
P (t) = −HP(t). (2.3)

The corresponding Hamiltonian is given by (1.1). It is trivial to see that the spectrum of
H is unchanged by the transformationα ↔ β. In particular if α = β, the Hamiltonian
is invariant under the transformation particle↔ vacancy together with a reflection (CP-
symmetry). Through a similarity transformation [5] the Hamiltonian (1.1) can be brought
to the familiar form:

H ′ = −
√
pq

2

N−1∑
j=1

[
σxj σ

x
j+1+ σyj σ yj+1+

Q+Q−1

2
(σ zj σ

z
j+1− 1)

+Q−Q
−1

2
(σ zj+1− σ zj )

]
+ B ′1+ B ′N (2.4)

with Q =
√
q

p
and arbitrary3. This is the UQSU(2) invariant Hamiltonian [19] with

1 = Q+Q−1

2 and boundary terms:

B ′1 =
α

2
(σ z1 − 2Q 1−N

2 σ−1 + 1) B ′N = −
β

2
(σ zN + 2Q 1−N

2 σ+N − 1).

Notice that their non-Hermitian part only influences the spectrum if both boundary terms
are present (αβ 6= 0). Notice also theN -dependence ofB ′1 andB ′N .

3. Results for the total asymmetric diffusion model with boundary terms

3.1. Analytical results for the stationary state

For future reference, let us first present some of the results achieved previously for the total
asymmetric diffusion model (p = 1, q = 0). In [2, 3] the phase diagram for the current and
the spatial profile of the concentration have been determined as functions ofα andβ. The
phase diagram is given in figure 1.

The density profile of the concentration in the stationary state obtained in [2, 3] allows
us to read off the spatial correlation lengthξ in the different phases [3]. One observes that
in phasesA1 andB1, ξ depends onα andβ while it depends only onα in phaseB2 and
only onβ in phaseA2. In phaseC and on the coexistence line the one-point function〈nk〉
shows an algebraic behaviour.
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Figure 1. Phase diagram for the total asymmetric diffusion model [3].

3.2. Numerical results for the time correlation length

In this section we compare the phase structure of the stationary state with the spectrum of
the Hamiltonian. We investigate the gap between the ground state and the first excited state
of the spin chain. This energy gapEG allows us to read off the time correlation lengthτ
directly:

τ−1 ' EG. (3.1)

We determine the lowest-lying excitation energies for lattice lengths 26 N 6 18 by
diagonalizing the Hamiltonian numerically, using a version of the deflated Arnoldi algorithm
[14]. The eigenvalues were then extrapolated with the help of the BST algorithm [20].α

andβ have been varied in steps of 0.1 between 0.1 and 1. The following form of the energy
gap has been found in the different regions of the phase diagram. In phasesA1 andB1,
EG is a function ofα andβ, while in phaseB2, EG depends only onα and in phaseA2,
depends only onβ. In phaseC and on the coexistence line the system is massless:

A1 : EG = m(α, β)
A2 : EG = m(β)
B1 : EG = m(α, β)
B2 : EG = m(α)
C : EG ∼ N− 3

2

α = β < 1
2 : EG ∼ N−2.

(3.2)

Herem denotes the mass of the spectrum.
Table 1 shows extrapolants for the energy gaps. One sees clearly that in phaseB1 the

energy gap depends on bothα and β while it depends only onα in phaseB2. We did
not give any extrapolants for phasesA1 and A2 since the spectrum is symmetric under
permutation ofα andβ as described in section 2. Table 1 also shows that the mass gap
vanishes in phaseC and on the coexistence line. In table 2 extrapolants for the exponent3

2
in phaseC and for the exponent 2 on the coexistence line can be found.

Comparing these results with the behaviour of the spatial correlation length, we can
see that the temporal correlation length shows the same behaviour as the spatial correlation
length in the different phases: in phaseC and on the coexistence lineτ diverges algebraically
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Table 1. Asymmetric diffusion model: Dependence of the extrapolated gapEG on α andβ.
Negative values indicate that errors are of the order of 10−5.

