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Abstract. This s the first of three papers dealing with & finite quantum chain with arbitrary,

not necessarily Hermitian, boundary terms. This extends previous work where the periodic or
diagonal boundary terms were considered. In order to find the spectrum and wavefunctions, an
auxiliary quantum chain is examined which is quadratic in fermionic creation and annihilation
operators and hence diagonalizable. The secular equation is, in general, complicated but several
cases were found when it can be solved analytically. For these cases the ground-state energies
are given. The appearance of boundary states is also discussed and in view of the applications
considered in the next papers, the one- and two-point functions are expressed in terms of Pfaffians.

1. Introduction

In this paper, we consider théX-chain with diagonal and non-diagonal boundary terms:

1 L-1 B . 1 B - )
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(1.1)

Here,o* are defined by * = %(a" +ic?Y), wheres*, o ando* are the Pauli matrices. The

factor 1/+/8 has been introduced for later convenience. Since the parametess, o, and
B. are arbitrary complex numbers, the Hamiltonian defined by equation (1.1) is non-Hermitian
in the general case.

Let us now give a brief overview of the literature before turning to the concrete results
we obtained by studying diagonal and non-diagonal boundary conditions. All the articles
mentioned in this overview are based on the free-fermion approach foXheodel.

The X X-model often appears as a special case ofXliremodel. TheXY-model was
introduced 1961 by Lieket al [1] who computed its ground-state energy, the elementary
excitations and also presented a method to calculate time-independent correlation functions.
In this way, they treated periodic boundary conditions as well as free ends.

During the last 30 years, the correlation functions of Ri#-model and therewith
the X X-model have been the subject of various investigations. McCoy [2] studied the
correlation functions of th& Y-model with periodic boundary conditions. More precisely, he
computed the asymptotic behaviour of each of the three time-independent correlation functions
(ohok) with i = x,y,z in the limit R — oo. Barouch and McCoy [3] determined the
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asymptotic behaviour of the same correlation functions forXtfemodel with an external
time-independent magnetic field in thedirection. In another article, time-dependent spin—
spin correlation functions of the forwy (t)o%(0)) and (og (1)o(0)) for the XY-model in

an external magnetic field again in thelirection were calculated in the limit of large by
McCoyetal[4]. Exact expressions for these correlation functions for all valu&saofds were

then computed by Vaidya and Tracy [5]. Furthermore, time-dependent many-spin correlation
functions for theXY-model in an external constant magnetic field in thdirection were
treated by Bariev [6].

Recently, thexY-model with boundary terms has been the subject of increasing interest.
Hinrichsen and Rittenberg [7] showed that the anisotrafdicmodel in an external magnetic
field with o*-boundary terms is invariant under certain quantum group transformations.
Furthermore, they defined and calculated the corresponding invariant correlation functions.

The XX-model with non-diagonal boundary terms, however, has not been studied
thoroughly before. Some work in this direction has been presented by Guinea [8] who studied
the semi-infiniteXY-model with onec*-boundary term (i.ea. = ar = 1, 8. = B_ =
a, = B, = 0). We will mention more details of that paper when discussing the physical
applications of the Hamiltoniai#/ of equation (1.1). Furthermore, a study of the totally
asymmetricX X-model with bulk terms of the forna/o ., and with boundary parameters
given bya_ # 0, 8+ # 0, ¢+ = - = «, = B, = 0 in the notation of equation (1.1) can be
found in our previous paper [9].

As already mentioned, in the general case the Hamiltonian given by equation (1.1) is
non-Hermitian. Interesting physical problems involving non-Hermitian Hamiltonians can be
found in several articles treating non-Hermitian quantum mechanics [10].

The Hamiltonian given by equation (1.1) can also be used in the study of asymmetric bulk
terms. More precisely, starting from a Hamiltonian of the form

V8
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one can use a similarity transformation (see, for example, [11]) that transforms the asymmetric
bulk terms depending on the two parametgrandg of the Hamiltonian given by equation
(1.2) into symmetric bulk terms. It is convenient to choqgpg = % Note that the
similarity transformation changes the boundary terms. The corresponding transformed
boundary parameters_, o, B+ andS_ of the Hamiltonian given by equation (1.1) are now
L-dependent and have the expressions

a = QEDi2y a = QD2
1-1)/2 -1/2
Br = Q128 B = Qe (1.3)

with O = \/¢/p. The diagonal boundary terms remain unchanged.

Although the Hamiltonian of th& Y Z-chain with non-diagonal boundary terms is known
to be integrable [12, 13], Bethe ansatz equations have not yet been obtained, because it is not
clear howto construct areference state. Therefore, to study the effect of non-diagonal boundary
terms, we chose thE X-model with boundaries of the form given by equation (1.1), because
this model can be fermionized. To be able to use the free-fermion approach, we introduce a new
HamiltonianHiong Which is bilinear in terms of fermionic creation and annihilation operators.
This approach has the major advantage that we have complete control over the wavefunctions
for a large class of boundary parameters which enables us to calculate correlation functions.
Thus, we get a good handle on a particularly interesting and important integrable model.
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As mentioned above, in order to treat the Hamiltonian given by equation (1.1) we transfer
the diagonalization problem to a new Hamiltonian which we obtain by appending one additional
site at each end of the chain as in [14]. This new Hamiltonian has the following expression:

V8
+ﬁ+0202+1 +B_0; o)+ B0} (1.4)

In this way, the boundary terms are also bilinear expressions intr@ndo~ matrices. It

is only after this transformation that we can write and solve the problem in terms of free
fermions. Since; ando;,; commute withHong, the spectrum offiong decomposes into four
sectorg++, +—, —+, ——) corresponding to the eigenvalu¢d of o ando;,,. The original
Hamiltonian corresponds to the (++)-sector. A substantial part of this paper is devoted to
showing how the eigenvalues &f are obtained by projecting onto this sector.

The HamiltonianH,,ng which we introduced only as a means to treat the Hamiltoffan
is actually interesting in its own right as a quantum spin chain with boundary terms.

In the field-theoretic approach the HamiltoniR,g is probably related to the decoupling
point of the boundary sine—-Gordon model. The corresponding boursdaratrix has been
calculated in [15, 16].

Itis very likely that the Hamiltoniar# given by equation (1.1) can be applied to physical
problems, since a simpler version of this Hamiltonian has already found such applications.
Namely, the semi-infinité( X -chain with ones*-boundary term mentioned before was studied
by Guinea [8] as a model for the dynamics of a particle in an external potential coupled to
a dissipative environment. He also utilized free fermions and presented an explicit solution
for the mobility of the particle in the continuum limit. Afterwards this solution was used in
the study of transmission through resonant barriers and resonant tunnelling in an interacting
one-dimensional electron gas, cf Kane and Fisher [17]. This type of system is studied in
experiments with quantum wires. The calculation is built on a perturbative renormalization
group analysis in different limits (limits of a weak barrier and a strong barrier). By combining
the results of these two limits the authors obtain the full phase diagram of the model. For
one particular value of the dimensionless conductance, they even obtain an exact solution for
the conductance through a resonance by mapping the model onto the semi-kknitedel
with ones*-boundary term.

The starting point for our investigations of th&X-chain with non-diagonal boundary
terms is the diagonalization of the Hamiltonigh(equation (1.1)). This problem is not only
of mathematical interest, since the model has an interesting physical content. Namely, as
will be shown, boundary bound states appear and the non-trivial ground-state expectation
values of thes}-operators and the?-operators exhibit a decay into the bulk which can be
predicted from conformal field theory. Furthermore, the expressions for the partition functions
formally coincide with partition functions of a Coulomb gas with only magnetic charges or
only electric charges, depending on the choice of the boundary parameters in the Hamiltonian
H. Additionally, the fermionic energies as well as the expressions for the ground-state energies
show a logarithmic dependence on the lattice length for special choices of the boundary
parameters. The study of these physical properties is deferred to two subsequent papers.
In the following we summarize the content of all the papers and point out how the results of
the present paper enter into the further considerations.

In this first paper, we confine ourselves to studying the integrable model with non-
diagonal boundary terms given b on a finite chain. This includes the calculation of
the spectrum and the wavefunctions as well as the derivation of expressions for the one-

L-1
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and two-point correlation functions for tle -operators where the subscripindicates the
position on the chain. These results are obtained in paralléiffand Hiong. Let us briefly
describe how we proceed. We start by fermionizing the Hamiltoigry. The spectrum

of the original chain as well as the eigenvectors can be retrieved from the spectrum and the
eigenvectors ofdiong by a projection technique which we derive in detail. As a by-product,

we solve the eigenvalue problem for the quantum spin cHajg. We demonstrate that after
fermionization the problem of finding the eigenvalues of the Hamiltorfighy is reduced

to the problem of finding the zeros of a complex polynomial of degiee 2, which we

write down explicitly. This polynomial, which might very well also appear in other contexts,
has interesting algebraical properties. Namely, for some choices of the parameters, it can be
factorized into cyclotomic polynomials. We looked systematically for these factorizations
since, apart from being of mathematical interest, these examples give access to an exact
solution for the full spectrum of the Hamiltonian, including exact expressions for the ground-
state energy. (In the general, non-Hermitian case, we define the ground-state energy to be
the one with the smallest real part.) Some of these examples are especially interesting since
the factorizations contaih-independent factors which lead £sindependent energy gaps of

the Hamiltonian. The corresponding eigenstates will be identified as boundary bound states
in the next paper. Furthermore, the ‘cyclotomic’ examples furnish a reliable ansatz for an
approximative study of the zeros of the polynomial in the general case which will be presented
in the third paper. As an additional result, we get exact formulae for the one- and two-point
correlation functions for the; -operators. The value ¢f7,,) enters the projection mechanism
mentioned above.

Inthe second paper, by using the results of the first paper, we calculate one-point functions
for theo - and theo-operators for arbitrary positionand lattice lengtiL for several of the
‘exactly solvable’ cases where the polynomial can be factorized into cyclotomic polynomials.
These one-point functions decay into the bulk with a power law typical of conformally invariant
theories. Taking this point of view, we determine their critical exponents.

Furthermore, we make the connection between excitations withiadependent energy
seen in this paper and boundary bound states. This identification is made, on the one hand,
by studying the spatial profile of the special fermionic excitations in comparison to the spatial
profile of other fermionic excitations and, on the other hand, by comparing them to boundary
bound states found in the Bethe ansatz forXtieZ-chain with diagonal boundary terms [19].
Boundary bound states originally appeared in the field-theoretic approach to the sine—Gordon
model with boundary interaction [12, 16, 18]. In our case, it is surprising that they are related
to special zeros of the complex polynomial as mentioned above and can therefore be found
without invoking the field theory.

A further important new observation is related to the partition functions in the
thermodynamic limit. They will be presented in the third paper, where they will be derived by
studying approximative solutions of the polynomial equation for large valuessimentioned
above. The patrtition functions correspond to conformally invariant systems, a behaviour which
we also found in our previous study of the totally asymmekfix-chain with non-diagonal
boundary terms [9]. This observation is confirmed by the expansions of the exactly calculated
ground-state energies for large From this expansion one can read off the conformal charge
¢ = 1 and obtain expressions for the surface free energy. Moreover, the partition functions
we find are the partition functions of a Coulomb gas with only magnetic charges or only
electric charges. The phenomenon of finding only magnetic charges is elucidated by the
construction of a pseudoscalar magnetic charge operator from the fermionic number operators
which commutes with the Hamiltonian for finite chains. Furthermore, for special choices of the
boundary parameters, we find a logarithmiclependence for the fermionic energies as well
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as for the expression for the ground-state energies. This may only happen if the Hamiltonian
is non-Hermitian.

The present paper is very technical by nature. For those readers who are not interested in
all the details of our calculations but would nevertheless like to use our results without reading
the whole paper we provide a guide in section 13, which does not, however, follow the sections
in a chronological way. The other sections are organized as follows. In section 2, we use
the fermionization of the chaifj,ng to reduce the eigenvalue problem of this Hamiltonian to
the eigenvalue problem of a matr{ of dimension(2L + 4) x (2L + 4) whose eigenvalues
correspond to the fermionic energies. We derive some general properties of the eigenvectors
of M (which will be needed in sections 10 and 11) before showing, in section 3, how the
eigenvectors corresponding to the non-zero eigenvaluksazn be calculated explicitly. The
solution of the eigenvalue problem &f leads to a complex polynomial (which corresponds to
the characteristic polynomial @ff) whose zeros determine all eigenvalues and eigenvectors
of M. This polynomial is presented in section 4. Section 5 is devoted to the study of the
factorization properties of this polynomial. By constraining the total number of cyclotomic
factors, we systematically determined the boundary parameters for which the polynomial
factorizes into cyclotomic polynomials. Some of these cases are actually one-parameter
families of solutions. In section 6, we show for two examples how the full spectrum of
Hiong is obtained from the factorized form of the polynomial. Section 7 contains the exact
expressions for the ground-state energies of all examples where the polynomial factorizes
into cyclotomic polynomials. In section 8, we present one example of a Hamiltonian with
asymmetric bulk terms where it is also possible to calculate the full spectrum and the ground-
state energy exactly for arbitrary valuedofin section 9, we derive the projection mechanism
which is needed to obtain the spectrum of the original Hamiltonian Hyxy,. To derive the
projection mechanism we need the value of the one-pointfunction of reperator at the point
j = L+1. We express the one- and two-point correlation functioragdnh terms of Pfaffians
in section 10. In the cases where the Hamiltontatas noo? boundary terms or fulfils the
conditione_ = w4 and 8. = B_, we further reduce these Pfaffians to subdeterminants of a
certain matrix. These expressions will be needed for the calculation of spatial profiles in our
second paper. In section 11, we calculate the above-mentioned value of the one-point function
of oj at the pointj = L + 1 in the cases where the Hamiltonian is: (a) Hermitian, (b) has no
o boundary terms or (c) fulfils the conditian. = «, andB. = B_. Inputting this result,
we invoke the projection mechanism and present the ground-state energies for the original
Hamiltonian H in the ‘exactly solvable’ cases which additionally satisfy at least one of the
afore-mentioned conditions (a)—(c) in section 12. We conclude this paper with a discussion
of our results in section 14. In an appendix we show how to find the eigenvectors of the
matrix M corresponding to the eigenvalue zero. We derive the conditions for the appearance
of zero modes in the spectrum Hfyng and determine respective restrictions for the boundary
parameters.

