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Abstract. We study wire networks that are the complements of triply periodic
minimal surfaces. Here we consider the P, D, G surfaces which are exactly the cases
in which the corresponding graphs are symmetric and self-dual. Our approach is using
the Harper Hamiltonian in a constant magnetic field as set forth in [1–3]. We treat
this system with the methods of noncommutative geometry and obtain a classification
for all the C∗ geometries that appear.

Introduction

It is well known that the only triply periodic minimal surfaces whose complements are

given by symmetric and self-dual graphs are the P, D and G surfaces , see e.g. [4]. While

the P and D surfaces were already discovered by Schwarz in 1830 [5], it took until 1970

for the G surface to be discovered by Alan Schoen [6]. In real situations these surfaces

appear as the boundary between phases. We will concentrate on the complement of these

surfaces which consists of two components or channels. For the P, D and G surfaces

these two channels have the same underlying skeletal graph onto which they retract.

This graph carries all the homotopical information, such as the K-theory. Figures 1, 2

and 5 show one channel and its skeletal graph for the respective cases.

The guiding physical motivation for this study is that, when the boundary has

a finite thickness (as it always does in real materials), the complement still forms two

channels of a nanoporous structure. These channels can be filled with a (semi)conductor,

forming a nanowire network of potential interest in applications. Indeed, for the G

surface, or rather the double Gyroid, this has been achieved [7]. Each channel is

composed of approximately cylindrical segments joined together at triple junctions.

Numerical simulations of a simple wave equation [8] have shown that the lowest-energy

wavefunctions are supported primarily on the junctions. Thus, one may expect to

reproduce the low-energy end of the spectrum by using the tight-binding approximation,

in which the junctions are replaced by the vertices, and the segments connecting them

by the edges, of a graph. Mathematically speaking, this means that each component of

the complement of a G surface is indeed contracted onto its graph.

Of particular interest is the behavior of periodic nanoporous materials in an external

magnetic field, specifically, the questions of existence and number of any additional gaps

in the spectrum the field may produce. Such gaps would be a 3-dimensional analog of

Hofstadter’s butterfly [9]. Note that the materials in question are “supercrystals,” whose

lattice constants far exceed atomic dimensions. (For instance, for the double gyroid

of [7], the lattice constant is of order 20 nm.) As a result, the magnetic flux through

the unit cell may be a sizable fraction of the flux quantum for realistic magnetic fields,

opening the possibility of an experimental study of the additional gap structure. We

would like to understand this structure from the point of view of non-commutative

geometry, in parallel with the earlier studies of the quantum Hall effect [2].

In our previous article [3], we gave a general approach for such wire systems treated

as graphs with a given translational symmetry group. The relevant result of this analysis
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was that for a constant magnetic field the relevant C∗ algebra B generated by magnetic

translation operators and the Harper Hamiltonian has a faithful matrix representation

as a subalgebra of a matrix algebra of a noncommuative torus. More precisely, let n

be the dimension of the ambient space, k be the number of sites in a primitive cell and

B = 2πΘ be the magnetic field expressed as a 2–form. Then B embeds into Mk(T
n
Θ),

where Tn
Θ is the noncommutative n–torus with parameter Θ and Mk(T

n
Θ) is the C�

algebra of k × k matrices with entries in Tn
Θ. One expects that generically, that is if all

entries of Θ are irrational, the algebra B is the full matrix algebra and thus is Morita

equivalent to Tn
Θ itself. At rational points there is no such expectation. An interesting

question is to classify the points at which the algebra is a proper subalgebra, as they

should have special physical properties.

Applying this general theory, we will focus on the case n = 3 and the graphs arising

from the P, D and G surfaces. The classification of special points and their C∗ algebras

for the G surface was one of the main aims of [3]. We will review those results here

giving a concise statement of the main results. The P surface is much simpler since

in this case k = 1. The D case has not yet been considered before, and we give the

complete entirely new calculation here.