β \ α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1.0 0.125 73 0.040 14 0.010 17 0.001 19 0.000 00 0.000 01−0.000 02−0.000 01−0.000 00 0.000 00
0.9 0.125 75 0.040 14 0.010 21 0.001 18−0.000 03 0.000 00−0.000 04−0.000 01−0.000 00
0.8 0.125 73 0.040 13 0.010 19 0.001 18−0.000 01 0.000 00−0.000 04−0.000 04
0.7 0.125 87 0.040 12 0.010 19 0.001 14−0.000 03−0.000 02−0.000 04
0.6 0.120 17 0.040 16 0.010 30 0.001 20−0.000 01−0.000 01
0.5 0.099 99 0.033 31 0.008 61 0.001 10 0.00000
0.4 0.072 13 0.020 18 0.003 30−0.000 05
0.3 0.041 73 0.006 78−0.000 01
0.2 0.014 28−0.000 01
0.1 −0.000 00

Table 2. Asymmetric diffusion model: Extrapolated exponents of the first excited state.

β \ α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1.0 1.500 0 1.470 1.456 1.480 1.4999 1.522
0.9 1.499 1.452 1.503 1.4994 1.4999
0.8 1.499 7 1.430 1.436 1.499
0.7 1.462 1.405 1.499
0.6 1.434 1.377
0.5 1.499 99
0.4 2.01
0.3 1.98
0.2 2.010
0.1 1.992

for N → ∞ while it remains finite in phasesA andB. The exponent32 has also been
found for the total asymmetric diffusion model with periodic boundary conditions [6]. The
periodic model can be mapped onto a model for surface growth [21]. This mapping can be
formulated analogously for the open chain with additional boundary terms that are treated
here. Then, in the language of growth models, the exponent3

2 describes KPZ-type growth
[22]. The exponent 2 we find on the coexistence line can be understood by considering
the diffusive motion of ‘domain walls’ which separate a region which has a high density
of particles from a region of low density. These domain walls move like a random walker,
thus leading to the above exponent [23].

In phasesA2 andB2, τ depends only onβ or α respectively. However, the numerical
values for the temporal correlation length are different from those for the spatial correlation
length.

Similar properties for the spatial and the temporal correlation length have been found
in [24] where time-dependent correlation functions are computed for the totally asymmetric
diffusion model with parallel dynamics. On the lineα = β that extends in this case up
to the pointα = β = 1 an exponent 2 is also found. The physical properties can only be
compared with the model studied in this paper forα, β < 1

2.
The fact that the temporal evolution of the system reflects itself in the stationary state

(for t →∞) is not yet understood. This is not true in general, as there are examples for a
different behaviour of the spatial and the temporal correlation length [9].
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4. The antiferromagnetic case

The low-lying excitations of the ferromagnetic chain correspond to the highest states of
the antiferromagnetic chain and vice versa. The numerical studies concentrate on the case
q = 0 andp = 1 with α, β > 0.

The analysis of the spectrum suggests that it corresponds to a conformal invariant theory.
For conformal invariant systems, the ground state takes the following form for finite lattices
and open boundary conditions [25]:

E0(N)

N
= e∞ + f∞

N
− πξc

24N2
− o(N−2). (4.1)

The energy gaps scale here as

Er = lim
N→∞

N

πξ
(Er(N)− E0(N)) = (1+ r). (4.2)

Hereξ is a normalization constant andc is the central charge of the Virasoro algebra.
We have considered separately lattices with even and odd numbers of sites. Since

the ground state was calculated from an odd number of sites, we used interpolated values
from odd lattice lengths for the values of the ground state for even lattice lengths. While
the ground-state energy is real for all lattice lengths, most of the excited states have a
non-vanishing imaginary part. This is a feature that has already appeared for the periodic
asymmetricXXZ-chain [13] and in the calculation of the operator content of the five-vertex
model defined on an anisotropic lattice [26].