2. Diagonalization of the Hamiltonian

In this section, we present the general formalism we use for the diagonalization Xfthe
model with boundary terms defined by equation (1.4).can be diagonalized in terms of
free fermions if it can be written as a bilinear expressiorrifrmatrices, since standard
fermionization techniques can then be applied [1, 20].

To obtain a bilinear expression irt-matrices ford we add one lattice site at each end
of the chain, site 0 and site + 1 as in [14]. Notice that the terms containing do not have
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to be changed. The Hamiltonian now reads

13 1

Hiong = = ofo i to ol ]+ —[a_olo +aroio) +a,0f

9 2;[ jYj+1 Jj _]+l] \/é[ 0%1 0*1 291

+B0]0f sy + Poop 0f sy + o], (2.1)

As oj andojy,, commute withHong, the spectrum of,ng decomposes into four sectors
(++, +—, —+, ——) corresponding to the eigenvalugd of oj ando},;. Notice that the
projection of Hong ONto a fixed sectokes, €2) has the same eigenvalues as the original
Hamiltonian with the choice of the parametergy_, €1a+, €28_ and e;8+ so that by
diagonalizingHiong One simultanously treats four different Hamiltonidhis The eigenvectors
of the original choice of the parameters, o, f_ andg. can be retrieved by projecting onto
the (++)-sector as described in section 9.

Furthermore, notice that tiie +)-sector and thé——)-sector respectively the-—)-sector
and the(—+)-sector can be interchanged by using the following transformation which leaves
Hiong invariant:

x x y y z z :
NS, Y o) ¢ 5 of = +
o} o; o o; o; o; j=0,...,L+1 (2.2)

It maps any eigenvectow) of Hiong from the(ey, €2)-sector onto an eigenvectp¥)’ of Hiong
with the same eigenvalue lying in the sectet, —e). Therefore, each eigenvalue Hfgng
is at least twofold degenerate. In the fermionic language, the above symmetry manifests itself
as a zero mode.

In the next section, we will show that the diagonalizatioffghg can be reduced to finding
the eigenvalues and the eigenvectors @tla+ 4) x (2L +4) matrix which will be denoted by
M. After studying general properties of the eigenvectors, we will describe in section 3 how
they can be obtained in an explicit form. The eigenvectors and the eigenvalues of the matrix
M are determined by the zeros of a polynomial which will be given in section 4.

2.1. Diagonalization 0Hjong
Adopting the Majorana representation of the lattice 1/2 spin operators as in [21], set

j—1
o = ([T ) 23)

i=0
These operators obey the anticommutation relations of a Clifford aldefira’} = 257.
Rewriting Hiong in terms ofr;", we obtain the following bilinear expression

L-1
Hiong = — Z Foiel  + G o) + KM g o g + I oo + I g (2.4)
nov=%£1 j=1 '
where
G:} \/ié(oz,—ou,) \/iéi(a,+oz+) K:} 0 \/iéi(ﬁ++,3,)
2 0 0 2\0 Z(B—p)
. 1 1;
pol(00) 10 ey 10—y
4 —I o 2 7é|0lz 0 2 TEI'BZ 0
(2.5)

Here we chose the basis such that the matrices above have the general form

A= AT
A= <A+— A++)
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where A is one of the matrices in (2.5). Now we apply a linear transformation tajfh‘e
operators to obtain another s&t, 7.~ of Clifford operators satisfying

(TH,T"} = 281 (2.6)

m? n nm*

Let
L+1
TV =Y Y WD) 2.7)
j=0 u=+1
be the explicit form of this linear transformation where= £1. One can choose this linear
transformation in such a way that in terms of these new Clifford operdirg takes the
simple form
L+1
Hong =Y _ AT, T, (2.8)
n=0

The commutation relations for the~, 7.7 imply that the operator7j 7, has eigenvalues1
so that the spectrum @fiong is given by all possible linear combinations involving Aj) with
coefficients +1 or-1 and can be read off equation (2.8).

Notice that the operatorg,~, 7" as defined by equation (2.7) are, in general, non-
Hermitian. However, according to a general theorem for Clifford operators [22], it is possible
to apply a similarity transformation to the set of vect@p$) and(y,,) to obtain new Hermitian
Clifford operatorsT,”’, T, in terms of which the Hamiltonian also takes the form given by
equation (2.8). This will be discussed in detail in the next section.

The coeﬁicients{wny)‘j‘ of equation (2.7) are constrained by requiring that the operators
T,Y obey the anticommutation relations of equation (2.6). By computing the commutator
[ Hiong, T, ] using for Hiong first the expression (2.8) and then (2.4), and comparing both results,
one finds that the eigenvaluas and the vectors

v = (e WG s (U Lars (W) 140 y == (2.9)
are given by the solutions of the following equations
My = —iA ¥, My, =iA Y, (2.10)
whereM is a(2L + 4) x (2L + 4) matrix given by
0 G
-Gt 21 F
M= —F* 0 F . 2.11)
FT 2] K
-KT 0
Defining
Gy =y =i, b, =Y Y, (2.12)
leads to the eigenvalue problem
M¢E = +A,¢F. (2.13)

Observe thaiM has Z + 4 eigenvalues althougHiong has only lengthl. + 2. This can
be explained by considering equation (2.13). As one can see, with the appearance of each
eigenvalueA,, we also get the negative eigenvalue,,,. As mentioned above, the spectrum
of Hiong is given by all linear combinations of,, with coefficientst1 (see (2.8)) and thus
can be retrieved from the eigenvaluesMfby choosing from each pair of eigenvalues,,,
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one value as a basis element for #he-linear combinations. Later we will make this choice
in a systematic way following a physical convention which consists of choosing as relevant
energies the eigenvalues with positive real part.

As can be seen directly from the form &, at least two of the eigenvalues are zero. The
corresponding eigenvectors are given(Byl,0,0,...,0) and(0,0,...,0, 1, 0). Since the
eigenvalues oM occur in pairstA,, from which only one value has to be taken, the zero
eigenvalues lead to one zero mode as already mentioned above. As we are going to see more
explicitly, this zero mode does not appear as a fermionic excitation in the spectiimidfis
fact can be explained as follows. Recall that in the casH gf the zero mode reflects the
presence of the symmetry given by equation (2.2) which interchangésthaector and the
(——)-sector respectively ther—)-sector and thé—+)-sector. Sinced corresponds only to
the (++)-sector, it is clear that the above symmetry is not a symmeti§f .ofTherefore, the
above zero mode does not appear in the spectrurh. dh the following we are going to call
it the spurious zero mode.

To express the spectrumBfong in terms of free fermions, we will now write the expression
for the Hamiltonian in terms of fermionic operatdrsanda, satisfying

{bns am} = 5/1,m {bnv bm} =0 {dn, am} =0 (214)
which are obtained from the Clifford operatdf$ and7,,” by the following transformation:

b, = (T +iT,) ay = (T —iT)). (2.15)
Hiong then reads

L+1 L+1 L+1
I_Ilong = ZzAnbnan - Z Ay = Z ZAnNn +Eo (216)
n=0 n=0 n=0

whereEj is the ground-state energy of the system Apthe number operator (with eigenvalues
0 and 1) for the fermion with energyA?,.

Notice that in the expression for the number operafpiin equation (2.16), is equal
to a! if the operatorsZ;y and 7, are Hermitian. As mentioned above, they can always be
chosen to be Hermitian by applying a similarity transformation to the ve¢fgisand(y,)
in equation (2.7). At the same time, the operatgrandb, are then transformed into new
operatorsy, andb,, which are adjoints of each other.

In equation (2.16) we have defined the Fermi sea by summing over all negative eigenvalues
of M. Consequently, we have to choose the other half of the eigenvaldesodbrm fermionic
excitations above the Fermi sea. Here and in the following we will use the convention that
if a pair of eigenvalues has non-vanishing real part, we will denote that with positive real
part by A,,. This choice leads to a ground-state energy with the smallest real part. In the
case where the real part (but not the imaginary part)pfis zero, one has the freedom of
choice to take either the eigenvalue with positive or the eigenvalue with negative imaginary
part as a fermionic excitation above the Fermi sea. This leads to an ambiguity in the value of
the imaginary part of the ground-state energy. A similar problem occurs in the calculations
involving the eigenvectors of the zero modes (e.qg. in the calculation of one-point functions of
o-operators). Namely, the zero eigenvaluedbélso occur in pairs (‘+0’ and-0’) and one
can freely choose which of these two zero eigenvalues belongs to the Fermi sea and which one
corresponds to an excitation with zero energy. In other words, one can choose which is the
creation and which the annihilation operator corresponding to the fermion with zero energy.
We will come back to this point in [23].
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The fermionic operators, , b, can be expressed in terms of hje 7, -operators by using
the eigenvectors a¥f and equation (2.7),
L+1

1
am = E(T —iT) == Z > @it (2.17)
Jj=0 pu==%1
1 L+l
by = STy +iT,) = Z D (@)l (2.18)
j =0 pu==+1

Notice that if one transforms the operat@}s, 7, into Hermitian operators as mentioned
above, the set of vectorg,,), (¢,,) fulfils the condltlons(¢m) = (¢,,)* andb,, becomes the
adjoint ofa,,.

2.2. Orthogonality relations

Inthe following, we make some general remarks on the given eigenvalue problem for the skew-
symmetric matrixM = —M" defined by equation (2.13). We show that we can indeed find a
linear transformation of the form given by equation (2.7) in terms of the ve(m;{r},‘j* (which
are related to the eigenvectorsMfby equation (2.12)) such that andb, of equations (2.18)
and (2.17) satisfy (2.14) or equivalently that mgé of equation (2.7) are Clifford operators
respectively, i.e. they satisfy (2.6), which was assumed before deriving the eigenvalue equation.
The corresponding orthogonality relations for the eigenvectord @fhich are equivalent to
the anti-commutation relations for the operataysh; lead to further relations between the
eigenvectors (see (2.40) and (2.42)) for special choices of the boundary parameters. They
simplify the computation of correlation functions and are used for projecting t@+he
sector ofHjong. This will be the subject of sections 9-11.

Let us first look at the case where the Hamiltonian is Hermitiangi.e= o*, B_ = B
anda,, B, € R. This implies that¥ has only purely imaginary entries and is also Hermitian.
So its eigenvectors can be chosen to form an orthogonal basis with respect to the standard
scalar product. Becaug¢* = —M we have

b <P (2.19)
which can be directly seen by taking the complex conjugate of the equifligh= A¢; .
Thus, after an appropriate normalization of the eigenvectors the orthogonality condition for
the eigenbasis is equivalent to the relations which are necessary and sufficient to define a set
of fermionic operators (equation (2.14)):

L+1

ZO > @D @) = 25 (2.20)

J= Y

L+1 L+1

ZZ(¢,) @] =YD (@) @) =0. (2.21)
—O y

Note that, due to equation (2.19), and¢; can always be normalized so thatanda, are

mutually adjoint. For any set of constamrise C, ¢, # 0 the vectors);,” = %(ckqb,:' + c,jlgb,j )

andy, = %i(ckqb,j - ck‘lqﬁk‘) satisfy equations (2.10) and the orthogonality relations
L+1

Y Wi =8 (2.22)
j=0 v

and thus thef,* defined in terms of they,)! by equation (2.7) are Clifford operators. If
we define® to be the(2L + 4) x (2L + 4) matrix consisting of the 2 + 4 vectorswki, we
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may rewrite equation (2.22) a&'¥ = 1. This simply reflects the fact that the automorphism
group of the Clifford algebra is the orthogonal group. Note that Beignot necessarily real.
However, due to equation (2.19¥ can always be made real by tuning the parametgrs
Since¥®'¥ = 1implies¥¥! = 1, we also obtain

L+1

DY Wiy =8l (2.23)
k=0

or, in terms of the components of the eigenvectors/of
L+1
DN @@ =287 (2.24)
k=0 u

Using these equations it is possible to invert equations (2.7) and (2.18), (2.17), respectively.
This is necessary to express the spin operatdre”, o in terms of ladder operators, which

is needed for the calculation of correlation functions and of the projection mechanism. We
will use this form of the orthogonality relations in the next subsection, in order to derive some

further relations between the eigenvectors.

If the Hamiltonian is not necessarily Hermitian but all of the eigenvalue¥ @fre non-
degenerate except for the eigenvalue O corresponding to the eigeny@€trg, 0, .. .) and
(0,0,...,1,0), one can still show that equations (2.20) and (2.21) remain valid. In general,
the argument breaks down becaudeis not necessarily diagonalizable. This will become
apparent in sections 3-5.

Choosing the linear combinations

¢t =(0,1,0,...,0,i,0) ¢5 = (0,1,0,...,0,—i,0) (2.25)

as the eigenvectors corresponding to the eigenvalue 0, we ensure that they also satisfy
equations (2.20) and (2.21). We now check equations (2.20) and (2.21) for the other
eigenvectors oM.

First, let¢* be a right eigenvector corresponding to the eigenvaluie.

M¢* = A¢p™. (2.26)
Because = —M", this eigenvector is also a left eigenvector corresponding to the eigenvalue
—A,ie.

M = —Ag™. (2.27)

This implies the existence of a right eigenvecpor corresponding to the eigenvalue.

Now let ¢, and¢, be eigenvectors corresponding to eigenvalyeandl,;, where we do
not restrict the real parts @f, and A, to be positive or negative. Using equations (2.26) and
(2.27) we get

2
&ld = /\—l"mtdn. (2.28)

So all products of the form,'¢; are zero ifr; # —A;. This gives equation (2.21).

To proof the validity of equation (2.20) we additionally have to show that in the case
—M = A, the productg, !¢, cannot vanish. This can be done by considegngy, which
is always different from zero i), # 0. Now, due to the assumption of non-degenerate
eigenvalues, the eigenvectors form a basis andgfusn be expressed in terms of eigenvectors
¢;. Using equation (2.28) with-A; = A; we have

O£ ¢/t =0]'dr =) apd = adidr. (2.29)
J
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The only term left in the expansion of the produﬁw, is proportional to the produet; ¢,
due to equation (2.28) and it therefore cannot vanish. So we can normalize the eigenvectors
appropriately in order to satisfy equation (2.20). If there are degeneracies in the spectrum
of M, the above proof can be generalized by using the biorthogonality of left and right
eigenvectors.

