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Abstract. The spectrum of the non-Hermitian asymmetKd& Z-chain with additional non-
diagonal boundary terms is studied. The lowest-lying eigenvalues are determined numerically.
For the ferromagnetic chain the temporal correlation length shows the same properties as the
spatial correlation length. For the antiferromagnetic chain, we find a conformal invariant
spectrum where the partition function corresponds to the one of a Coulomb gas with only
magnetic charges. This is in contrast to the case of diagonal boundary terms where one finds
only electric charges. Similar results are obtained in a toy model that can be diagonalized
analytically in terms of free fermions.

1. Introduction

In the study of reaction-diffusion processes non-Hermitian chains appear in a natural way.
However, their properties have not yet been studied extensively. For instance, the effect of
boundary conditions on the spectrum of non-Hermitian Hamiltonians is unknown. In this
article we study an asymmetrik X Z-chain with modified boundary terms and we show
that these boundary terms give rise to new and interesting features.

In this article two examples are treated that both show the appearance of boundary-
induced phase transitions. As a first example, we study the Hamiltonian of the asymmetric
diffusion model on a one-dimensional lattice with open boundaries, injection and ejection
of particles at the edges of the chain. In this model, particles of one species can diffuse on
the lattice with lengthv with a ratep to the right andg to the left. Particles are injected
at the left boundary with a rate and extracted with a ratg at the right boundary. The
Hamiltonian of this model is given by the following expression [1]:

N-1

- - p+q, . . q—7p
H=- Z |:qu o1+ poj o+ 4 o - D+ T(UJZH - “/‘Z)} + B+ By
=1
(1.1)
with
o _ B . +
By = 5(01” —20; +1 and By = _E(GN +2y—-1. (1.2
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The bulk term of this Hamiltonian corresponds to the asymmefXcZ-Hamiltonian. This
model, and versions of it, have been studied extensively [1-7], but very few results are
known about its temporal evolution.

The first part of this article deals with the analysis of the spectruni’ dbr ¢ = 0.

The Hamiltonian is known to be integrable [8], but because of the lack of a reference
state, the Bethe ansatz equations have not yet been obtained. Therefore numerical methods
are applied here. We were interested in determining the correspondence between the spatial
correlation lengths already known from previous work [2, 3] and the dynamical properties of
the Hamiltonian, i.e. the time correlation lengtlgiven by the inverse of the smallest energy

gap Eg. E is determined for lattice lengths of 2 N < 18 sites and then extrapolated to

the thermodynamical limit. The boundary induced phase diagram known for the stationary
state [3, 2] is reproduced by the spectrum of the Hamiltonian which is not always the case
[9].

The second part of the paper is devoted to the antiferromagnetic version of the
Hamiltonian. It can be obtained from the logarithmic derivative of the transfer matrix of the
six-vertex model [10] and it can be used to describe the equilibrium shape of a crystal [11].
The phase diagram of the antiferromagnetic chain with periodic boundary conditions has
recently been determined [12], partition functions for this system were derived in [13]. The
boundary conditions we analyse in this paper (with additional non-diagonal boundary terms)
have not been treated before. Our new results are obtained by determining the lowest-lying
eigenvalues of the Hamiltonian up to 18 sites in the general case and 21 sites in the CP-
invariant cased = ) using a version of the deflated Arnoldi algorithm [14]. The Arnoldi
algorithm was already used for the study of non-Hermitian quantum chains in [15] whereas
a Lanczos technique was used in [16].

The analysis of the spectrum fpr> g andw, 8 > 0 suggests surprisingly the partition
function of a Coulomb gas [17] that has only magnetic charges

2= fim g et g 3 RO o) (13)
me%
with
00 .
HV(Z) = l_[(l — Zl)il. (14)
i=1

Notice that the magnetic chargeis shifted by the amoun{i + Ny) wherex depends on
both bulk and boundary parameters whergas a function of the bulk ones only.

For lattices with an even (odd) number of sitestakes half-integer (integer) values.
Since foraB = 0 the spectrum is massive, we can conclude that the boundary terms give
rise to the conformal invariant structure of the spectrum.

We also studied a toy model consisting of a simplified version of the Hamiltonian (1.1)
that can be diagonalized in terms of free fermions. Analytic calculations give similar results
to those previously obtained by numerical calculations.