We considered the imaginary part of the energy gap

I = lim
N→∞

1

πξ
Im(E(N)) (4.3)

the correction to the real part

Re(E) = lim
N→∞

N

πξ
Re(E(N)− E0(N))) (4.4)

and the correction to the imaginary part

Im(E) = lim
N→∞

N

πξ
Im(E(N)− I). (4.5)

The data reveals the following finite-size scaling behaviour for the normalized
eigenvalues:

N

πξ
(Emr − E′0) = R2(m+ i(x + yN))2+ r r ∈ N (4.6)

and the ground state behaves as

E′0 = E0+ πξ R
2

N
(x + yN)2. (4.7)

Here m is a quantized number and takes, for odd lattice lengths, the integer values
m = 0,±1,±2, . . ., for even lattice lengths half-integer valuesm = ± 1

2,± 3
2, . . .. The

precise relation between the extrapolants and the constantsR, x andy is given by:

Imr = 2R2my

Re(Emr ) = R2m2+ r
Im(Emr ) = 2R2mx.

(4.8)
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Table 3. Extrapolated and predicted values of the energy gaps, computed from the finite-size
spectrum of−H for α = β = 0.5, q = 0, p = 1 andr = 0.

R2m2 2R2my 2R2mx

m Prediction Extrapolated Prediction Extrapolated Extrapolated

1
2 0.317 648 0.317 63(2) 0.182 104 0.182 104−0.120 70(3)
1 1.270 594 1.270(6) 0.364 209 0.364 2(1)−0.241 4(1)
3
2 2.858 836 2.858(9) 0.546 313 0.546 313 −0.362 10(7)
2 5.082 375 5.082(3) 0.728 418 0.728(4) −0.482 8(2)
5
2 7.941 211 7.9(4) 0.910 522 0.9(1) −0.60(4)
3 11.435 343 11.4(8) 1.092 627 1.0(8) −0.72(3)

Table 4. Data corresponding to (4.8) from the extrapolation of the spectra of−H for
α = β = 0.5, q = 0, p = 1 with 2 6 N 6 21; predicted degeneracies are given in square
brackets.

m = 0 m = 1
2

r R2m2 + r 2R2mx 2R2my r R2m2 + r 2R2mx 2R2my

1 [1] 1.000 000 0 [1] 0.317 63(2) −0.120 70(3) 0.182 104
2 [2] 1.999 99(7) 0.000 0(0) 0.000 00(1) 1 [1] 1.317 65(7)−0.120 702 0.182 104
3 [3] 3.000 0(0) 2 [2] 2.317(4) −0.120(7) 0.182 1(1)

2.999(8) −0.000(1) −0.000(0) 2.317 6(8) −0.120 70(2) 0.182 104
4 [5] 4.000 0(0) 3 [3] 3.3(2) −0.12(0) 0.182(1)

4.00(0) 0.000(1) −0.000(0) 3.317(7) −0.120 7(0) 0.182 1(0)
4.0(0) 0.00(3) −0.00(0) 3.31(7) −0.120 6(8) 0.182 1(1)

5 [7] 4.99(6) 4 [5] 4.3(2) −0.1(3) 0.18(4)
5.00(0) 0.00(0) 0.000(0) 4.31(8) −0.120(7) 0.182(1)
5.0(0) 0.0(0) −0.00(1) 4.317(7) −0.120(8) 0.182 0(8)

4.31(6) −0.12(2) 0.18(2)
6 5.99(7) 4.31(7) −0.11(8) 0.182(0)

6.0(1) 0.0(0) −0.00(1)
6.0(0) 0.00(1) −0.00(0) 5 [7] 5.31(7) −0.121(4) 0.182 0(8)
6.0(0) 0.0(0) −0.00(1) 5.317 4(8) −0.120(7) 0.182(1)