We want to point out that the ladder operatar@ndb; are not the adjoints of each other
in general because relation (2.19) is not valid in general. However, as already mentioned in
section 2.1, it is always possible to perform a similarity transformation in order to achieve
b,:r = a¢. This can be seen by choosing an arbitrary real symmetric and orthogonal @atrix
The transformed vectors

M=ty (2.30)

define a new set of Clifford operatofy™ which are now Hermitian. Hence the operators
b, = (T +iT{") anda; = 3(I{* —iT,") form a set of fermionic ladder operators satisfying

b = a}. Since the vectorg;* = y;* T iy, are no longer eigenvectors & but of the
transformed matrix
M =V MIT" (2.31)

the transformation (2.30) corresponds to a similarity transformation of the Hamiltéfjan

2.3. Special properties of eigenvectors

In some cases there are further relations between the eigenvectors in addition to those of

equations (2.20) and (2.21). They are used in the calculation of correlation functions and are

even necessary for the projection method. First, notice that # 8, = 0, the matrices/

andM? respectively take the form
0 * 0 =«

M2 = (2.32)

O ¥ O

*¥ O ¥ O
O % O %
* O % O

* 0 %
M=10 % O
* 0 %

- O % O *

wherex and 0 both denote 2 2 matrices. Note that is the notation for an arbitrary 2
matrix and is not necessarily different from zero. Looking at equation (2.32) we see that we
can choose an eigenvectg} of M2 with eigenvalueA?, i.e.

M2 = Ajy (2.33)
which satisfies

WHf =0 fori odd (2.34)
Now we definej, by

My =~ (2.35)

which is also an eigenvector 812 with eigenvalueA 2. Note that this definition does not work
if Ay = 0 and thus we have to exclude= 0 in the following, which labels the eigenvectors
corresponding to the spurious zero mode. Using equations (2.32) and (2.34) we obtain

WHE=0 forieven (2.36)
Due to equations (2.33) and (2.3@5; and &k‘ also satisfy (2.10) and thus we obtain
eigenvectorg/i® = ¥ F iy, of M satisfying
T = (=D @)k (2.37)



202 U Bilstein et al

Therefore, for each pair of vectogg, ¢, satisfying equation (2.20), there exists a constant
¢ € C such that

@)} = (=D (¢} (2.38)

Now equation (2.24) can be rewritten as

L+1
A+=D™) Y (0] b)) = 28] (2.39)
k=0
and we end up with
L+1
Z(‘P/:r),y'(‘f’/:)f =4 fori + j even (2.40)
k=0

Since equation (2.38) is not valid féar= 0 and oddL (see (2.25)) we exclude= 0,v =
+,j=L+1l,y=—andj =0,y =+,i =L +1 v=—inequations (2.39) and (2.40).

If diagonal boundary terms are included and if = «+ and_ = B, the eigenvectors
again have a special property. In this cageand M? also have the form of equation (2.32),
but nows and 0 just denote complex numbers and, in place of (2.38), we obtain

@)7 = £ @) (2.41)
which gives

L+1

D @Ol =8 (2.42)

k=0

Both equations (2.40) and (2.42) will be used sections 10 and 11.

Note that the proof of (2.40) and (2.42) shown above is not valid if there are degeneracies
or zero modes on top of the spurious zero mode in the spectruvh. oHowever, one can
show that it is always possible to build appropriate linear combinations of the eigenvectors
corrsponding to the same eigenvalue such that (2.40) and (2.42) remain valid in addition to
(2.20) and (2.21). This is not automatically true and, therefore, in explicit calculations one
should take care in choosing the right linear combination of eigenvectors corresponding to the
degenerate eigenvalues.

If both conditionsa_ = a4, B = B+ anda, = B, = 0 are satisfied at the same time,
then both equations (2.40) and (2.42) can be satisfied simultaneously. By comparing (2.38)
and (2.41) we obtain the following relation:

C/

. i?(qbk‘)f for j even (2.43)
(D) = ¢ o o .
F-(@); or j odd.

Thusc'/c is either 1 or-1 because otherwise the vectgfs would vanish.

Let us briefly summarize what we have obtained so fa# lfs Hermitian, the fact that
M = —M" leads to equations (2.20) and (2.21) which are equivalent to the anticommutation
relations (2.14) of the ladder operators given by (2.18) and (2.17). These equations are still valid
if H is non-Hermitian, but diagonalizable. Some additional properties of the eigenvectors have
been derived for special choices of the boundary parameters (equation (2.40xg@, =0
and (2.42) forx_ = a4, B— = B+) which will be used in sections 10 and 11.
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3. Calculation of the eigenvectors of the matrix\

In the previous section we have shown some general properties of the eigenvectors without
computing them explicitly. This computation is the subject of this section. We will also show
how to obtain the characteristic polynomial which gives the eigenvalués @tis polynomial
will be treated extensively in the following sections. Sid¢as non-Hermitian in general, we
will also discuss the diagonalizability éf.

The eigenvalue problem given by equation (2.13) is equivalent to a set of recurrence
relations. Using the notation given by equations (2.12) and (2.9) for the eigenvegforsf
M let us first look at the bulk part:

DO+ @) ]a2) = M) s

3@ + (D) a2 = TAD)Ta
These bulk equations (3.1) can be decoupled by defining

9; = (PO TP @ =@); —iD)] (3.2)

1<j<L-2. (3.1)

which gives

1(@) +9js2) = Apja1 — 3@ +§js2) = APja1. (3.3)
Herei = £A, and the functiong; andg; refer to(¢,j); and(¢,j);f fora = Ay andto(g,);
and(¢,j); for . = —A,. From now on we will keeg fixed and omit all subscripts referring

tok.
Next we treat the left boundary and one obtains

®o = ¢o

. ) (3.4)
Mpo = (@1 — a+¢p1)
o1 = (@0 — 1) + 592 5
A1 = (o1 — @ Go) — 1. '

From the right boundary one gets

hop = \/Ag(ﬁﬂpul — B.9o1) + 5011 6)
AL = J (B = B-Gra) — §611 '
AL+ = %2(/3+¢L +B-¢L) a7

Yr+1 = —@r+1.

Note that we have excluded explicitly the eigenvect@sl, O, ...) and(..., 0, 1, 0), which
always exist, from the set of solutions of the boundary equations above by ggttingy and
¢r+1 = —@r+1- Thus we will obtain at most2 + 2 linearly independent solutions instead of
2L + 4.

The general solution of the bulk equations (3.3)Xog i% is given by

g;=ax’ +bx™ g =g(=x) + f(—x)7 (3.8)

where 1< j < L and up to now, b, g, f are free parameters which are independent. of
The new variable is related to the eigenvaluevia

A= %(x +x7h). (3.9)
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Fori = :I:% the general solution is

g =aZD +bED’j ¢ =gFD + f(FD). (3.10)

The four parameterg, b, g, f, the undetermined components, @o, ¢1+1, ¢1+1 and the
eigenvalues. are all fixed by the boundary equations (3.4)—(3.7)—up to the normalization
constants of the eigenvectors. Namely, plugging equation (3.8) into (3.4)—(3.7), we
obtain a homogeneous system of eight linear equations with the unknovbng, f and

®o, Yo, PL+1, Pr+1. The condition for the existence of non-trivial solutions of this system is
given by the vanishing of the determinant of the corresponding8matrix. This defines a
polynomial equation in the variabkewhich yields all eigenvalues. Note that forx = +1

the 8 x 8 system of equations always has the non-trivial solutice —b, ¢ = —f. This
corresponds to the zero vectpy = ¢; = 0V;j. To compensate for this fact we divide the
polynomial by(1—x?)?. The treatment of the resulting polynomial equation will be the subject
of the next section (see (4.1)).

In the following we will show how to obtain the eigenvectors foet i% andir #£ 0
which may be viewed as an alternative way to obtain the secular equation. Substituting (3.4)
into (3.5) using the identity = p1x~* — bx~? andg = —@1x 1 — fx~? (see (3.8)) renders
b and f as functions ofp; andgs, i.e.

_ 1 i -1 of
b= 1—x2 |:<x+x1—\/§az—x )‘Pl_x+x71§01 (3.11)
1 o_0+ _1\ - a%
f_x—2_1|:(x+x_1+‘/§az_x )¢1—x+x_l¢1i|- (3.12)
Thusa andg are given by
1 (e o2
“=1 [(x+x_1 - 2“2"“) ‘Pl—x+x_1¢1} (3.13)
1 Qo B a?
g=x2_1|:<x+xl+x/§az—x><ﬂ1—x+xl<p1:|. (3.14)
From the right boundary, by substituting (3.7) into (3.6), we see that furthermore
BB+ B
1t — 2B, —4xr + — =0 3.15
Pr-1 ( 4 \/_,3& >§0L 4)\'¢L ( )
- BB+ _ B
-1 + 2 — 4}\. —_ = U. 1
$r-1 ( Ty V28, )(pL IRL 0 (3.16)

Using equations (3.11)—(3.14) and (3.8) in equations (3.15) and (3.16) we get a linear system
of equations of the form

Qu Qi) (¢
> ]1=0 3.17
(921 Q22) (901> .17
whereg;; are the following functions of and the six boundary parametexs, g, o, andg,

(note thatr is a function ofx according to (3.9)):
L

- 2
Qu= - [(ﬂﬂ+ — V28, — x_1> (0[701+ — V2, — x‘l) +(=DF (Prcr-) ]

1—x2 |\ 45, 422
L 2
1fx2 [<ﬂ4f+ — V28, — x) (“;1‘;* — V2a, - x) + (=1t (ﬂ;;;) }

(3.18)
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x b BB+ a? ooy 1\ B2
Q:—_1[< V2P - )a*““(w* 20— x l)a]
L

2
* [(ﬂﬂ+ \/_ﬂz—x)—+( 1k <a sl 2az—x) éi|

x2 -1 4 4
(3.19)
x L o_oy B2 B_B+ _
Q21:1——x—2[( RO ) *= DL( + V2P, _xl>4x}
L 2
(e v e o (B v )
(3.20)
_ x~k (a+B-)? BB+ o0+ -1
sz_x—z—l[ ez Y ( + V2P - >( 5 TV )]
L
+x2x_1[(“1+£2) +(—1t (ﬂ BB, /2. — )(“43& 2az—x)]
(3.21)

The necessary condition to have non-trivial solutions is obviously that the determinant of the
homogeneous equation (3.17) vanishes.

Q11922 — Q12221 = 0. (3.22)
This condition is equivalent to the polynomial equation which is obtained from the
homogeneous & 8 system of linear equations mentioned above.
The construction of eigenvectors shown here is not validfﬂri% andi = 0. However,
one can show that the eigenvectorsfoe i% can be obtained by

g;=lim (ax/+bx™) ;= lm (g(=x) + f(=0)7) (3.23)

wherea, b, g, f are given by equations (3.11)—(3.14). Using de L'Hospital’s rule one recovers
the form of equation (3.10). The vector componentandg; are again given as solutions of
the 2x 2 system (3.17) using = +1.

The solution of the % 2 linear system (3.17) is straightforward for a given set of boundary
parameters and a given valuexaf It cannot be given in a unique form because some of the
©;; might vanish. We will give the explicit form of the eigenvectors for some special choices
of boundary parameters in [23] where we are going to calculate the expectation vadtfes of
ando ! where; denotes the position on the lattice.

If all €2;; vanish the corresponding eigenvalue is at least twofold degenerate and we obtain
two linearly independent eigenvectors, siggeandg; can be chosen independently of each
other. On the other hand, if a zero of the polynomial is twofold degenerate, it is not clear that
all ©;; vanish. This comes from the fact that the Hamiltonian is in general non-Hermitian and
might be non-diagonalizable.

We would like to point out that the appearance of an eigenvalge 0 which is more
than twofold degenerate would prove thidtis non-diagonalizable. This is indeed the case
for some special choices of the boundaries for a given lattice lebhgthhis can be seen by
looking at the factorizations of the polynomial obtained in section 5.

Up to now we have shown how to construct the eigenvectors of the nidtdefined by
equation (2.11). Fax # 0 the components of the eigenvectors are given by

@7 =300 +9)) @)] = —3i(p; — @) (3.24)
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whereg; andg; have the form of equation (3.8) for # :l:% and are given by (3.23) for
A= i%. The parameters, b, g and f are given by equations (3.11)—(3.14). Finalyhas
to be determined from equation (3.22) as a function ¢éee (3.9)). The vanishing of the
determinant in equation (3.22) leads to a complex polynomial of dedreeddin the variable
x which has to be zero. This polynomial will be the subject of the next section.

To obtain eigenvectors corresponding 10 = 0 one has to solve the boundary
equations (3.4)—(3.7) using the bulk solution given by (3.8) wits +i. The calculation is
given in the appendix. It turns out that besides the eigenve@ofsO, ...) and(..., 0, 1, 0)
of M, which are always present, one may have additional eigenvectoks=$of. Running
through the calculation it turns out that this happens. if. + «.8_ = 0. Under this condition
two further linearly independent solutions always exist. If all relevant boundary parameters
vanish, i.eo_ = a+ = B_ = B+ = 0, and if at the same time, = —p3, for L odd or
a, = 1/28, for L even we have four additional solutions. Two of them are (1is0, O, . . .)
and(..., 0,0, 1). Note that the degeneracy of the eigenvalue 0 might be higher than the
number of linearly independent eigenvectors sibtenight be non-diagonalizable. This will
be discussed in the appendix by considering the polynomial equation which is given in the
next section.