This paper is organized as follows. In section 2, we define the model. We present our
numerical results for the temporal correlation length in section 3 and compare them with
the phase diagram of the stationary state and the known expressions for spatial correlation
lengths. Section 4 deals with the antiferromagnetic case. The finite-size scaling behaviour of
the lowest-lying energy levels suggests the partition function (1.3). In section 5 we present
our analytical results obtained by diagonalization of the toy model which reproduces the
results of section 4. Section 6 closes the paper with a discussion on our results.
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2. Asymmetric diffusion model with boundary terms

We consider a model defined on a chain withsites. Each site can be either occupied by
a particle of specied or empty. For the dynamics we consider only processes that involve
two neighbouring sites. The following processes are allowed:

diffusion to the righttA+0— 0+ A with rate p

2.1
diffusion to the left: 0+ A - A+ 0 with rategq. 2.1)

Additionally we allow processes that occur only at the two edges of the chain:
injection at the left edge: 6> A with ratea 2.2)

extraction at the right edged — 0 with rateg.

The time evolution of the system is described by a master equation [18] for the
probability distributionP ({y}, ¢) to find a configuration{y} of occupied and empty sites
on the lattice at time
0]
o PO =—HP@). (2.3)
The corresponding Hamiltonian is given by (1.1). It is trivial to see that the spectrum of
H is unchanged by the transformation<> 8. In particular if« = 8, the Hamiltonian
is invariant under the transformation particie vacancy together with a reflection (CP-
symmetry). Through a similarity transformation [5] the Hamiltonian (1.1) can be brought
to the familiar form:
. P : Q+09
== L|tat oot Ty @D
iz
_ 01
L9-09

5 (0 gjz)} + B, + B, (2.4)

with @ = \/% and arbitraryA. This is the L,SU(2) invariant Hamiltonian [19] with

A = 22 and boundary terms:

B
2
Notice that their non-Hermitian part only influences the spectrum if both boundary terms
are presento8 # 0). Notice also theV-dependence oB; and B, .

o = £
Bl=50i-20%0; +1) By =—" (05 +20" o — D).

3. Results for the total asymmetric diffusion model with boundary terms

3.1. Analytical results for the stationary state

For future reference, let us first present some of the results achieved previously for the total
asymmetric diffusion modely(= 1, ¢ = 0). In [2, 3] the phase diagram for the current and
the spatial profile of the concentration have been determined as functienaraf 8. The
phase diagram is given in figure 1.

The density profile of the concentration in the stationary state obtained in [2, 3] allows
us to read off the spatial correlation lengthn the different phases [3]. One observes that
in phasesA; and B;, & depends orx and 8 while it depends only om in phaseB, and
only on g8 in phaseA,. In phaseC and on the coexistence line the one-point functjog)
shows an algebraic behaviour.
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Figure 1. Phase diagram for the total asymmetric diffusion model [3].

3.2. Numerical results for the time correlation length

In this section we compare the phase structure of the stationary state with the spectrum of
the Hamiltonian. We investigate the gap between the ground state and the first excited state
of the spin chain. This energy gdp; allows us to read off the time correlation length
directly:

i~ Eg. (3.1)

We determine the lowest-lying excitation energies for lattice lengths v < 18 by
diagonalizing the Hamiltonian numerically, using a version of the deflated Arnoldi algorithm
[14]. The eigenvalues were then extrapolated with the help of the BST algorithm ¢20].
and g have been varied in steps aflbetween @ and 1. The following form of the energy
gap has been found in the different regions of the phase diagram. In pAasewd B,

Eg is a function ofa and 8, while in phaseB,, Eg depends only o and in phase,,
depends only or8. In phaseC and on the coexistence line the system is massless:

Ayl Eg =m(a, B)
Az Eg =m(B)
By : Eg =m(a, B)
By Eg =m(w)
C:E;~N"3

a=p<3:Eg~N2

(3.2)

Herem denotes the mass of the spectrum.

Table 1 shows extrapolants for the energy gaps. One sees clearly that inAhthee
energy gap depends on bathand 8 while it depends only onx in phaseB,. We did
not give any extrapolants for phasdg and A, since the spectrum is symmetric under
permutation ofe and 8 as described in section 2. Table 1 also shows that the mass gap
vanishes in phas€ and on the coexistence line. In table 2 extrapolants for the exp(§1ent
in phaseC and for the exponent 2 on the coexistence line can be found.