5.31(4) −0.12(2) 0.18(2)
7 7.0(1) 5.31(7) −0.12(1) 0.18(2)

6.99(9) −0.0(0) −0.000(0) 5.3(2) −0.1(3) 0.18(4)
7.0(1) 0.0(0) −0.00(1) 5.3(2) −0.11(5) 0.1(8)

8 8.0(0) 6 6.3(1) −0.11(7) 0.182(1)
8.0(2) 6.3(4) −0.1(1) 0.18(1)
8.0(1) 0.0(0) −0.00(1)
8.(1) 0.(0) −0.00(5)
8.0(1) 0.0(0) −0.00(1)

Prediction 0.000 000+r 0.000 000 0.000 000 0.317 648+ r [−0.120 70 ] 0.182 104

Data for r = 0 are shown in table 3. AsH is real, we find for each complex eigenvalue
E also the complex conjugateE∗. Therefore all tables only show data form > 0. Data
for r > 0 can be found in table 4 form = 0 andm = 1

2. The corresponding data for
m = 1, 3

2, 2, 5
2 and 3 has also been obtained.

The termπξImr , the imaginary part of the energy gaps, takes (independently ofα and
β) for odd lattice lengths multiples of the same constant 1.8854. . . that already appeared
in the calculation of Gwa and Spohn [6] for the periodic system as the imaginary part of
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Table 5. Dependence of the free surface energyf∞ on α, β.

β \ α 1.5 1.3 1.1 0.9 0.7 0.5 0.3

0.1 0.495 9(9) 0.30(9) 0.123(1) −0.06(4) −0.25(6) −0.463 1(0) −0.71(0)
0.3 0.908 6(1) 0.722(0) 0.535(8) 0.348(6) 0.156 4(6)−0.050 216(5)
0.5 1.156 24(0) 0.969 57(1) 0.783 44(0) 0.596 234(5) 0.404 0372
0.7 1.362(8) 1.176(2) 0.990 0(9) 0.802 8(9)
0.9 1.555(0) 1.368(4) 1.18(2)
1.1 1.742(2) 1.555(6)
1.3 1.928(3)

the smallest energy gap. Using Bethe ansatz calculations for the first- and second-smallest
eigenvalue in the sector with spin 0 they obtained the following result

e∞ = 0.690 140 115 (4.9)

(E1− E0)per= 6.577 678 7N−1+ i 1.885 456 427. (4.10)

This result can be used to obtain estimates for the parametersR andy, if one assumes
that also the spectrum of the periodic chain is characterized by these parameters, and the
finite-size scaling of the lowest-lying state with spin 0 is given by [13]

N

2πξ
(E1− E0)per= 1

2R
2+ iR2yN. (4.11)

The estimates that have been obtained using this assumption can now be compared with
the numerical results. Tables 3 and 4 show a comparison between the values obtained from
the analytical calculation and the numerical results. The normalization constantξ has been
taken from numerical Bethe ansatz calculations for the periodical system for up to 80 sites
[27]:

ξ = 1.647 843 926 946 23. (4.12)

The next constant that has to be determined is the conformal chargec′. The ground-state
energy in the thermodynamic limite∞ is already known from the periodical system. The
surface energyf∞ can be obtained by extrapolation of

f∞ = lim
N→∞

(E0(N)−Ne∞). (4.13)

The results are given in table 5. Nowc can be obtained via

c = lim
N→∞

24N

πξ
(E0(N)−Ne∞ − f∞). (4.14)

The numerical values forc are not constant for different values ofα andβ (see table 6).
However, we can shift all energy gaps, independently of the sector by a constant term
24R2x(α, β)2 that depends onα andβ (table 7). Absorbing this shift into the ground state
(see equation (4.7)), one can define a new central chargec′

c′ = c − 24R2x2 (4.15)

which is indeed constant within the numerical errors. The numerical values show an
excellent agreement withc′ = 1 (table 6).
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Table 6. Extrapolated central charges. The value ofR2x is determined fromE1
0.