The calculations we have done so far enable us to give a complete set of conditions under
which M is non-diagonalizable. This is always the case if the degeneracy of an eigenvalue is
higher than the number of linearly independent eigenvectors. The conditions for the eigenvalue
A = 0 are derived in the appendix, whereas the conditions for the eigenvalge® are
obtained from equation (3.17) is non-diagonalizable, if one of the following conditions is
satisfied:

(i) M has an eigenvalue # 0 which is more than twofold degenerate;

(i) M has an eigenvalue # 0 which is twofold degenerate, but at least one ofStheis
different from zero;

(iii) » = Ois an eigenvalue a¥/, but it is more than sixfold degenerate;

(iv) » = Ois asixfold degenerate eigenvaluadfbut one of the parameters, o, S+, S—
is different from zero;

(v) » = Ois a sixfold degenerate eigenvalueldf buta, # — B, for L odd ora, # 1/28,
for L even, respectively.

If none of these conditions is satisfied, is diagonalizable.

4. The polynomial equation

Now we turn to the polynomial equation which determines the eigenvalugs @&s can be
seen directly fromM (equation (2.11)), two of the eigenvalues are always zero. The others are
obtained from (3.9), where the valueswadre given by the solutions of the following polynomial
which has been obtained from (3.22). For later convenience, we use a new vasabfe

[)(Z) — |:Z2L+4 _ A(Z2L+3 +Z) + (B + EZ)(Z2L+2 +ZZ)

z-17?
HD +2E%)(2 427 + B2 +2%) = 2B + 2

+(%(_1+A —_B— D) _ (_1)LC _ 2E2> (ZL+3+ZL+1)

+(—1+A—B— D+2(-1)"C +4E — 4E*)""% + 1]
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1

The coefficients are given by
A=2(-1+a_a.+B.p_+a?+pd)
B=(—1+20 g)(—1+28.f_) +&—1+a_g)p%+A4—1+p.f )a?
C=(@2BZ+aip?)
D =2(—1+2n_g)BZ+2(—1+28.B_)a?
E = 2u.p.. (4.2)

Note that the polynomialp(z) is already completely determined by five complex
parameters although we started with six parameters in the original Hamiltonian. This can
be explained by the existence of a similarity transformation of the form

10

0 €

L
H =UHU! with U =

11®-~~®I,-_1®< >®I_/‘+1®"‘®IL (4.3)

j=1

containing one free parameterHere/; stands for the identity matrix at the sife By using

this similarity transformation, the four boundary parametersx.., 8 andg. are transformed

as follows
a_ — €a_ ar — 1/eas B — €B_ B+ — 1/eBs (4.4)

and by choosing a particular valueqfone can always fix one of the boundary parameters.

The polynomialg(z) has a very special form, because in comparison with a general
polynomial of degree 2 + 4 many of the coefficients are zero. This changes of course when
it is divided by(z — 1)2.

Observe that the polynomigl(z) has degree 2 + 2 although the diagonal form diong
given by equation (2.16) has only+ 2 fermionic excitations\,. The reason, therefore, is the
quadratic relation betweerandA. Since withz also J/z is a solution of the polynomial, one
gets each value of twice. Taking half of them and adding the additional eigenvalue 0, which
was mentioned in section 2 and explicitly excluded from the set of solutions in section 3, gives
exactly theL + 2 fermionic excitations.

Special solutions of this polynomial will be studied in the next section.

5. Factorization of the polynomial in cyclotomic polynomials

The study of the factorization properties of the polynomial given by equation (4.1) represents
a very interesting mathematical problem. Furthermore, factorizations of the polynomial into
cyclotomic polynomials which we are going to present below are very important because they
allow us to calculate the whole spectrum and other propertiék,af analytically.

For some special choices of the parameter®, C, D and E the polynomial factorizes
exactly into cyclotomic polynomials. These factorizations were found using the following
algorithm. A factorized polynomial of degred. 2 4 of the form

k
f@) = [ [Ja- p,»z"")} (1= praag®*42m) (5.1)
i=1
is expanded for a fixed value éf(corresponding to a fixed nhumber of factors), a fixed value
of L and for all possible combinations af. The coefficients of the expanded polynomial
f(z) which are functions of the;,i = 1,...,k + 1, are compared to the coefficients of the
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original polynomialy (z). In this way, one obtains a set of. 2 4 coupled equations fgr; and

the coefficientsA, B, C, D and E which has been solved usimgaple Typically, values of

L =5, 6, 7 were used; for smaller values bthe equations do not reflect the general situation
because some exponents coincide. For lafgdrowever, the number of partitions of.2 4
inton;,i =1,...,k, becomes too large. Among the solutions only those were kept which are
valid for arbitraryL and not only for the specidl used in the calculatiork has been varied
between 1 and 4. Fdr = 5 (six factors) the program did not run properly—it needed too
much memory. Howeveg(z) cannot factorize irtt a a larger number of factors of the above
form (5.1) than six with the condition that the correspondipgppear explicitly as exponents

in ¢(z). In this case the only possible combination #emvould be

n1=n2=L n3=n4=n5=n5=1. (5.2)

In table 1 all factorizations which were calculated as described above are listed. The
factorizations in six factors (entries 14-16) were found by solving the system of coupled
equations for the choice (5.2) of and various choices gf;. Therefore the list might not be
exhaustive for the factorizations into six factors.

The entries 10-16 each furnish a one-parameter family of solutions (where the parameter
is calleds) for which a factorization in cyclotomic polynomials appears. Notice, however, that
E is the only parameter whose value is always fixed, independently 8inceE = «.8,,
this means that in all cases presented in table 1 the product of the coefficients in front of the
diagonal boundary terms is always fixed. Moreover, the entries 10—16 provide examples where
some of the zeros of the polynomiglz) are always independent ff(e.g.z = s orz = 1/s).

We will come back to this point in section 7 and in the discussion (section 14).

Looking at the entries 10-16 the remark we made at the end of section 3 that in special
cases the Hamiltonian might not be diagonalizable becomes clear: it is possible to choose the
parametes as a function ofL in such a way that the polynomial has zeros which are more
than twofold degenerate. Take, for example, the case 13 and chegsal to one solution of
1 - zL = 0. Then the corresponding zerogfz) is threefold degenerate for the valuelof
chosen above. In this case, one cannot find more than two independent eigenveadtb(sffor
(3.17)) for the corresponding degenerate eigenvalue. Thus, in these special cases (which can
be constructed analogously for the other entries 10-16) the nidtisxnot diagonalizable.

For all examples in table 1 it is possible to calculate the spectrum and the ground-state
energy exactly. In the following sections we will give the explicit expressions for the ground-
state energies and for some excitations. With the insight gained from these exactly solvable
cases we will later also treat the general case in the limit of l1arfS].

6. Examples of exact calculations of spectra for the finite lattice

Let us now present two examples of how to calculate the spectruiia@ffrom the factorized
form of the polynomial. We will first take case 4 from table 1. The factorized form of the
polynomialg(z) as given in table 1 suggests the angatz exp(iz + (2ip /(2L + 1))). This
leads to the solutions

¢ =nm n=1...,L. (6.1)

The factor(1 +z) leads to the additional solutian= —1 which meansA = 0. The factor
(1 — z)? has to be divided out because the fermionic energies are given by the zgr@9 of
and not of those aof (z) which are given in table 1 (also cf (4.1)).



Table 1. Cases where the polynomial factorizes into cyclotomic polynomials.

Case A B (-Dhtc D E q(2)

1 1 0 0 0 0 (1—z)(1— z2L+3)

2 0 -1 0 0 0 (1-z2)(1 — z3L+2)

3 -1 0 0 0 0 L+2)(1— M - 12

4 1 -1 0 1 0 (L+2)(1—2)%(L +21*)

5 0 0 1 0 0 (1— zL*y (1 — 7L*3)

6 0 0 -1 0 0 (1— 1722

7 1 0 1 0 0 1-2A—M*Y@+:1?)

8 1 0 -1 0 0 1-2)A+h@a - L2

9 2 1 s+1/s 0 0 (1—2)%(L — sz (L — 175750
10 s+1/s 1 1@2+s+1/s) 0 0 (1—s2)(L—1/s2)(1 — 7112
11 1+s+1/s 1+s+1/s 0 -1 0 (1—s2)(1—1/s2)(1 —2)(1 — z2*Y)
12 0 —1—s5—1/s L(—2+5+1/s) -2 1 (1—-1s22)(1—1/s75) (1 — z5)?
13 s+1/s 1 —2—s5—1/s —2—s5—1/s 1 (1-s2)(1—1/s2)(1+z5) (1 —z5)?
14 2+s+1/s 1+25+2/s 4425 +2/s —4—-5-1/s -1 1—s2)(1—1/s2)(1 — )21 +71)2?
15 2+s+1/s 1+25+2/s —4—25—2/s —4—5—1/s 1 (1—s2)(1—1/s2)(1 — 2)2(1 —z£)2
16 —2+s+1/s 1-25—2/s 0 —s—1/s 1 1—s2)(1—1/s2)(1 +2)2(1 — )2

:Sal/epunog Yiim [apow-x X ayl

60¢
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Then the energies of the fermionic excitations are givemby 0 (twice) and, using
equation (3.9), by

1 . nmw
A"ZESIn(2L+1> n=1...,L. (6.2)

The energies of the fermionic excitations in the other cases from table 1 have a similar
form. However, in the cases 10, 11 and 13—16 there is always one solution with keats
leading to a fermionic energyk = (/s + /I/s) which is—in contrast to the fermionic
energies obtained in equation (6.2)—independent of the lattice ldngtWe will see later
[23] that this energy can be connected to a boundary bound state. The nature of this state will
be elucidated by studying the corresponding spatial profiles and by comparing some spatial
profiles for special choices of the parameters to a Bethe ansatz solutionXkttobain with
only diagonal boundary terms [19]. This will be described in detail in [23].

We now consider case 9 of table 1 which is special because the roots of the polynomial all
depend on a parameteand in general do not lie on the unit circle. Therefore, we will briefly
present the corresponding results here. FFeven we obtain the solutions = 0 and

1 [/@Cn+Dnm ilns L

A, = =sin + n=01..., =
2(L+1) 2(L+1) 2

L —

2
1 [/@Cn+Dnm ilns 2
A== - —01,...2°° 6.3

2S'n< 2L +1) 2(L+1)) 4 2 ©3)

for |Im(ns)| < 7.
For L odd we have accordinglyt = 0, and

1 . nmw ilns L+1
A,==-sin| — + —— n=1 ...,
2 L+1 2(L+1 2
1 niw ilns L-1
Ap==sin| — — ——— =01...,—= 6.4
2 <L+1 2(L+1)) " 2 (6.4)

for0 < Im(ns) < 7. For—m < Im(Ins) < 0 one has to interchange the limits/ofn the
two sets of eigenvalues given by equation (6.4).

In this example, we can see explicitly how the parametgopears in the spectrum. The
argument of the sine is shifted by thelependent term iln/(2L + 2).

For the examples given in table 1, it is also possible to calculate the ground-state energies
exactly. The corresponding expressions will be given in the next section.

7. Exact expressions for the ground-state energies @f\ong

Let us first consider case 4 of table 1 again. The ground-state energy is given by summing up
all negative eigenvalues @f (cf (2.16)) and this leads to

1 nmw 1 T
Eo=—= sin{——) = —- cot . 7.1
° 2; <2L+1) 47 4L +2 (*-1)

In case 9, also discussed in section 6, the ground-state enerfyefen is given by

o 15321 @u+Dmw ilns \ o (@u+Dr ilns
=3 X [S'”<2<L+1> 2<L+1>) S'”(2<L+1> _2<L+1>>]
1 ( Ins )__}cosh(ln(s)/(2L+2))

_ = cosh
2N 22 2 sin(z/(2L + 2))

(7.2)
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For L odd we obtain
1 InGs) . . . In(s)
Eq = —3 [COtZL e cosh2L 2 +isinh 2L+ 2}
1 cosh(In(s) + i) /(2L + 2))
2 sin(r/ (2L + 2))

This expression is indeed real if the original Hamiltonian is chosen to be Hermitian. This
can be seen by imposing Hermitian boundary terms in the Hamilteniag: o, 8+ = 8*
and solving the system of equations

A=2=2(-1+]a_[*+|B:)

B=1=(1-2a»1-2p

(=DFC =5+ (1/s) = (=D 2la_|?|B.|* cOS A&, + &) (7.4)
whereé, and&g are the phases of_ and ., respectively. These equations have only the
solutionfer_| = |B+] = 1,5 = (—1)* exp(+2i(&, +&)). For this choice of the ground-state
energies given by equations (7.2) and (7.3) are always real.

In table 2, the expressions for the ground-state energies for all cases from table 1 are
listed. Again, they correspond fong. In section 12, we will describe how the corresponding
ground-state energies for the original Hamiltonfirare obtained from the ones fiong. Itis
remarkable that despite the non-diagonal boundary terms all expressions for the ground-state
energies ofjong are given in terms of trigonometric functions. The only exception is case 10
where hyperbolic functions appear in the expression for the ground-state energy (see (7.2) and
(7.3)). However, even in this case the model is integrable.

The virtue of table 2 is that one can explicitly see how the ground-state energy is changing
with different boundary parameters (we refer to table 3 of section 12 for some examples in
which boundary parameters of the Hamiltonian correspond to a given choicedf he”, D
andE). This is especially interesting when studying the thermodynamic limit as we will do in
[24]. There we will show that the Hamiltonian with arbitrary boundary terms corresponds to
a conformal invariant theory. In particular, if one expands the expressions of table 2 in powers
of 1/L, one can already see that they have the typical form of the ground-state expansion
corresponding to a conformally invariant theory and one can directly read off the conformal
charge and the surface free energy for the different boundary parameters.

Notice thatthe table includes a well known spin chain: Xté-chain with open boundaries
is case 10 withh = —1.

The s-dependent cases 9-16 are of special interest becausedéggendence is still
manifestin the expressions of the ground-state energy and one can see how this family of ground
states varies with. Note that in all cases 10-16 thelependent terms appear additively to the
L-dependent part of the ground-state energy (and therewith contribute additively to the surface
free energy in the expansion far— oo). The physical consequences of thendependent
solutions will be discussed in the next paper in connection with boundary states [23].

In case 9, however, there is no such simple structure and the paranseteaupled with
L as argument of the cosh term. Indeed, case 9 is special as can be seen already from table 1
(the s-dependence appears in the factors of the polynomial which have degréeand not
in the factors of degree 1 or 2 as in all othedlependent cases). This case will be discussed
in detail in the following two articles [23, 24].