1. General background

The general setup is following the noncommutative approach we call Connes-Bellissard-

Harper approach [1,10–12]. We start by considering a C∗ algebra B which is the smallest

algebra containing the Hamiltonian and the symmetries.

The standard choice of the Hamiltonian is the Harper Hamiltonian [12]. This acts

on the Hilbert space H = �2(Λ) where Λ are the vertices of the graph. Physically, this

corresponds to using the tight-binding approximation and Peierls substitution [13]. If

we turn on a magnetic field this procedure expresses the Hamiltonian in terms of a sum

of magnetic translation or Wannier [12] operators. In the general setting the magnetic

field will be given by a two form on Rn which in R3 restricts to the familiar vector field

B. We will concentrate on the case of a constant magnetic field B = 2πθijdxidxj where

Θ = (θ)ij is the skew–symmetric matrix of a skew–symmetric 2-tensor.

We will now describe our setup in more detail. Fix Γ ⊂ Rn to be a connected

embedded graph whose edges are line segments. We denote by L a (maximal)

translational symmetry group of Γ, s.t. Γ̄ = Γ/L is finite. Here a translational symmetry

group is a group isomorphic to a free Abelian group of rank n which acts by translations

on Rn leaving Γ invariant. Let π : Γ → Γ̄ be the projection. The vertices of Γ̄ are the

vertices in a primitive cell, but the graph Γ̄ is just an abstract graph‡. Let Λ be the set

of vertices of Γ, Λ̄ the set of vertices of Γ̄, and denote by T the (free Abelian) subgroup

of Rn generated by the edge vectors.

Notice that L ⊂ T , but in general this inclusion is strict. On H a magnetic

translation by a vector e of L is represented by a unitary operator Ue, while a translation

‡ The graph Γ̄ is naturally embedded in the torus Rn/Γ, but not in Rn itself.
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by a vector in T only gives rise to a partial isometry. To see this, we decompose the

Hilbert space H =
⊕

v∈Λ̄ Hv where Hv = l2(π−1(v)). Then a translation by e ∈ T

which goes from w to v will act as Ue : Hv → Hw. § In this formalism, the Hamiltonian

is represented by a sum of partial isometries.

As it is defined B is a C∗ sub-algebra of the operators on H . In order to calculate

the algebra B more explicitly, we wish to define a matrix representation of it. For

this one fixes a rooted spanning tree. A spanning tree is a subtree of the graph, which

contains all vertices. Being rooted means that one vertex is distinguished.

Our main theorem which allows us to do explicit computations is then:

Theorem. [3] For Γ, L as above and a fixed B given by 2πΘ, fixing a choice of

rooted spanning tree for Γ̄, an order of the vertices of Γ̄ and a basis for L defines a

faithful matrix representation of B which is a sub–C∗–algebra BΘ of the C∗ algebra

M|V (Γ̄)|(Tn
Θ), where Tn

Θ is the noncommutative torus.

Consequence. From this it follows, that if Θ is rational then the spectrum of H

has finitely many gaps. Moreover the maximal number is determined by the entries of

Θ.

In the case of the square lattice, this gives rise to the Hofstadter butterfly [9]. Hence

our result can be viewed as a generalization to the lattices of our setup.

In the above theorem, the translations of L are what gives rise to the

noncommutative torus. In particular each fixed basis element ei of L gives rise

to a unitary diagonal operator valued matrix ρ(Ui). These matrices satisfy the

commutation relations ρ(Ui)ρ(Uj) = e2πθijρ(Uj)ρ(Ui) and hence give a representation

of Tn
Θ which is the C∗ algebra spanned by n independent unitary operators Ui

satisfying the commutation relations UiUj = e2πθijUjUi. In the matrix representation

of the Hamiltonian, each partial isometry which corresponds to the summand of the

Hamiltonian describing the translation along the edge joining the vertex k to the vertex

l gives rise to a Tn
Θ valued matrix entry in the (l, k)-th position.