α = β f∞ R2x c c′

0.1 −1.12(3) 0.793(8) 12.9(8) 1.0(8)
0.2 −0.6(2) 0.506(0) 5.8(3) 1.0(0)
0.3 −0.297(8) 0.3339(8) 3.1(1) 1.0(1)
0.4 −0.033 6(9) 0.2126(4) 1.84(8) 0.99(4)
0.5 0.197 37 0.1207(0) 1.2752(8) 1.0000(8)
0.6 0.409 65 0.0486(5) 1.044(4) 0.999(7)
0.7 0.610(7) −0.008(7) 1.00(0) 0.99(9)
0.8 0.804 9(7)−0.054(6) 1.04(8) 0.99(2)
0.9 1.182 9(2)−0.0913(7) 1.2(7) 1.1(2)
1.0 1.369(5) −0.1(2) 1.3(8) 1.1(1)

Table 7. Dependence ofR2x on α andβ.

β \ α 1.5 1.3 1.1 0.9 0.7 0.5 0.3

0.1 −0.29(9) −0.30(9) −0.32(5) −0.35(2) −0.39(3) −0.459 00 −0.565(6)
0.3 −0.06(8) −0.07(8) −0.09(4) −0.12(1) −0.1(6) −0.227 35
0.5 0.0379(7) 0.028 06 0.011 65−0.014 67 −0.056 01
0.7 0.102(5) 0.092(6) 0.076(2) 0.049(9)
0.9 0.14(3) 0.13(3) 0.11(7)
1.1 0.17(0) 0.16(0)
1.3 0.18(6)

The degeneracies of the energy levels forr = constant are described by the character
function of a U(1) Kac–Moody algebra [28]. This confirms the above resultc′ = 1. The
Kac–Moody algebra is defined by its commutation relations

[Tm, Tn] = mδm+n,0 m, n ∈ Z. (4.16)

The character function is given by

χ1,q(z, y) = tr(zL0yT0) = z q2

2 5V (z)y
q (4.17)

whereL0 is a generator of the Virasoro algebra with conformal weightc = 1 that can be
canonically obtained from the U(1) Kac–Moody algebra using the Sugawara construction
[29]. Hereq is the eigenvalue ofT0, and the highest weight ofL0 is 1 = q2

2 . A shift in
the algebra characterized by a parameterϕ

T̃m = Tm + ϕδm,0 (4.18)

does not change the commutation relations above but leads to a representation with highest
weights

1̃ = 1
2 q̃

2 whereq̃ = q + ϕ. (4.19)

If ϕ is chosen to be complex, one obtains a representation of the Kac–Moody algebra with

negative conformal dimensions. In this case however˜T +0 6= T̃0 and the representation is
not unitary.

In our case, the energy corrections can be described by a non-unitary representation of
a shifted Kac–Moody algebra. The parameterx depends on the boundary terms. The shift
ϕ of the Kac–Moody algebra is given byϕ = √2iR(x +Ny).
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The results for the antiferromagnetic chain can be summarized in the partition function

Z = z− 1
24

∑
m∈ Z2

zR
2(m+i(x+Ny))25V (z). (4.20)

The operator content of this model corresponds to the one of a Coulomb gas with only
magnetic charges and an additional term that depends on the lattice lengthN . All
calculations forq 6= 0 6= p for p > q show similar results but reveal that in this case
x andy are functions of the ratioq/p.

The caseq > p has not been studied systematically. Here the observed spectra are
purely real, but the convergence of the extrapolations is too bad to obtain precise estimates
(the same holds for the casep = q, i.e. the symmetricXXZ-chain with additional
boundaries).