(7.3)

8. Example of a spectrum ofHjong With asymmetric bulk terms

Up to now, we have not looked explicitly at Hamiltonians with asymmetric bulk terms, which
we mentioned in the introduction. Recall that we can map such a Hamilt@higiven by
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Table 2. Ground state energy dfjong for the cases from table 1.

Case L even and. odd

1 1 -
1 = ~(sin-~
4~ 4 4L +6
-1
2 11 sin il + cot i
4 4 2L +2 2L +2
1 T
4 Z
4 4
1 1
11 - (Y272
4 ( 4L+2) eSO
L even L odd
—1 -1
3 11 in il + cot 11 sin il + cot
2 4 2L +2 2L +4 2 4 2L +4 2L +2
-1 -1
5 11 sin il + | sin il 11 cot il cot il
2 4 2L + 2L +2 2 4 2L +2 2L +6
-1
6 1 1 cot T 1 1 sin T
2 2 2L +4 2 2 2L +4
-1 -1
7 1.1 sin il + | sin il 11 cot il + cot i
4 4 2L +2 2L +4 4 4 2L +2 2L +4
-1 -1
8 1.1 cot—— ctﬂ 1.1 sinﬂ +sin”
4 4 2L+2 2L +4 4 4 2L +2 2L +4
—1 -1
1 In(s) . b4 1 In(s) +im . T
9 —=[ cosh sin —=[ cosh sin
2( 2L+2><' 2L+2) 2( an+2 J\®"2r+2
-1
1 1 T 1 1 1 1
10 = _ 2| sinT"_ _ T2y 12 - _ Zcot _ T2y 12
2 2(' 2L+2> AR 2 2% g Y
-1
1 1 T 1 1 1 T 1
12 el O S N V2 SV e S O V2 S V2
> 2cot2L 4(s s ) > 23|n2L 4(s K )
i i
_Z(sl/nt —sl4y _Z(Sm — sl
-1
1 1 1 1 1 1 T 1
13 oz t——f 12 4 5=12 S —— —sin— ] —Z(Y2+s7Y2
2 as 2% T2 2 202 2\7"2L FACRER
-1
1 T 1 1 T 1
14 A en _ T2y 12 e LI V S
2<sm2L) 4(s K ) 200 oL 4(s K )
-1
1 T 1 1 T 1
15 e SN Ve S Vi e o V- B V7
2Co oL 4(s s ) > SIn2L 4(s K )
-1
1 1 T 1 1 1 T 1
16 Z - Zcot— — S (sY2 4572 - Zfsin— ) —-@Y2+s57Y2
2 2% TS 2 2\""2L AR

equation (1.2) to a Hamiltonia#/ of the form given by (1.1) which has symmetric bulk
terms and.-dependent boundary terms of the special form given by (1.3). Using the methods
previously described, we can solve the eigenvalue problem for the Hamiltéfijgand in

this way obtain the spectrum éfiong, WhereHiong is obtained fron in the same way aBiong

from H by adding one site at each end of the chain. We will carry this out for one example.
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We choose a Hamiltoniaﬁk,ng whose transformedong has boundary terms corresponding
to case 9. Notice that this is the only factorizable case where this can be done independently
of L if p # ¢, i.e. the analysis can simultanously be carried out for all Hamiltonias the
chosen type with arbitrary length. In all other cases, starting from one factorizable case and
changing the lengthh would result in boundary parameters belonging to another (perhaps not
even factorizable) case.

One possible choice for the boundary parameters in case 9 is given by (as can be directly
seen from (4.2))

1
=1 Bpo=1 (D' @pi+aipl)=s+- @ =0=4.
N
Expressingy_ in terms ofw. andj_ in terms of . and using equation (1.3), we obtain

/\2 SN2
s = (—1)L(/3_:r> 022 (or 1/s = (_1)L('3_:r> Q2—2L>.
o o

+ +
Using the results obtained in equation (6.3) we get for the fermionic excitations fodeven

A= }sin((2n+l)n 4] [anQHn(ﬁ;/“i)) —InQD n—o,. . =2

2 2L +2 L+1 2
_1 2InQ +In (. /)
A= Ecosh[ T+1 InQ|. (8.1)

The quasi-momentén + 1)t /(2L + 2) are shifted by the constant
i [2|nQ+|n CACANE Q]

L+1
The secondL-independent term of this constant is typical for asymmetric bulk terms as
will be seen in [24]. A similar expression has been obtained in [8] for the fermionic
excitations ofH with totally asymmetric bulk termsp( = 1,4 = 0), a_ # 0, B+ # O
andas = B_ =a, =B, =0.
The ground-state energy is given by summing up all negative eigenvalué¢sletding

Eog=— cosh(% —1In Q) (2 sin(ZLn+ 2)>_1. (8.2)

Observe that fop/q = 1 we obtain the previous expression calculated for case 9.

to

9. Projection method and theo™ one-point functions

Up to now we have dealt only with the Hamiltonid&fiyng given by equation (2.1) which was
obtained fromH (see (1.2)) by adding one lattice site at each end of the chain. In this section
we will explain how the spectrum df is related to the spectrum &figng.

Since, as mentioned in section 2; and o},; commute with Hiong the spectrum
decomposes into four sectars+, +—, —+, ——) corresponding to the eigenvalugd of o
ando},,. The eigenvalues and eigenvectorgbére related to ther+)-sector in the following
way.

If |E) is an eigenvector aff corresponding to an eigenvaléighen|Eigng) = |+) ® |[E) ®
|[+) is an eigenvector affjong corresponding to the same eigenvakievhereog |+) = |+) and
| Elong) is an element of the spat® @ C' @ C2. Thus the whole spectrum &f is contained in
the spectrum oH)ong projected onto the¢++)-sector. Since the dimension of tlie+)-sector
is 2L, we conclude that the spectrum &fis identical to the spectrum dfjong projected onto
the (++)-sector.
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Before describing how we will proceed to project to ther)-sector, we make some
definitions which are needed later. First, we want to remind the reademMhdéfined
by equation (2.11) always has a twofold degenerate eigenvalue O corresponding to the
eigenvectorg0, 1,0, 0, ...) and(0, 0, ..., 1, 0) of M. Using the Clifford operatorssji given
by equation (2.3), we now define the corresponding ladder operators

bo= (15 —it4)/2  ao= (1 +it;4y)/2. (9.1)
We also define the vacuum representation with the lowest weight getrby

aglvad =0 Vk. (9.2)
Because we are interested in eigenstategjando;,, we define the vectors

v*) = 5 (vag +10) 9.3)

where|0) = bg|vac). Observe that
of vE) = £]v*). (9.4)
Now we will proceed in three steps. In the first step (subsection 9.1) we will show, using
some algebraic considerations, that the vedtof$ are also eigenvectors of ;. It will turn

out that the eigenvalues of,, corresponding to the eigenvectge$) and|v~) always have
opposite signs, i.e.

0} 4lv*) = £n|v™) (9.5)

with n2 = 1. The value ofj plays a crucial role in the following. We will also show that the
(++)-sector consists either of the states

o610 with » even (9.6)
j=1

or
[ 166107 with  odd 9.7)
j=1

where O< k; < kj+1. Sincek; # 0, the creation operator of the spurious zero mode defined
by equation (9.1) does not appear in (9.6) and (9.7). The ground stAteafresponds tw*)
or to biowesv ™), Wherebjowest denotes the creation operator corresponding to the fermionic
energy with smallest real part akhd# 0.

Whether thg++)-sector consists of the states (9.6) or (9.7) will be shown to depend on the
value ofy (see (9.5)) which will be calculated by computing the expectation alue;, , [v*).
Note that we defingv*| via

(v*| = J5((vad £ (vadao) (9.8)
where(vad denotes the left vacuum @fjong, i.€.
(vadby = 0. (9.9)

Note that if Hiong is not Hermitian(vad is not equal tgvac’ in general.
In the second step (section 10), we will show how to calculate the one-point function

fG) = @'la} "), (9.10)

In the present context, this is done merely for technical reasons in order to caltulatel);
however, it will be essential in another context. Namely, the explicit calculatigi( pf will
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be presented in the following paper [23]. We would already like to remark that the calculation
of f(j) is similar to the calculation of the two-point function

g, j) = ("o a7 |v"). (9.11)

Note that, due to equation (9.4), one already seesjthat= g(0, j). We show in section 10
that the functionsf (j) andg(i, j) are both given by Pfaffians of submatrices of the same
matrix. We will, furthermore, generalize these considerations to states of the form (9.6) and
(9.7). These results also apply B although we started with the larger space of states of
Hlong-

Using equations (2.40) and (2.42), we will obtain determinant representationfs for
andg(i, j) which can be treated analytically in the calculationf@f. + 1). This calculation
can be found in section 11 and will be the third step.

9.1. Algebraic considerations

In this subsection, we will show that tlie+)-sector consists either of the states given by (9.6)
or (9.7) and clarify the role aof given in (9.5). Because

@6 = @)a=0  Vk#0 (9.12)
which can be seen directly from the matfik, we obtain the commutation relations

(0741, bi] = [0741, ax] = {og, bi} = {05, ax} =0 Vk # 0 (9.13)
from equations (2.18) and (2.17) and therefore

[0§. Ni] = [0740. N =0 ¥k #0. (9.14)
Due to equation (9.14) the vectdis®) have to be eigenvectors of, ,, i.e.

07 alv®) = n*v¥). (9.15)

Thus the sector containing*) respectivelyjv~) is well defined and given by the valuesigf
andn, respectively. Note that (9.15) is not as precise as (9.5) because (9.5) iniplies .

Due to equations (9.13) we can make the following statement concerning the vectors of a
given sector. If an arbitrary vectfw) is an element of théte)-sector where € {+, —}, then
bi|v) with k = 0 is an element of thére)-sector. Now one has to distinguish two cases.

(@) If |v*) is an element of thé++)-sector, i.ep™ = +1, then all the states given by (9.6) are
also elements of the-+)-sector. The vectdw~) then has to be an element of the—)-sector
because otherwise the-—)-sector would be missing in the space of states, which is not the
case. Thus, we havg = —1.

(i) If |v™) is an element of thé+—)-sector, i.en* = —1, then|v™) has to be an element
of the (—+)-sector. Otherwis¢~) would be an element of the-—)-sector and there would
be no(++)-sector. As a consequence, we have that= +1 and all the states given by (9.7)
are elements of ther+)-sector.

In both cases, the subspace spanned by the vectors (9.6) respectively (9.7) has dimension
2L and thus they form a basis of tite+)-sector. Because the valuesgdfand,~ always have
opposite signs, we will use the variabjelefined by equation (9.5) in the following.

10. One- and two-point functions ofo®

In this section we show how to compute the one- and two-point functions fer;tieperator
with respect to the states®) defined by equation (9.3) arid*| defined by (9.8) following
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the method of Lieb, Schultz and Mattis (LSM) [1]. The computation of the correlators of the
operators:rjiv can be done similarly. In this paper, however, we are only interested in the value
of (v+|o-jf|v+) at the particular poinj = L + 1 which is calculated in section 11 using the
results of this section. Due to equation (9.5) we thereby obtain the valye/bich is needed

for the projection fromHiong to H as described in the previous section. The calculation for
general values of will be part of the second paper of this series [23].

The main difference in comparison to the problem of LSM [1] is that in our case the one-
point functions do not vanish because of the non-diagonal boundary terms we are considering.
They can be calculated in the same way as the two-point correlators. At the end of this section,
we will briefly note how to compute the one- and two-point functions for excited states of
Hong Of the form (9.6) and (9.7). This is not necessary for the calculation aé¢fined in
equation (9.5), but it is needed for the calculation of the one- and two-point functions for the
eigenstates off. Note that ifp = —1 the ground state off corresponds to an excited state
of Hiong.

We now proceed to the calculation of the one- and two-point functions. Wrcbtﬁ"@

terms of ther defined in equation (2.3), we obtain
(viloﬂvi) = (=) (vF|zy H t,:'rk_r;'lvi) (10.1)
k<j
which is up to the sign exactly the two-point functiorﬂagaﬂvi). In general,

(wof o} vty = (=) T wHr [ [riw o vt (10.2)
k<j

Of course, i denote/—1. Using equation (2.24);1.i can be expressed in terms of ladder
operatorsy, andby, i.e.

L+1

T =) @)+ (60 i (10.3)
k=0

Because{q&o )“ is only different from zero if eithef = 0andu = +orj = L+ 1 andu =
(compare equatlons (9.1) and (2.18) and (2.17)) we have

W [ [ ofv*) = (vadr, [ [/ 7] Ivac. (10.4)

k<j k<j

For simplicity, we will denote{vadO|vad by (O) in the following whereO denotes an
arbitrary operator. Using Wick'’s theorem we are left with the calculation of the Pfaffian of the
antisymmetric matrixg, i.e.

< [ ]> PfA (10.5)

k<j
where
0 (7 %) <f Tiva) <T fz+2> e ()
A= () <r:ir:1> (Ti2Tinn) ,+10,+2 <f;{;j*> Heo

<T;Ti7> (T Tz+1> <Tj Tl+l> (T+Tl-:'2> T 0
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We want to remind the reader that the Pfaffian of&2n antisymmetric matrixd with matrix
elementsy;; is defined by

1
PfA = o SgN0)as (1) ()46 (35 @) - - - Ao (2n—1)o (2n) (10.7)
n: 0652/1
wheresS,, denotes the symmetric group of degree 2
The expectation values of the basic contractions of pairs which form the entriearef
evaluated using equation (10.3). Due to the propertyad (cf (9.9)) we obtain
L+1

(T'eh) = (@)l @Y (10.8)
k=0

In general, no further simplification is possible.

Nevertheless, there exist two special cases where the calculation of the Pfaffian can be
reduced to the calculation of a determinant. Namely, this is possible if no diagonal boundary
terms are present oréf_ = o, andB_ = B.. This reduction uses the additional relations
for the eigenvectors given by equations (2.40) or (2.42), respectively. Note that in this paper
the general relatiofPfA)? = detA is of no use because we are exactly interested in the sign
of n.