Comparing these results with the behaviour of the spatial correlation length, we can
see that the temporal correlation length shows the same behaviour as the spatial correlation
length in the different phases: in phasend on the coexistence linediverges algebraically
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Table 1. Asymmetric diffusion model: Dependence of the extrapolated Bapon « and 8.
Negative values indicate that errors are of the order 010

B\a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1.0 0.12573 0.04014 0.01017 0.00119 0.00000 0.066MQO002-0.00001-0.00000 0.00000
0.9 0.12575 0.04014 0.01021 0.001-18.00003 0.000060.00004-0.00001-0.00000

0.8 0.12573 0.04013 0.01019 0.001-1@.00001 0.000086-0.00004-0.00004

0.7 0.12587 0.04012 0.01019 0.001-1@.00003-0.00002-0.000 04

0.6 0.12017 0.04016 0.01030 0.001-20.00001-0.00001

0.5 0.09999 0.03331 0.00861 0.00110 0.00000

0.4 0.07213 0.02018 0.0033®.000 05

0.3 0.04173 0.006780.00001

0.2 0.01428-0.00001

0.1 —-0.00000

Table 2. Asymmetric diffusion model: Extrapolated exponents of the first excited state.

B\« 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1.0 1.5000 1.470 1.456 1.480 1.4999 1.522
0.9 1.499 1.452 1.503 1.4994 1.4999

0.8 1.4997 1.430 1.436 1.499

0.7 1.462 1.405 1.499

0.6 1.434 1.377

0.5 1.49999

0.4 2.01

0.3 1.98

0.2 2.010

0.1 1.992

for N — oo while it remains finite in phased and B. The exponemg has also been
found for the total asymmetric diffusion model with periodic boundary conditions [6]. The
periodic model can be mapped onto a model for surface growth [21]. This mapping can be
formulated analogously for the open chain with additional boundary terms that are treated
here. Then, in the language of growth models, the expog\dﬂscribes KPZ-type growth

[22]. The exponent 2 we find on the coexistence line can be understood by considering
the diffusive motion of ‘domain walls’ which separate a region which has a high density
of particles from a region of low density. These domain walls move like a random walker,
thus leading to the above exponent [23].

In phasesd, and B,, t depends only o8 or « respectively. However, the numerical
values for the temporal correlation length are different from those for the spatial correlation
length.

Similar properties for the spatial and the temporal correlation length have been found
in [24] where time-dependent correlation functions are computed for the totally asymmetric
diffusion model with parallel dynamics. On the lire= g that extends in this case up
to the pointe = 8 = 1 an exponent 2 is also found. The physical properties can only be
compared with the model studied in this paperdopB < %

The fact that the temporal evolution of the system reflects itself in the stationary state
(for + — 00) is not yet understood. This is not true in general, as there are examples for a
different behaviour of the spatial and the temporal correlation length [9].
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4. The antiferromagnetic case

The low-lying excitations of the ferromagnetic chain correspond to the highest states of
the antiferromagnetic chain and vice versa. The numerical studies concentrate on the case
g=0andp =1withw, 8 >0.

The analysis of the spectrum suggests that it corresponds to a conformal invariant theory.
For conformal invariant systems, the ground state takes the following form for finite lattices
and open boundary conditions [25]:

Eo(N) _ fo  mEC
N =t = o — (N, (4.1)
The energy gaps scale here as
E = lim E(E,(N) — Eo(N)) = (A +7). (4.2)
N—oo &€

Here& is a normalization constant anrdis the central charge of the Virasoro algebra.

We have considered separately lattices with even and odd numbers of sites. Since
the ground state was calculated from an odd number of sites, we used interpolated values
from odd lattice lengths for the values of the ground state for even lattice lengths. While
the ground-state energy is real for all lattice lengths, most of the excited states have a
non-vanishing imaginary part. This is a feature that has already appeared for the periodic
asymmetricX X Z-chain [13] and in the calculation of the operator content of the five-vertex
model defined on an anisotropic lattice [26].

We considered the imaginary part of the energy gap

1

Z=Ilim —Im(EN 4.3
am Py M(E(N)) (4.3)

the correction to the real part

N
Re(€) = lim — Re(E(N) — Eg(N))) (4.4)

N—oo &€

and the correction to the imaginary part

ImE) = lim N IM(E(N) — T). (4.5)

N—oo j'[&'

The data reveals the following finite-size scaling behaviour for the normalized
eigenvalues:

N .