5. Toy model

In this section we show that a simple model which can be solved analytically has all the
features obtained numerically in section 4. We consider the Hamiltonian:

H =
N−1∑
j=1

σ+j σ
−
j+1+ ασ−1 + βσ+N . (5.1)

For α = 0 or β = 0 the spectrum consists only of the 2N times degenerate eigenvalue zero.
So all the properties of the spectrum come from the boundary terms.

This Hamiltonian can be diagonalized in terms of free fermions. MoreoverH(α, β) can
be transformed intoH(−α,−β) by applying the transformationσ± → −σ±. For αβ > 0
the characteristic properties of the spectra described previously are reproduced.

In order to writeH in terms of free fermions, we have to obtain a bilinear expression
in σ -matrices so that standard fermionization techniques can be applied [30]. Technically,
this can be achieved by adding one lattice site at each end of the chain, site 0 and siteN+1
[31]. The Hamiltonian then reads

H ′ =
N−1∑
j=1

σ+j σ
−
j+1+ ασx0 σ−1 + βσ+N σxN+1. (5.2)

As σx0 and σxN+1 commute withH ′, the spectrum ofH ′ decomposes into four sectors
(++,+−,−+,−−) corresponding to the eigenvalues±1 of σx0 andσxN+1. We can obtain
the eigenvectors of the original problem by projecting onto the(++)-sector.

Defining new operatorsτ+,−j = (
∏
i<j σ

z
i )σ

x,y

j [32] that obey the anticommutation
relations of a Clifford algebra one can rewriteH ′ as a bilinear expression inτ+j and τ−j .

Then a linear transformation to new Clifford operatorsT γn =
∑N
j=0

∑
µ=±1(ψ

γ
n )
µ

j τ
µ

j with
γ = ±1 yields

H ′ =
N+1∑
n=0

3niT
−
n T
+
n . (5.3)

One of the eigenvalues3n is 0, the others are determined by the following equation:
(23)2N+2 = 4α2β2(−1)N . The solutions are

30 = 0 23n = (2αβ) 1
N+1 (sin(k)− i cos(k)) (5.4)
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with

k = 2n− 1

2N + 2
π (0< n 6 N + 1). (5.5)

Because the operators iT −n T
+
n always have eigenvalues±1 it is sufficient to determine the

eigenvalues3n with a positive real part. The energy gaps of the spectrum are given by
23n. For the calculation of the exact ground state, one has to sum all levels with negative
energy (so that the fermi sea is full), which leads to

E0 = −
N+1∑
n=1

3n = − (2αβ)
1

N+1

2 sin
(

π
2N+2

) . (5.6)

5.1. Scaling of the energy levels

For largeN the ground state reads

−E0 ≈ N

π
+ 1+ ln(2αβ)

π
+ π

24N

(
1+ 12 ln2(2αβ)

π2

)
+ o(N−2). (5.7)

For the study of the low-lying excitations one expands around the minimum of the dispersion
relation which is obtained fork = ±π

2 . For 0< n� N one obtains:

23 n

N+2−n ≈
2n− 1

2

π

N
∓ i

(
1+ ln(2αβ)

N

)
for k <>

π

2
. (5.8)

Up to now we always treated the chain where two additional sites, 0 andN + 1 have been
added to the starting Hamiltonian. We obtain the spectrum of the Hamiltonian without these
sites by projection onto the sector where theσ -matrices acting on the additional sites have
eigenvalue 1. It can be shown that the spectrum ofH with respect to the ground stateE0

is obtained for evenN by combining only an odd number of fermions with energies 23n

and for odd lattice lengths by combining an even number of fermions. The ground state of
the system is found to be in the sector with odd lattice lengths.