In the absence of diagonal boundaries we can use equation (2.40) to simplify (10.8). Using
similar arguments as LSM we also obtain a determinant representation for the correlation
functions; however, the contributing contractions are different from theirs. In fact, using
equation (2.40) results in

(tf't}) =0 fori + j even (10.9)

and thus the correlation functions are given by subdeterminants ¢Eth&) x (L + 1) matrix
(o) (o) (7073)
(pr)) () (1g)

D= <T£Tf> (t,1q) <T{TST> R (10.10)

Denoting bny]. the matrixD after elimination of the first rows and columns and the last
L +1— j rows and columns we can write
PfA =i/"" f;; detD, (10.11)
where
—i if i even andj odd
fir=11 if i odd and; even (10.12)
1 otherwise.

The calculation of PA also simplifies ife. = «— andB. = B_. In this case we can utilize
equation (2.42) to obtain

(fi"fj’.‘) =0. (10.13)
This again results in a determinant representation o, IPE.
(t;” 7:;1) (t; f,:z) e (T 7:;)

PfA — <T,‘:1’Ti11) (Tizlf,:z) e <Ti:17;) (10.14)

+ -+ +
(T]_17i+1> (T_,-_l'fi+2> (T]_l'fj)



218 U Bilstein et al

By simple modifications one can generalize the results of this section to excited states
of the form (9.6) or (9.7). The argument runs as follows. Any state given by elementary
excitations can be regarded as the vacuum $tat® of a new set of ladder operators, where
the q; andb, of the excited fermions are interchanged. This corresponds to an interchange
of the eigenvectorg, and¢, (see (2.17) and (2.18)). Thus the calculation of correlation
functions for the states in (9.6) and (9.7) is equivalent to the calculation of the correlation
functions for the stateg®) defined in the same way ds*) in equation (9.3) but now
using

vac) = [ ] b, Ivag (10.15)
j=1

as vacuum state whereis even or odd, respectively, aid# 0. The left vacuum defined
by equation (9.9) has to be modified analogously. As a consequence, we only have to replace
equation (10.8) by

(T'T) = D (@)@ + Y (@@ (10.16)

k unexc. k exc.

11. Calculation of (o7, ;)

If the diagonal boundary terms are absent ar.if= «_ andg. = B_, we can make use of
equations (10.11) or (10.14), respectively, in order to calculate

0= (v*of,1lv"). (11.1)

Recall that we need the value pto decide whether the++)-sector of the space of states of
Hiong is given by the states of the form (9.6) or (9.7).

Thus, if no diagonal boundary terms are present, we have to calculabe whereD is
defined by equation (10.10). This determinant can be written as the product of two determinants

(—1)* detD = detA, detA, (11.2)

where

(#1)0 (D)9 (¢3)9
(#1)2 (D)7 (¢3)7
Ag=1 ()5 (9)5 (93)3

@)1 @DT D3
@)1 (@37 @33 -
Av=1 (D1 @HT @D - |- (11.3)

The factor(—1)* is due to permutations of rows and columns which can be seen by comparing
the producty,A, with D. Without loss of generality, we may assume that the eigenvectors are
normalized in such a way that they satisfy equation (2.38) with1. Using equation (2.40)
we then find

AA, =1 AAL = -1 (11.4)
Due to the special form of the matri¢{ (see equation (2.32)) and (2.38), the two matriegs
andA, are related by a matrid,_,, via

AM A, = A (11.5)
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whereA = Agde With & > 0. The matrixm,_,, is given by
-G' F 0 0 0
—Ft . 0 0

Myw = | © . (11.6)
0 0 . F 0
0 0 0 —-F' K
for L odd or
-G" F 0 0 0
0 —Ft - 0 0
Mg—)u = 0 0 F 0 (117)

0 0 0 -F F
0 0 0 0 -—-k"
for L even, where we have denoted GYythe matrixG of equation (2.5) with the second row
eliminated and byK’ the matrixK of (2.5) with the first column eliminated. Note that the
eliminated rows and columns contain only entries which are equal to zero.
Using equations (11.5) and (11.4) in (11.2), we obtain

detD = (—1)* detA~'detm,_,. (11.8)
The value of deMm,_,, can be computed in an elementary way,

G AN VY e for L odd
detM;, = { —i(a_ B+ i) 4 for L even. (11.9)
Plugging this into equation (10.11), we end up with
PfA = (_i)LJ’lM (11.10)

4L+1 Hk#) Ay :
If . = ar andp_ = B4, we obtain the same result by using equation (10.14) and performing
a similar calculation. Combining (10.1), (10.4) and (10.5) with (11.10) we are left in both
cases with
(X_ﬂ+ + (Y+ﬂ_
4L+1 Hk;éo Ay :

Notice that in these cases the expressiopades not depend an andp,. Itis not possible to
calculate the product of all eigenvalues in equation (11.11) in general, but the squared product
of eigenvalues can be calculated from slEtwhereM’ denotes the matri# with the second

and the last but one row and column eliminated. In both cases this yields

detA? = (-1l detM’ = (a_ B+ + o B)? /472, (11.12)

If the Hamiltonian is Hermitian, the product of eigenvalues is simply giverj Ry, Ax =
la_ B+ +a+ B_| /4L, This also holds for Hamiltonians with only real entries because in these
cases the productis real and positive. Thus, we can apply equation (11.11) directly. Otherwise,
one would have to know all the eigenvalues explicitly.

Note that the value of can only change by variation of the boundaries if one crosses a
point in the parameter space at which an additional mode with;Re 0 andk # 0O exists.
This is due to the fact that the eigenvaluesfbfand Hiong are continuous functions of the
boundary parameters. However, at a point satisfying the above condition the valiseraft
well defined, because the corresponding ladder operatoasd b, are not well defined as
already mentioned in section 2.1. Therefore, one can aquire a change of gigg passing
through such a point.

n=('lof ") = (=D (11.11)
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If H is Hermitian the condition to have a mode with/Re= 0 andk # 0 is equivalent
to the existence of an additional zero mode. The presence of such a zero mode corresponds
to the rootz = —1 in the polynomial given by equation (4.1). This implies the condition
o B+ +af_ = 0. Thus if H is Hermitian, i.e. «x = o*, B+ = B*, we have to only
distinguish the two regions Re_g,) > 0 and Réx_f:) < 0. Thus, we conclude that i
is Hermitian we obtain the following expression far

n = (=D signRe(a_Bs)). (11.13)

The results of this section, namely equations (11.11) and (11.13), allow us to calculate the
ground-state energy d@f for the exactly solvable cases of table 1. This will be the subject of
section 12.

12. Ground-state energies for the HamiltonianH in the exactly solvable cases

In section 9 we have shown that the ground staté obrresponds either t0*) or tobjoyesiv ™)
wherebwest IS the creation operator corresponding to the fermion energy with the smallest
real part, which we will denote by Rowest in the following, and thev*) are defined in
equation (9.3). Which of these two states corresponds to the ground state depends on the
eigenvalue) of |v*) with respect to the operation of',,. The eigenvalue is either +1 or
—1. If n = 1, then the ground state correspond$uty and the ground-state energy Bfis
equal to the ground-state energy Bibng. If n = —1, then the ground-state corresponds to
bowestv ™) and the ground-state energy Hfis given by the sum of the ground-state energy
of Hiong and 2Aionest: FOr the exactly solvable cases, the ground-state energidéfgrare
already contained in table 2.

If at least one of the following conditions is satisfied:

(&) Hiong is Hermitian,

(b) Hiong has nos* boundary termso; = 0 = ),

(c)a_ = as andp: = B,
the value ofp can be easily calculated by using the explicit formulae of section 11. In
cases (b) and (c), the expression fois given in equation (11.11) in terms of , 8., B_
ando, and the eigenvalues; of M. In case (a) wheréfong is Hermitian,n is given by
equation (11.13) in terms of_ and g, alone. In the other cases, one would have to calculate
the Pfaffian of the matriXA given by equation (10.6) using different methods than those we
used in sections 10 and 11 to decide which of the stateor bowesv ™) corresponds to the
ground state of{.

To determine the ground-state energy for a given Hamiltoifaof types (a)—(c) one
has to calculate the expression fpgiven by equation (11.11) or (11.13). Analytically, the
ground-state energy f@f can be calculated with our methods only for the cases givenintable 1
where the polynomial factorizes into cyclotomic polynomials and where one knows the whole
spectrum ofHong. These cases are given in terms of the paramete, C, D andE. In
order to put our machinery to work, we need the corresponding parameters, 8_, B+, o,
andg,. Since the transformation from, B, C, D andE to «_, a4, B, B+, @, andg, (which
is given in (4.2)) is nonlinear and leads from five to six variables, the choice of the parameters
a_, a4, B, B+, a, andg; foragivense, B, C, D andE isnotunique, creating some freedom
of choice.

For all the cases listed in table 1, we solved equations (4.2)fow, B_, B+, o, andp,
and allowed only solutions which additionally satisfied one of the conditions (a)—(c) above.
These solutions are listed in table 3. The choices of boundary parameters obtained from those
given in table 3 by application of an obvious similarity transformation to the HamiltoHian
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Table 3. Exactly solvable cases from table 1. Details needed for the projection method.

Case L o B o o B+ B- s 2 Alowest
1 ab. O 0 aar=1fp =3arp =30 sin ;7%
2 ab. 0 0 aas=18=4_=0 0
arb. 0 i% o = ﬂ:%ei‘?’ o = i%e*i‘f’ 0
Br=p_=0
3 ab. 0 0 aw=3p=p-=0 0
4  arb. 0 j:% o=+, =+ g, =p_=0 0
arb. 0 i\% o =ar=0pr=p_=+2 0
5 ewen O 0 o ar=1pp=2op ==} sin 575
5 odd 0 0 aar=3pp =3mp =+} 0
6 ewen O 0 a-ar=1pp =3aup==%5 0
6 odd 0 0 o ar=3pBp =3a:p ==%3 sin 572
7 een O 0 a_as= % BB =lasf_ = ﬂ:% sin 5%
7 odd 0 0 a_ar= 2 1.8 =1lasfp_ = :I:ﬁ 0
8 een O 0 a_o+= 2 18- =1lasp_ = iﬁ 0
8 odd 0 0 o_av=1pp-=lap_= ﬂ:% sin 52
9 even 0 o_ar=1B:B_=1losB_==%5 min(sin(z7%5 £ %))
even 0 aor=18p_=1laf_= j:% min(sin(5Z £ 1<)
even iﬁ a,=a+=:|:\%2 Bi=p_ =22 s=1  singty
asfo =1
9  odd 0 a_as=18+f_ =lasf_ ==iJs min(sin(Z; + 459)
odd 0 a_ar=1B:B_=1asf_= :I:'T min(sin(Z; + 415))
odd j:ﬁ m:m:i% Br =B =42 s=-1 siny"s
a+fo ==+1
10 even O 0 a_as=3pp =351 min(sin 5255, 3 (Y2 +57%2))
a+l3 _ :l:(gl/Z_H—l/Z)
even 0 + \% o =0y = :'372 min(sin 57, 32 +5712))
Br=po =,/ 250
10  odd 0 0 oa_as= 2 pp =51 0
Y (rl/Z_H 1/2)
odd 0 :I:ﬁ ,—m—:l:ﬁfh—ﬂ,:O s=-10
11 arb. 0 i% o =ar=p+=p-=0 s=-1 0
12 arb. :I:% :I:% o =ar=p+=p_=0 s= 0
arb. :F% :I:é 0o =0ar=0ps =f_=£v2 s=1 0
13 arb. :Fﬁ :I:\i@ a_=a;=0B=p_=1 s=-10
14  even ﬂ:\/i? j:i\/g a-=ar =/ g =g =VI+s min(sinZ-, 1(s%2 +57%2))
14  odd :I:% ;é a-=or=p=p-=0 s=-1 0
15 eveni% j:% o =ar=f+=p_=0 s=-1 0
15  odd :FJi—Z H/§ a-=a= /=4 =VI+s min(sin -, 2 (s¥/2 +5=%2))
16 ab. +L i@ @ —ar=fi=p_=0 0
ab. +d Fh o =a=0p=p :i(\/g+ ) 0
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such as reflecting the Hamiltonian in the middle of the chain or applying a transformation of
the form given by equation (4.3) to the Hamiltonian, are not explicitly listed.

Table 3 should be understood as follows. Let us first comment on the choice of the signs
in the cases where we give two alternative signs for the boundary parameters. The signs in the
third and fourth columns can always be chosen independently of each other. However, in the
upper half of the table, the signs @f and«. cannot be chosen independently (see e.g. case
2 or 4) whereas in the lower part of the table, they can be chosen independently (e.g. in cases
9 even and 9 odd as indicated by the conditi_ = £1).

Now we turn to the one-parameter families depending on the parametdere, the
conditions (a)—(c) often lead to restrictions for the value @fhich are indicated in the fifth
column. The choice af_, o, B_ andps given in the fourth column determines 8+ + o+ B_.

In most of the cases from table 1 the product of all valued pfis positive (or zero), and
consequently the sign of_g8. + . f_ multiplied by (—1)* yields the sign ofy. If n < 0, the
ground-state energy @ is given byEo(Hiong) + 2Aiowest Where Eq(Hiong) €an be taken from

table 2. Ifn > 0, the ground-state energy &f is given byEq(H) = Eo(Hong). However,

there are some cases where eigenvalues with vanishing real part but non-vanishing imaginary
part appear in the spectrum Bi,ng. This happens, for example, in case 10 for negative values

of s and may in general happen in cases 9, 10, 14 and 15. In these cases, the sign of the product
of all eigenvalues is not uniquely defined. Here, it is impossible to decide which of the two
vectors|v*) andbiowestiv ™) corresponds to the ground staterbf

In some of the cases, we always fiadg; + «.f_ = 0. Here, an additional zero mode
appears in the spectrum #fiong as already mentioned at the end of section 3. Therefore, the
energies ofv*) andb,|v™), whereb, is the creation operator for the additional fermion with
energy zero, are the same and the ground-state enefgyagain given byEq(Hong). This
is also indicated in table 3 in the last column.