?(E;" —E) = R’(m+i(x + yN)% +r reN (4.6)

4
and the ground state behaves as

R2

Ey= Eo+ mE yN)2. (4.7)
Here m is a quantized number and takes, for odd lattice lengths, the integer values
m = 0,41,42, ..., for even lattice lengths half-integer values = +3,+3,.... The
precise relation between the extrapolants and the conskantand y is given by:

" = 2R?my

Re&") = R’m?+r (4.8)

Im(E™) = 2R?mx.
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Table 3. Extrapolated and predicted values of the energy gaps, computed from the finite-size
spectrum of—H fora = 8 =05,9 =0, p=1andr =0.

R%m? 2R%my 2R?mx
m  Prediction Extrapolated  Prediction  Extrapolated Extrapolated
% 0.317648 0.31763(2) 0.182104 0.182104 —0.12070(3)
1 1.270594 1.270(6) 0.364209 0.3642(1) —0.2414(1)
g 2.858836 2.858(9) 0.546313  0.546313 —0.36210(7)
2 5.082375 5.082(3) 0.728418 0.728(4) —0.4828(2)
g 7.941211 7.9(4) 0.910522  0.9(1) —0.60(4)
3 11.435343 11.4(8) 1.092627 1.0(8) —0.72(3)

Table 4. Data corresponding to (4.8) from the extrapolation of the spectra-&f for
a=p8=054¢9=0,p=1with 2 < N < 21; predicted degeneracies are given in square

brackets.
m=0 m= %
r R?m? +r 2R%mx 2R%my r R?m? +r 2R%mx 2R?my
1[1] 1.000 000 0[1] 0.31763(2) —0.12070(3) 0.182104
2[2] 1.99999(7) 0.0000(0) 0.00000(1) 1[1] 1.31765(7)—0.120702 0.182104
3[3] 3.0000(0) 2[2] 2.317(4) —0.120(7) 0.1821(1)
2.999(8) —0.000(1) —0.000(0) 2.3176(8) —0.12070(2) 0.182104
4 [5] 4.0000(0) 3[3] 3.3(2 —0.12(0) 0.182(1)
4.00(0) 0.000(1) —0.000(0) 3.317(7) —0.1207(0) 0.1821(0)
4.0(0) 0.00(3) —0.00(0) 3.31(7) —0.1206(8) 0.1821(1)
5[7] 4.99(6) 415] 4.3(2) —0.1(3) 0.18(4)
5.00(0) 0.00(0) 0.000(0) 4.31(8) —0.120(7) 0.182(1)
5.0(0) 0.0(0) —0.00(1) 4.317(7) —0.120(8) 0.1820(8)
4.31(6) —0.12(2) 0.18(2)
6 5.99(7) 4.31(7) —0.11(8) 0.182(0)
6.0(1) 0.0(0) —0.00(1)
6.0(0) 0.00(1) —0.00(0) 5[7] 5.31(7) —0.121(4) 0.1820(8)
6.0(0) 0.0(0) —0.00(1) 5.3174(8) —0.120(7) 0.182(1)
5.31(4) —0.12(2) 0.18(2)
7 7.0(1) 5.31(7) —0.12(1) 0.18(2)
6.99(9) —0.0(0) —0.000(0) 5.3(2) —0.1(3) 0.18(4)
7.0(1) 0.0(0) —0.00(1) 5.3(2) —0.11(5) 0.1(8)
8 8.0(0) 6 6.3(1) —0.11(7) 0.182(1)
8.0(2) 6.3(4) —0.1(1) 0.18(1)
8.0(1) 0.0(0) —0.00(1)
8.(1) 0.(0) —0.00(5)
8.0(1) 0.0(0) —0.00(1)
Prediction ~ 0.000008» 0.000000  0.000000 .B17648+ r [-0.120 70 ] 0.182104

Data forr = 0 are shown in table 3. A# is real, we find for each complex eigenvalue
E also the complex conjugaté*. Therefore all tables only show data far > 0. Data
for r > 0 can be found in table 4 fon = 0 andm = % The corresponding data for
m=1,3,2 3 and 3 has also been obtained.