For the normalization constant, one reads off directlyξ = 1.
We turn now to the determination of the partition function because this can be compared

directly with previous results. Writing̃H = N
π
(H−E0) and using the triple product identity

[33] we obtain

tr zH̃ =
∞∏
n=1

(1+ zn− 1
2 z ia)(1+ zn− 1

2 z−ia) =
∞∑
m∈ Z2

z2(m+i a2 )
2+ a2

2

∞∏
n=1

(1− zn)−1 (5.9)

with

a

2
= x + yN x = ln(2αβ)

2π
y = 1

2π
. (5.10)

Here we obtainm ∈ Z for odd lattice lengths andm ∈ Z + 1
2 for even lattice lengths.

Absorbing the terma
2

2 into the ground-state energy, we get the following expression:

E′0(N) = −
N

2π
− 1

π
− π

24N
+ o(N−2). (5.11)
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This corresponds to a system with conformal chargec = 1. For the partition function we
obtain

Z = z− 1
24

∞∑
m∈ Z2

z2(m+i(x+Ny))2
∞∏
n=1

(1− zn)−1. (5.12)

This is exactly the same result obtained numerically in section 4 forR2 = 2.
Comparing the partition function for the toy model with those for the open and for

the periodicXXZ-chain [13, 34, 35] we get some insight into the nature of the different
new terms in the partition function. For asymmetricXXZ-chains with diagonal boundary
conditions one gets the spectrum of a Coulomb gas with electric charges. In the case of
non-diagonal boundary terms we get only magnetic charges. These boundary conditions
also give rise to an imaginary shift ix in the magnetic charges that also appear for the
periodic chain with a real twist [34]. In our casex depends on the productαβ.

6. Conclusions

In this paper, we have studied the spectrum of the asymmetricXXZ-chain with non-
Hermitian boundary terms. Numerical methods have been applied for the determination
of the eigenvalues. Analytically, we studied a toy model that reproduces the characteristic
properties of the full antiferromagnetic Hamiltonian. In two different cases, we concluded
that the boundary terms induce the phase transitions of the Hamiltonian.

We studied first the ferromagnetic chain withα, β > 0 that describes the time evolution
of a reaction-diffusion system with asymmetric diffusion in the bulk and additional injection
and extraction terms at the boundaries. For the completely asymmetric chain the behaviour
of the smallest energy gap that corresponds directly to the inverse temporal correlation
length shows the same behaviour as the spatial correlation length in the stationary state
determined by [2, 3]. In phasesA andB where the spatial correlation length stays finite,
i.e. the concentration of particles shows an exponential decay in the spatial direction, we
find a massive spectrum where the mass depends on the same parameters as the spatial
correlation length in the different phasesA1, A2, B1 andB2. In this way the subdivision of
phasesA andB is also valid for the dynamical properties ofH . However, the numerical
values of the spatial and the temporal correlation lengths do not coincide. PhaseC, where
the spatial density profile of the stationary state decays algebraically in the thermodynamic
limit, exhibits a divergence of the temporal correlation length with an exponent3

2 for
N →∞. This exponent has already been identified for the model with periodic boundary
conditions. On the coexistence line, we find a divergence with an exponent 2. These results
did not come as a surprise.

The antiferromagnetic chain for1 < −1 shows unexpected features. Forα = 0 or
β = 0 the spectrum corresponds to that of aXXZ-chain with additionalσ z-terms at the
boundaries and therefore is massive. Only when bothα andβ are non-zero, is the spectrum
massless and can be described by the partition function

Z = z− 1
24

∑
m∈ Z2

zR
2(m+i(x+Ny))25V (z) (6.1)

with magnetic charges only. The analysis of the toy model that was diagonalized in terms
of free fermions reproduces the same structure of the spectrum. The length-dependent term
seems to be a common property of the anisotropy of the spin chain [26] and also appeared
for the periodic chain [13]. The imaginary shift of the magnetic charge is an effect of
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the non-Hermitian and non-diagonal boundary terms. The influence of more general non-
diagonal boundary terms and asymmetric interactions in the bulk will be the subject of a
future publication [36].
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