13. Guide

In this paper, we have explained how to diagonalize Xt¥-quantum spin chain of length
L with diagonal and non-diagonal boundary terms defined in equation (1.1). Here we give a
resung of our method which the reader may use as a guide on how to use our results. This
guide should be seen as a user-friendly cooking recipe. It has two parts, the first deals with the
spectrum, the second with the eigenvectors. As one will notice, the guide does not follow the
sections in a chronological way.

In order to find the eigenvalues and eigenvector# afie start by considering a different
Hamiltonian Hiong Which is obtained fronH by appending two additional sites 0 and+ 1
(see (1.4)) so that the expression fdpng is bilinear in Majorana (Clifford) operators, see
equation (2.4).Hiong can be diagonalized in terms of free fermions, fixing the representation
we are working in. The spectrum and the eigenvector® @i the Fock representation can be
retrieved from those found fdf|ong by @ projection method described below.

13.1. Eigenvalues dffjong

The diagonalization ofiong is described in section 2. The spectrum is given in terms of

L + 2 single fermionic energiesA, (see (2.16)). The values @f, can be obtained from a

(2L + 4) x (2L + 4) matrix M (equation (2.11)). Sinc#/ = —M", the 2L + 4 eigenvalues

of this matrix appear in pair& A,,. The necessarl + 2 eigenvalues are taken by convention

as the values with positive real part. As explained in the text, zero is always an eigenvalue of
M. This corresponds to a fermionic zero mode. As long as we con&liggy; the zero mode
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Ao = 0 appears in the spectrum and the ground state is at least twofold degenerate. As we are
going to see, the zero mode does not appear in the spectriimtberefore, we are going to
call it the spurious zero mode. However, the eigenvectord ebrresponding to the spurious
zero mode will be needed in the derivation of the eigenvectofs.of

The eigenvalues o#f can be expressed using equation (3.9) in terms of the zeros of a
complex polynomial of degreel2+ 4 (see (4.1)). Note that the variablen equation (3.9)
is related to the variable in equation (4.1) via = x2. To find the zeros of the polynomial
analytically, we have looked in a systematic way for factorizations of the polynomial into
cyclotomic polynomials. We have determined all possible factorizations up to five factors
and found some examples for factorizations in six factors. These results are listed in table 1
(the parameterd, B, C, D andE appearing in table 1 are defined by equation (4.2) in terms
of the boundary parameters of the Hamiltonian). For the cases where we did not find any
factorizations of the polynomial, the zeros of the polynomial and therewith the fermionic
energies can still be calculated numerically. Since the polynomial has defjred Zhis is
much easier than a straightforward numerical diagonalization of the Hamiltonian which has
dimension 2 x 2°¢.

By studying the solutions of the polynomial equation (4.1), we find spéeiatiependent
solutions in some cases. They correspond to boundary bound states as will be shown in [23].
The ground-state energy éfiong (Which is by convention the energy with the smallest
real part) is obtained in equation (2.16) by subtracting the Fermi sea. In table 2 we listed the

corresponding expressions for the ground-state energi&,ef (which are at least twofold
degenerate) for the cases where the polynomial factorizes into cyclotomic polynomials. Some
properties of the ground-state energies will be discussed in section 14.

In section 6, we give the expressions for the spectrumMoin some of the ‘exactly
solvable’ cases. A list of the ground-state energie$lgfgy for all ‘exactly solvable’ cases
can be found in section 7. Section 8 contains the spectrumi ahd the ground-state energy
of one example of a Hamiltonian with asymmetric bulk terms which can be treated with the
results developed in this paper by using the similarity transformation between the Hamiltonian
given by equation (1.1) and that given by (1.2). This transformation changes the boundary
parameters according to equation (1.3).

13.2. Eigenvalues and ground-state energyfof

Finding the eigenvalues of the original Hamiltonidrs more involved. As shown in section 9,
tofind the spectruniy we have to look at an even or an odd number of fermionic excitations with
respect to the lowest energy Hiong. We disregard the spurious zero mode in the calculation of
the number of fermionic excitations. Whether one has an even or an odd number of fermionic
excitations in the spectrum &f depends on the value of a parametdefined by equation (9.5)
which is either +1 or-1 (see section 9 for details). We will explain the way it is computed
later. If n = +1, the spectrum off consists of an even number of fermionic excitations with
respect to the ground-state energyHifng and the ground-state energy Hfis the same as
that of Hiong. If n = —1, the eigenvalues aff are given by an odd number of fermionic
excitations and the ground-state energybfs the sum of the ground-state energyHfng
and the fermionic energy with the smallest real part which we c&all,2st

If on top of the spurious zero mode another fermionic excitation is zero, the ground-
state energy off is non-degenerate and identical to the ground-state enerfj,gfand the
spectrum ofH is given by all even and odd combinations of fermionic excitations. If a second
fermionic excitation is zero, the whole spectrumipis twofold degenerate. So in these cases
one does not need to calculate the valug.of
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Atthis point we restrict our discussion to the cases where we have derived explicit formulae
for the parametey:

(&) Hiong (and therewithH) is Hermitian;

(b) Hiong has noo* boundary termso; = 0 = 8;);

(Qa_ =arandB: = B_.
For the other cases this guide is not sufficient since they are much more complicated and we
have not obtained simple formulae for the parameter

In case (a)y is given by equation (11.13). Notice that only two boundary parameters
appear in the expression far. In cases (b) and (c), the expression fpiis given by
equation (11.11) in terms of the parameters of the non-diagonal boundary terms and the
eigenvalues oM.

13.2.1. Analytical results for the ground-state energydof If the Hamiltonian additionally
belongs to one of the ‘factorizable’ cases, the ground-state energly adn be calculated
analytically. These cases are listed in table 3. To calculate the ground-state enHrfyr &t
particular choice of boundary parameters given in the third and fourth column of table 3, one
has to proceed as follows. First, one checks the valueA@f,2s: given in the last column.

If 2Alowest = 0, the ground-state energy &f is identical to that ofHong (Which is listed

in table 2). In the cases where\Rwest # 0, one has to know the value gfto obtain the
ground-state energy df#. This value is obtained by using formula (11.11) in cases (b) and
(c) (the values of\,, are given by the zeros of the factorized polynomials listed in table 1) and
formula (11.13) in case (a).

The fermionic energy with the smallest real patt|gest Which has to be added to the
ground-state energy dfiong if 7 = —1 is listed in the last column of table 3. 4f = 1 the
ground-state energy @f can be taken directly from table 2.

Many of the exactly solvable cases depend on an arbitrary free paran{etsr tables 1
and 3). In table 3, thesedependent cases can be separated into two categories. For cases
11-13 and for some choices of the parameters in cases 9, 10, 14 and 15, the conditions (a)—(c)
fix the parameter to some particular value which can be found in column 5 of table 3. For
cases 9, 10, 14-16 there are also possible choices of the boundary parameters where this is
not the case. In examples 9, 10, 14 and 15 it may happen that one cannot make a definite
statement about the value gfif s is chosen in such a way that thalependent eigenvalue of
M has a vanishing real part, but a non-vanishing imaginary part. The reason lies in the fact
that our convention to choose the fermionic energies as those with positive real part becomes
ambiguous in this case.

13.2.2. Numerical calculation of the ground-state energifof Even if the Hamiltonian one

is interested in does not belong to one of the factorizable cases, but fulfils conditions (a), (b)
or (c), one can still use formulae (11.13) and (11.11) to decide what the ground statis.of

If H is Hermitian,n can be read off directly from (11.13); in cases (b) and (c) one additionally
needs the spectrum &f to compute the value of (see (11.11)). The eigenvaluesMfcan

be calculated numerically by solving the polynomial equation (4.1) or by diagonaliing
numerically. Inserting them into equation (2.16) yields the ground-state enefgyngf

13.3. Eigenvectors ffong, H and M

Up to now we have described how to find the eigenvalues and the ground-state energies for
Hiong and forH. Let us now turn to the eigenvectors.
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The eigenvectors ofohg are given in a fermionic Fock representation (compare
equation (2.16)). The eigenvectorsifare given in the same Fock representation; however,
they all lie either in the even or the odd part of the Fock space where we again do not count
the spurious zero mode. If the valuerpis +1, the ground state df corresponds tfw*) (see
equation (9.3)) and all excited states are of the form given in equation (9.6)=If1, the
ground state off corresponds tdjwesti v~ ) Where|v™) is also defined in equation (9.3) and
biowest IS the creation operator corresponding to the fermion energy with the smallest real part.
For the exactly solvable cases it can be read off table 3. The excited states are described by
equation (9.7).

In section 10, we describe how to calculate expectation values-a@berators. For
this calculation, one can either transform the expression for the eigenstafésirofthe
spin representation or, alternatively, one can transform the expression ferdperators
into the fermionic (Fock) representation. We have chosen the second possibility. The
transformation from thes-operators to the fermionic operatotg and b, is given in
equations (2.3) and (10.3) where tmki);‘ are the components of the eigenvectors of
M defined by (2.13) (where we use the notation fixed by (2.9)). Thus, to use this
transformation one needs to know the eigenvectoraf/of We will now describe how to
find them analytically in the cases where the zeros of the polynomial are known, following
the method described in section 3. One first solves equation (3.17) to express a
function of ¢1, where the coefficientS;; with i, j = 1, 2 are given by equations (3.18)—
(8.21). If x # i, the solution forg; is inserted in equations (3.11)—(3.14), and the
results for the coefficients, b, f and g used in equation (3.8) far # 1 respectively
(3.23) forx = 1 vyield expressions fop; and ¢;. The entries of the eigenvectgr
are then given by (3.24) in terms @f and¢;. In this notation, they still depend on the
variablex.

The values of are obtained as solutions of the polynomial equation (4.1). The polynomial
is given in the variable = x2. The eigenvectors for the eigenvalugswith positive real part
andx, # i are obtained by choosing a square rept= ,/z, for each zera, # £1 of the
polynomial (such that the real partof is positive). Observe that due to the quadratic relation
betweenA, andx, (equation (3.9)) the values and 1/x, lead to the same eigenvalue and to
the same eigenvector.

For the eigenvectors corresponding to the eigenvalijesith negative real part one takes
x, = —./Zs. The last free parametgr is fixed by the normalization conditions given by
equation (2.20). Equations (2.20) and (2.21) are equivalent to the anticommutation relations
for the fermionic operators.

For x, = i the equations (3.3)—(3.7) have to be solved in a different way using the ansatz
given by (3.8) forp; andg;. Details of this calculation as well as a derivation of the conditions
for the appearance of additional zero modes on top of the spurious zero mode in the spectrum
of Hiong can be found in the appendix.

13.4. One- and two-point functions of thé-operators

If no o*-boundary terms are present in the Hamiltonian or if the condition = «.

and 8. = pB_ is met, we obtained formulae for the one- and two-point functions of
the o7 -operator for both chaing? and Hgng. FoOr Hiong, We considered the ground
states given by the eigenstates @f and oj,,. Remember thatH,g has a twofold
degenerate ground state due to the spurious zero mode. In the fermionic language, this
corresponds to a vacuunivac, and an excited zero mod¢)). Due to the symmetry

that Hiong commutes withog and o;,; we can pick out the two ground statgs®) =
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lvag £ |0) (see (9.3)) as eigenstates @f and o;,;. As far asH is concerned, its
ground state is given either Qy*) or by biowesdv ™), Wherebiwest is the creation operator

of the fermion corresponding to the energy with the smallest real part as explained
earlier.

The one-point functions of thef—operator are non-trivial due to the presence of the non-
diagonal boundary terms. Without them, they would be zero which is a well known fact from
the X X-chain.

The one- and two-point functions are, up to a factor, Pfaffians (see (10.1), (10.2) and
(10.5)) of the matrixa given by equation (10.6). If ne*-boundary terms are present, we
can further reduce this expression to a determinant as given by equation (104.1)= .
andg, = B_, the determinant is given by (10.14). These simplifications are possible because
some of the so-called basic contractions of pairs of the form given by (10.8) vanish due to the
relations (2.40) and (2.42) obtained in section 2. To determine the ground stdtenaf use
the results of this calculation to determine the magnetizdiidfo;,,|v*) in section 11 to find
the value of the parametegras given by (11.11).

Our calculation with slight modifications also applies to expectation values af the
operator with respect to excited states. This is explained in the last paragraph of section 10.

13.5. List of the results which are going to be used in the following two papers

Here we give a list of results that we will use in the following two papers.

e Second paper [23]. In order to calculate expectation values of traperator and the
o -operator for arbitrary positiop and lattice lengtfL, we need:

() the transformation from the-operators to the fermionic operators ((2.3) and (10.3));

(ii) the eigenvectors oM (see section 3) and the roots of the polynomial (4.1);

(iii) the expressions for the eigenstatestdfin the Fock representation ((9.6), (9.7) and
(9.3)) and the value of the parametedefined by equation (9.5);

(iv) the formulae for the one- and two-point correlation functionseof derived in
section 10.

e Third paper [24].

(i) For the calculation of the excitation spectrum#dfin the limit of largeL we need the
polynomial equation (4.1) and the projection mechanism (see section 9).

(i) For the expressions of the ground-state energies in the exactly solvable cases in the
limit of large L we need the results of tables 2 and 3.

(iif) For the construction of the magnetic charge operator, we need the eigenvectérs of
(and therewith the roots of the polynomial, see earlier).

14. Discussion

14.1. Observations on the expressions for the ground-state energies

Up to now we have described how to find the eigenvalues, the ground-state energies and the
eigenvectors fof|ong (€quation (1.4)) and faif (equation (1.1)). We nowturn to the discussion

of the results of our analytical calculations for the cases where the polynomial (equation (4.1))
can be factorized into cyclotomic polynomials. The expressions of the ground-state energies
of Hiong and of H are given in terms of trigonometric functions only (see tables 2 and 3). It

is remarkable that they appear in spite of non-diagonal boundary terms in the Hamiltonians.
This reflects the integrability of the model.
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Furthermore, notice that for the one-parameter families of exact solutions corresponding
to cases 10-16 from table 2 (where the free parameter is calted ground-state energy has
an L-independent (but-dependent) term which appears additively to thdependent part of
the ground-state energy. We will show in [23] that thésedependent contributions to the
ground-state energy &f are related to boundary bound states.