The termz &I, the imaginary part of the energy gaps, takes (independently arid
B) for odd lattice lengths multiples of the same constaBB%4. .. that already appeared

in the calculation of Gwa and Spohn [6] for the periodic system as the imaginary part of
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Table 5. Dependence of the free surface enef@gy on «, .

B\a 15 1.3 1.1 0.9 0.7 0.5 0.3
0.1 0.4959(9)  0.30(9) 0.123(1) —0.06(4) -0.25(6) -0.4631(0) —0.71(0)
0.3 0.9086(1)  0.722(0) 0.535(8) 0.348(6) 0.156 4(6)0.050 216(5)

0.5 1.15624(0) 0.96957(1) 0.78344(0) 0.596234(5)  0.4040372
0.7 1.362(8) 1.176(2) 0.9900(9)  0.8028(9)

0.9 1.555(0) 1.368(4) 1.18(2)

11 1.742(2) 1.555(6)

1.3 1.928(3)

the smallest energy gap. Using Bethe ansatz calculations for the first- and second-smallest
eigenvalue in the sector with spin 0 they obtained the following result

eoo = 0.690140 115 (4.9)
(E1— Eo)per= 6577678 N1 + i 1.885456 427 (4.10)

This result can be used to obtain estimates for the paramitargd y, if one assumes
that also the spectrum of the periodic chain is characterized by these parameters, and the
finite-size scaling of the lowest-lying state with spin O is given by [13]

i(El — Eo)per = s R* +iR?yN. (4.11)

2mé 2

The estimates that have been obtained using this assumption can now be compared with
the numerical results. Tables 3 and 4 show a comparison between the values obtained from
the analytical calculation and the numerical results. The normalization coistes been
taken from numerical Bethe ansatz calculations for the periodical system for up to 80 sites
[27]:

£ = 1.647 843926 946 23 (4.12)

The next constant that has to be determined is the conformal ctiargkee ground-state
energy in the thermodynamic limét,, is already known from the periodical system. The
surface energy,, can be obtained by extrapolation of

foo = lim (Eo(N) — Newo). (4.13)
N—o00
The results are given in table 5. Nawcan be obtained via
24N
c= lim ——(Eo(N) — New — foo)- (4.14)
N—oo 7'[%'

The numerical values for are not constant for different values @fand g (see table 6).
However, we can shift all energy gaps, independently of the sector by a constant term
24R?%x(«, B)? that depends onr and g (table 7). Absorbing this shift into the ground state
(see equation (4.7)), one can define a new central charge

¢ = c — 24R*x? (4.15)

which is indeed constant within the numerical errors. The numerical values show an
excellent agreement witll = 1 (table 6).
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Table 6. Extrapolated central charges. The valueRSf is determined from‘;“&.

a=8 feo R?x c c

01 -112(3)  0.793(8) 12.9(8)  1.08)
02 —06() 0506(0) 5.8(3) 1.0(0)
03 -0297(8) 03339(8) 3.1(1) 1.0(1)

0.4 -0.0336(9) 0.2126(4) 1.84(8) 0.99(4)
0.5 019737  0.1207(0) 1.2752(8)  1.0000(8)
0.6 0.40965  0.0486(5) 1.044(4)  0.999(7)
0.7 0.610(7) —0.008(7)  1.00(0) 0.99(9)
0.8 0.8049(7) —0.054(6)  1.04(8) 0.99(2)

0.9 1.1829(2) —0.0913(7)  1.2(7) 1.1(2)

1.0 1.369(5) —0.1(2) 1.3(8) 1.1(1)

Table 7. Dependence oR2x on« andg.

B\e 15 1.3 1.1 0.9 0.7 0.5 0.3

01 -029(9 -0.3009) —0.32(5) —0.35(2) —0.39(3) —0.45900 —0.565(6)
0.3 -0.06(8) -0.07(8) —0.09(4) -0.12(1) —0.1(6) -0.22735

05  0.0379(7) 0.02806 0.011650.01467 —0.05601

0.7  0.102(5) 0.092(6) 0.076(2) 0.049(9)

09  0.14(3) 0.13(3)  0.11(7)

1.1 0.17(0) 0.16(0)

1.3 0.18(6)

The degeneracies of the energy levelsfoe constant are described by the character
function of a U(1) Kac—Moody algebra [28]. This confirms the above rasult 1. The
Kac—Moody algebra is defined by its commutation relations

[T, Tu] = mémn.0 m,n € Z. (4.16)

The character function is given by

42
Xa.q(z,y) = tr(zhoy™) = 22 Ty (2)y? (4.17)

where Ly is a generator of the Virasoro algebra with conformal weight 1 that can be
canonically obtained from the U(1) Kac—Moody algebra using the Sugawara construction
[29]. Heregq is the eigenvalue ofp, and the highest weight afg is A = 122 A shift in

the algebra characterized by a parameter

does not change the commutation relations above but leads to a representation with highest
weights

A= 34" whereg = g + ¢. (4.19)

If ¢ is chosen to be complex, one obtains a representation of the Kac—Moody algebra with
negative conformal dimensions. In this case howelgr# To and the representation is
not unitary.

In our case, the energy corrections can be described by a non-unitary representation of
a shifted Kac—Moody algebra. The parameteslepends on the boundary terms. The shift
¢ of the Kac—Moody algebra is given iy = +/2iR(x + Ny).
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The results for the antiferromagnetic chain can be summarized in the partition function

z_ z‘Z’l" Z ZRZ(m-&-i(x-‘rNy))ZHV(Z)‘ (4.20)

Z
me 2

The operator content of this model corresponds to the one of a Coulomb gas with only
magnetic charges and an additional term that depends on the lattice IanhgthAll
calculations forg # 0 # p for p > g show similar results but reveal that in this case

x andy are functions of the ratiq/p.

The casegy > p has not been studied systematically. Here the observed spectra are
purely real, but the convergence of the extrapolations is too bad to obtain precise estimates
(the same holds for the cage = ¢, i.e. the symmetricX X Z-chain with additional
boundaries).

5. Toy model

In this section we show that a simple model which can be solved analytically has all the
features obtained numerically in section 4. We consider the Hamiltonian:

N-1
H= Z cr;rajjrl + ao; + Boy. (5.1)
j=1

Fora = 0 or 8 = 0 the spectrum consists only of th& imes degenerate eigenvalue zero.
So all the properties of the spectrum come from the boundary terms.

This Hamiltonian can be diagonalized in terms of free fermions. More&\es, 8) can
be transformed intd? (—a, —B) by applying the transformation* — —o*. Foraf > 0
the characteristic properties of the spectra described previously are reproduced.

In order to write H in terms of free fermions, we have to obtain a bilinear expression
in o-matrices so that standard fermionization techniques can be applied [30]. Technically,
this can be achieved by adding one lattice site at each end of the chain, site O avid-dite
[31]. The Hamiltonian then reads

N-1
H' =) o0/ +ao50o; +Boyoy,. (5.2)
j=1
As o5 and oy, commute withH’, the spectrum offi’ decomposes into four sectors
(++, +—, —+, ——) corresponding to the eigenvalugd of oy andoy_,. We can obtain
the eigenvectors of the original problem by projecting onto (the-)-sector.
Defining new operatorsr_].*" = ([1;-; 000, [32] that obey the anticommutation
relations of a Clifford algebra one can rewrit& as a bilinear expression if}+ andr; .
. . . N .
Then a linear transformation to new Clifford operatars = > ;Lo >, (¥)f T with
y = 41 yields

N+1
n=0

One of the eigenvalues, is 0, the others are determined by the following equation:
(2A)2N+2 = 492B?(—1)V. The solutions are

Ag=0 2, = (2aB)# (sink) — i cos(k)) (5.4)
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with
2n—1
2N + 2

T O<n<N+1. (5.5)

Because the operatorg;i7," always have eigenvaluesl it is sufficient to determine the
eigenvaluesA,, with a positive real part. The energy gaps of the spectrum are given by
2A,. For the calculation of the exact ground state, one has to sum all levels with negative
energy (so that the fermi sea is full), which leads to

N+1 T
EO:—ZAnz—(Z_“ﬁi)nl. (5.6)
o= 2sin(5y752)

5.1. Scaling of the energy levels

For largeN the ground state reads

—Eo & g ks In(2a) + T <1+ 12|n;(22aﬁ)> +o(N7?). (5.7)

T 24N

For the study of the low-lying excitations one expands around the minimum of the dispersion
relation which is obtained fot = +%. For 0< n <« N one obtains:

N2n—171 i In(2aB)
~ :F|<1+ N )

2A for k = (5.8)

T

N+n27n 2 N 5 ’
Up to now we always treated the chain where two additional sites, QVa#dl have been
added to the starting Hamiltonian. We obtain the spectrum of the Hamiltonian without these
sites by projection onto the sector where thenatrices acting on the additional sites have
eigenvalue 1. It can be shown that the spectrunf/ofvith respect to the ground staf&,
is obtained for everV by combining only an odd number of fermions with energies, 2
and for odd lattice lengths by combining an even number of fermions. The ground state of
the system is found to be in the sector with odd lattice lengths.