In some special situations, which only appear for non-Hermitian Hamiltonians, the
expressions for the ground-state energyHoéxhibit a rather peculiar behaviour with respect
to variations ofL. Namely, considering one of the cases 10, 14 and 15 and choosing the
parameters in such a way thaty = —1, one observes that fat less than a limiting
length Ljmit (which depends on) the fermionic energy 2\ owest (Which has to be added
to the ground-state energy @fj,ng to obtain the ground-state energy Hf) is given by
twice the L-independent expression that appears in the ground-state enerdy,gf but
with opposite sign (see table 3). Therefore, this term appears with different sign in the
expression for the ground-state energy Bfthan in the expression for the ground-state
energy of Hiong. However, if L is larger thanLjmi, a level crossing in the fermionic
spectrum appears and anotliedependent fermionic energy becomes smaller than’the
independent energy from before. Then thislependent fermionic energy has to be added to
the ground state dffong instead of the.-independent term from before, and théndependent
part no longer switches its sign when going from the ground-state energl,@fto that
of H.

Now we discuss the degeneracies in the spectrufi.dDegeneracies may appear due to
doubly degenerate fermionic energies. Inthe cases where the polynomial can be factorized into
cyclotomic polynomials, twofold degenerate fermionic energies can be identified by quadratic
factors appearing in the factorized form of the polynomial (see table 1). Notice that this
observation does not apply to the quadratic factors of the fdrm z)? since the polynomial
p(z) given by equation (4.1) has to be divided by this term. In the case where the spectrum of
H consists of an odd number of fermionic excitations, twofold degenerate fermionic energies
also lead to a twofold degenerate ground state. The degeneracies in the spedirane aflso
reflected in the partition functions in [24].

14.2. Open questions

Some questions could not be clarified within the framework of this paper.

(a) It is not clear whether table 1 from section 5 shows all possible cases where the
polynomial factorizes into six or more factors given by cyclotomic polynomials. Perhaps it is
also possible to find different factorizations of the polynomial for other boundary parameters
which also allow us to compute all zeros analytically.

(b) From table 3 one sees that two Hamiltonians may have different boundary terms and
still have the same spectrum (given by the zeros of the same polynomial), for example in case
2 where the Hamiltoniai{ with «_o, = 1 andg, = B = o, = B, = 0 has the same
spectrum as the Hamiltonian with boundary paramegers % a,=0,0_ = %zei‘?, ay =

\/iée‘i“’, B+ = B— = 0. This fact gives rise to unknown similarity transformations which
remain to be made explicit.

(c) For the exactly solvable one-parameter families 10, 14 and 15 with free parameter
observed a surprising behaviour of the expression of the ground-state enéfgp tfie case
where the parameter= —1. Namely, by increasing the lattice lendtland reaching a certain
value L;mi which is given in terms of, the L-independent contribution to the ground-state

energy suddenly switches its sign. The physical origin of this phenomenon is not clear.
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Appendix. Appearance of fermionic zero modes in the spectrum af|gng

In this appendix, we show how to find the eigenvectors of the mMricorresponding to the
eigenvalue zero. This procedure will provide conditions for the boundary parameters which
are equivalent to the existence of additional zero modes on top of the spurious zero mode.
These conditions are already mentioned without proof in section 3.

One might guess that the conditions on the boundary parameters we obtain by constructing
the eigenvectors are already contained in the polynomial given by equation (4.1). We will see
that this is indeed the case, if we only consider Hermitian boundary terms. In the general,
non-Hermitian case this is not true. The polynomial might have more zeros corresponding to
eigenvalues. = 0 of the matrixM than the number of eigenvectors that can be constructed.
Therefore, in this casé{ is not diagonalizable.

We are first going to deal with the explicit construction of the eigenvectors. Afterwards
we will consider the polynomial equation (4.1).

A.1. Construction of eigenvectors

According to equation (3.9), = 0 corresponds to = +i. So we solve the boundary equations
(3.4)—(3.7) using the solution of the bulk equations (3.3) given by (3.8) withi, i.e.

gj=all +bi g =g(=I) + f(=D)7 (A1)

where O< j < L +1. This can now be used to rewrite the boundary equations in terms of
a,b, g, f andgg, @o, ¢r+1, Pr+1. INtroducing the new parameters

ra = (g5 i) ry = (5 £ip) (A2)
we obtain from the left boundary

%o = ¢o (A.3)

a(a—b)=ar(f—g) (A.4)

rea+ rgb — o+ =0 (A.5)

rg8*+ryf —a_go=0. (A.6)
The equations from the right boundary give

(—Drga—ryb+i" B =0 (A7)

rig — (=Dlrg f+iM B g =0 (A.8)

Br(g+ (=D f) = —p_(b+ (-D"a) (A.9)

VL1 = —Qr+1. (A.10)

Sincepy andg; 1 appear only in equations (A.3) and (A.10), we have to solve the homogeneous
system of six linear equations given by (A.4)—(A.9) for the six unknowris f, g, o, Pr+1.
The vector component$, and ¢;+1 can then be directly read off from equation (A.3)
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respectively (A.10). To have non-trivial solutions for thex@® system of equations (A.4)—
(A.9) the determinant of the corresponding @ matrix has to vanish. This is equivalent to a
condition on the boundary parameterts «_, B+, B_, i.e.

C(+/3_ + (X_ﬂ+ = 0 (All)

At this point, it is not obvious how many solutions of the equations (A.4)—(A.9) may exist.
Thus we are going to solve them explicitly. In order to do this, we will treat (A.5)—(A.8)
and (A.4) and (A.9) separately. We first solve (A.5)—(A.8) &ob, f, ¢ and then check for
consistency with (A.4) and (A.9).

Equations (A.5) and (A.7) and (A.6) and (A.8) can be rewritten as

L &+¢Po g _ a_go
Rap <b> B <—iL+1,3+(pL+1> Rer <f) = <_iL+lﬂ—§0L+1) (A.12)

where the 2< 2 matricesR,;, andR,; are given by

r+ r+ r+ r+
— a B ('8 «
o ((—1)Lr,; —rg> o <rg (—1)“%;) ' 19
The determinants aRk,, andR,s have the same values and are given in terms, pg, by
2B, — 1 for L even
—2i(a, + B.) for L odd.
Once we know the general solution of equation (A.12), we only have to verify which specific
solutions simultaneously solve (A.4) and (A.9). Solving equation (A.12) one has to distinguish
two cases: (1) dek,, # 0, (2) detR,, = 0. Let us first deal with case (1).

If det R, # O the matricesR,;, and R, can be inverted in order to solve (A.12). Doing
this we obtain

detRab = dethf = { (A14)

a = m(ou.r;(po - iL+1,3+r;<pL+1) (A15)
b= ~(D'aripo iL Bt oren) (A.16)
-1 .

8= etk (—D*o_rggo— "B ripL+1) (A.17)

f = Getr @ ravo * 1 B-rpre). (A.18)
Substituting this into equation (A.4) gives

(a+B- ta_B)pr+s1=0 (A.19)
whereas (A.9) leads to

(+f- +a_Bi)po = 0. (A.20)

Thus, if equation (A.11) is satisfied and if d@f, # 0, we obtain two eigenvectors af
corresponding to the eigenvaldie= 0 on top of the spurious zero mode becaggsandy; +1
can be chosen independently of each other.

Let us now turn to case (2), i.e. det, = 0. Because this condition gives different
conditions on the non-diagonal boundary termdfewven and. odd, respectively (see (A.14)),
we discuss these cases separately.

We will first turn to the case wherk is odd. Here we have, = — g, which can be read
off from equation (A.14). Using this in (A.13), we can rewrite (A.12) as follows:

arpo = 1" i a_go=—i""B gL (A.21)
avpo =rga+rph a_go=rg f+rze. (A.22)
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For L even we have, according to equation (A.1d),= 1/28,. Using this equality, (A.12)
reads

V2papo =i Bupra V2B g0 = —i"B_pra (A.23)
iv2B.0000 = r;b —rga iv2B.a_gp = r;g —rg f. (A.24)

Note that at least one of the parameb%‘rsr; is different from zero. Thus, equations (A.22)
and (A.24) can be solved either farand f or for b and g, respectively. Note also that,
due to (A.21) and (A.23) andy; +1 are no longer independent of each other, if one of the
parameters., «_, B+, B is different from zero in contrast to case (1).

If all of the parametera., o_, S+, f_ are vanishing, equation (A.21) respectively (A.23)
are satisfied automatically. The same holds for equations (A.4) and (A.9). Thus we simply
have to solve equations (A.22) and (A.24) yielding

r+ r+
a=(DtLp f=(ntLyg forry # 0 (A.25)
Ts s
L r/; L V,; +
b=(-D"—a g=CED"=f for rg # 0. (A.26)
s "s

Since, on the one hand, the parameteend f or b andg, respectively, and, on the other,
the two vector componentsy, ¢+ can be chosen independently we obtain a set of four
eigenvectors corresponding to the eigenvalue 0 on top of the spurious zero mode.

If one of the parametersv.,«_, B+, B_ is different from zero we may solve
equations (A.22) and (A.24) far and f or b and g, respectively, and use the result in
equation (A.4) to obtain

a b =oa+g forry #0 (A.27)
a_a=oa.f forry # 0. (A.28)
Additionally using equation (A.21) respectively (A.23), we obtain from equation (A.9)
B+g = —p-b forry #0 (A.29)
B+f = —B_a forry # 0. (A.30)

Due to condition (A.11), it is always possible to solve equations (A.27)—(A.30) and (A.21)
respectively (A.23) by leaving two variables undetermined. The remaining four unknowns can
then be given in terms of these two. This allows the construction of two further eigenvectors
corresponding to the eigenvale= 0.

For instance, let us assurae # 0, r; # 0 andL odd. Equation (A.21) is then solved
by go = iL*Y(B+/as)@r+1, Whereas (A.27) and (A.29) are solved py= (a_/as)b. The
parametera and f are then fixed by equation (A.22). Thusf, g, ¢g are given in terms of
b andg; +1, which can be chosen independently.

Let us briefly summarize the results of this section. We have looked for eigenvectors
corresponding to the eigenvalue zero. At this point we want to remind the reader that there
always exist at least two eigenvectors corresponding to the eigenvalue zero, namely those which
are related to the spurious zero mode. We found exactly two further eigenvectors corresponding
to the eigenvalue zero @f if and only if one of the two following conditions is satisfied:

() a+B_ + Bra_ = 0 andp, # 1/2«, for L even respectively, # —g, for L odd;

(i) a+B_ + B+ra— = 0 and at least one of the parameters B.. is different from zero.

There exist four further eigenvectors corresponding to the eigenvalue zéfoifodnd
only if

() a+ = B+ = 0andB, = 1/2«a, for L even respectively, = —g, for L odd.
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There are no other possibilities of having further eigenvectors corresponding to the eigenvalue
Zero.

A.2. Zeros of the polynomial at= —1

In this subsection we consider the polynomial equation (4.1) in order to check whether the
matrix M may have more eigenvalués= 0 than the number of eigenvectors that can be
constructed. Since in generdlis non-Hermitian, this may indeed be the case. For Hermitian
M, i.e. Hermitian boundary conditions, we will recover the conditions on the boundary terms
which we already obtained in the previous section.

Since the polynomial equation is given in terms of the variable x2, an additional
eigenvalue. = 0 on top of the spurious zero mode corresponds to a root of the polynomial at

z = —1 (see (3.9)). The necessary condition to have at least one eigeavallfeon top of
the spurious zero mode therefore translates to
qg(-1) =0
& D=1+A+B+2C (A.31)
p== (X_ﬁ-q. + C(+,3_ = 0 (A32)

where the parameters, B, C, D and E are defined by equations (4.2). These zeros will
always appear in pairs since withalso 1/z is a zero ofy(z). In order to find a condition for
the existence of a root at= —1 with higher multiplicity than two, we have to consider the
second derivative @ (z). Using equation (A.31) we obtain for evén

32p()|=—1=0

& 2(E—-12+@B+24+B+2C)L—-CL?>=0 (A.33)
whereas for odd. we get
1-C—B+4E+(3+2A+B+2C)L —CL?=0. (A.34)

Let us now consider equations (A.32)—(A.34) for the case of Hermitian boundaries. Then
equation (A.32) implies that at least one of the parameters- o* or 8. = B* is equal
to zero. Without loss of generality, we may assume shat 0. This implies immediately
C =0and3+2 + B = 2|B:|?(1 + 2«?). Using equation (A.33) we obtain fdr even
2(2051,31 - 1)2
7 .

Since this equality can only be valid if the right-hand side and the left-hand side vanish
simultaneously, we conclude that in the Hermitian case further zetos-at1 only exist if

20B:P(L+207) = (A.35)

1
oy = ﬂ+ = 0 o, = E (A36)
4
From equation (A.34) we get fdr odd
4B, +a,)?
2.1+ 202 = P (A37)

which can only be satisfied if
oy = ﬂ-{. = 0 o, = —ﬂz. (A38)

Further conditions for the existence of more than four zergs=at—1 can be derived in the
same manner as equation (A.33) and equation (A.34), respectively. Solving (A.33) and (A.34)
for A and calculating the fourth derivative pfz) atz = —1 gives the conditions

4-8E+E?+12L(1— E?>) + L?2(QE? —3B —4C+8E+5+L*C =0 (A.39)
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for L even and
C+8E+B+6E?+5+12L(1— E®)+L*(7—2C —8E —B+6E>)+L*C =0

(A.40)
for L odd, respectively. Using equations (A.36) in (A.39) gives
1 2
V2B, + _) =0 (A.41)
( © V2B,
whereas substitution of (A.38) into (A.40) yields
1+L
—2p2 = : A.42
B = (A.42)

Since neither equation (A.41) nor (A.42) can be satisfied byfgany R we conclude that in

the Hermitian case we have at most four zerasat—1. It is no surprise that for Hermitian
boundaries the conditions on the boundary parameters obtained in this subsection are equivalent
to those of the previous subsection. HowevelMifis non-Hermitian, the conditions derived

in this subsection have more solutions than those of the previous section. Therefore, it may
happen that the polynomial has more zeros corresponding to an eigeavalu@ than the
number of eigenvectors that can be constructed. This implieathanon-diagonalizable for

certain choices of boundary terms.
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