For the normalization constant, one reads off dire€the 1.

We turn now to the determination of the partition function because this can be compared
directly with previous results. Writingl = %(H— Ep) and using the triple product identity
[33] we obtain

~ 00 . . > H a ©
trZH — 1_[(1 + an%zla)(l_i_ anézfla) — Z Zz(m+I§)2+72 1_[(1 _ Zn)71 (59)
n=1 me% n=1
with
a _In(2ap) 1
é_)c+yN X = o y—g- (5.10)

Here we obtainm € Z for odd lattice lengths andh € Z + % for even lattice lengths.
Absorbing the terrﬁ%2 into the ground-state energy, we get the following expression:
/g

/ _ N 1 -2
Eo(N) = =5 =~ = 5o +0(N ), (5.11)
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This corresponds to a system with conformal charge 1. For the partition function we
obtain

z— Z_lel Z Z2(m+i(x+Ny))2 1_[(1 — Z”)_l, (512)
n=1

zZ
mez

This is exactly the same result obtained numerically in section &foe 2.

Comparing the partition function for the toy model with those for the open and for
the periodicX X Z-chain [13, 34, 35] we get some insight into the nature of the different
new terms in the partition function. For asymmetic Z-chains with diagonal boundary
conditions one gets the spectrum of a Coulomb gas with electric charges. In the case of
non-diagonal boundary terms we get only magnetic charges. These boundary conditions
also give rise to an imaginary shift iin the magnetic charges that also appear for the
periodic chain with a real twist [34]. In our casedepends on the produefs.

6. Conclusions

In this paper, we have studied the spectrum of the asymma&ti&-chain with non-
Hermitian boundary terms. Numerical methods have been applied for the determination
of the eigenvalues. Analytically, we studied a toy model that reproduces the characteristic
properties of the full antiferromagnetic Hamiltonian. In two different cases, we concluded
that the boundary terms induce the phase transitions of the Hamiltonian.

We studied first the ferromagnetic chain withg > 0 that describes the time evolution
of a reaction-diffusion system with asymmetric diffusion in the bulk and additional injection
and extraction terms at the boundaries. For the completely asymmetric chain the behaviour
of the smallest energy gap that corresponds directly to the inverse temporal correlation
length shows the same behaviour as the spatial correlation length in the stationary state
determined by [2, 3]. In phase$ and B where the spatial correlation length stays finite,
i.e. the concentration of particles shows an exponential decay in the spatial direction, we
find a massive spectrum where the mass depends on the same parameters as the spatial
correlation length in the different phasds, A,, B; and B,. In this way the subdivision of
phasesA and B is also valid for the dynamical properties &f. However, the numerical
values of the spatial and the temporal correlation lengths do not coincide. Ehadeere
the spatial density profile of the stationary state decays algebraically in the thermodynamic
limit, exhibits a divergence of the temporal correlation length with an expoéef[tr
N — oo. This exponent has already been identified for the model with periodic boundary
conditions. On the coexistence line, we find a divergence with an exponent 2. These results
did not come as a surprise.

The antiferromagnetic chain foh < —1 shows unexpected features. For= 0 or
B = 0 the spectrum corresponds to that oK& Z-chain with additionals*-terms at the
boundaries and therefore is massive. Only when boéind 8 are non-zero, is the spectrum
massless and can be described by the partition function

Z=zdy SR, ) (6.1)

Zz
mez

with magnetic charges only. The analysis of the toy model that was diagonalized in terms
of free fermions reproduces the same structure of the spectrum. The length-dependent term
seems to be a common property of the anisotropy of the spin chain [26] and also appeared
for the periodic chain [13]. The imaginary shift of the magnetic charge is an effect of
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the non-Hermitian and non-diagonal boundary terms. The influence of more general non-
diagonal boundary terms and asymmetric interactions in the bulk will be the subject of a
future publication [36].
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