Notice that there are two incarnations of the Harper Hamiltonian, the first, which

we will simply call the Harper Hamiltonian is the operator acting on l2(Λ). The second

one is its representation in the matrix ring Mk(T
n
Θ) which we call the matrix Harper

Hamiltonian.

Associated (non)-commutative geometries. On general grounds we expect

three types of different possible phenomenologies according to whether (a) Θ = 0 and

there is no magnetic field, (b) Θ is generic (i.e. all entries are irrational), (c) Θ contains

rational entries.

If Θ = 0 then the C∗ algebra is a unital commutative and by the Gelfand-Naimark

Theorem it is isomorphic to the C∗ algebra C(X) of continuous C valued functions on a

compact Hausdorff space X. Thus starting with Γ and T in R3 we get a new geometry

X. Here the base T n is given by the possible exponential values of momenta in the

basis directions of L. ‖ The cover can then be interpreted as the different Eigenvalues

§ This is assuming the standard action for magnetic translation operators.
‖ Notice these are not the momenta along the x,y,z axis.
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Figure 1. One channel of the P surface and its skeletal graph. This and Figures 2 and
5 were obtained using the level surface approximation for the corresponding minimal
surfaces [14].

of H. Let us call a point non–degenerate if H at theses fixed momenta has n distinct

Eigenvalues. Since this is an open condition, we get that if there is one point which is

non–degenerate then that this is generically the case. In general, we showed [3]

Theorem. The space X is a branched cover of the torus T n = S1 × . . . × S1

ramified over the locus where H has degenerate Eigenvalues .

When Θ is generic, it is known Tn
Θ is simple, which means that it has no two sided

proper ideals. So, we expect BΘ = M|V (Γ̄)|(Tn
Θ) which is Morita equivalent to Tn

Θ.

That is the noncommutative geometry of Γ in the magnetic field B is given by the

noncommutative torus. This is not a proof, however, and it has to be checked in each

case.

When Θ contains rational entries, there is no expectation and in a sense this is the

most interesting case. It can happen that the resulting algebra BΘ is (i) commutative,

this corresponds to special commensurabilities, (ii) that it is again the full matrix algebra

or (iii) that it is a proper subalgebra of the matrix algebra.

In the next section, we will analyze the three cases of the P, D and G wire networks

explicitly. In the case of R3 the skew–symmetric bilinear form Θ given by B takes on

the familiar form

Θ(v, w) =
1

2π
B · (v × w)

.

2. Specific results for the cubic (P) case

The P surface has a complement which has two connected components each of which can

be retracted to the simple cubical graph whose vertices are the integer lattice Z3 ⊂ R3.

The translational group is again Z3 in this embedding as shown in Figure 1, so it reduces

to the case of a Bravais lattice which we treated already in [3]. Let us review some of

the details. The graph Γ̄ is the graph with one point and three loops, so n = 1. Fixing
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Figure 2. One channel of the diamond surface and its skeletal graph. The red and
green dots refer to the vertices of the two interlaced fcc lattices

the standard basis e1, e2, e3 of Z3, we get the operators U1, U2, U3, which generate T 3
Θ

and the Hamiltonian is simply H =
∑

i(Ui + U∗
i ). If Θ �= 0 then BΘ is simply the

noncommutative torus and if Θ = 0 then this is the C∗ algebra of T 3.

3. The diamond lattice (D) case

The D surface has a complement consisting of two channels each of which can be

retracted to the diamond lattice Γ�. The diamond lattice is given by two copies of

the fcc lattice, where the second fcc is the shift by 1
4
(1, 1, 1) of the standard fcc lattice,

see Figure 2. The edges are nearest neighbor edges. The symmetry group is Fd3̄m. In

the diamond lattice case, we have 2 vertices in the primitive cell. The quotient graph

Γ�/fcc is the graph with 2 vertices and 4 edges connecting them, see Figure 3. The

edges correspond to the 4 vectors to the center of a tetrahedron centered at (0, 0, 0).

e1 =
1

4
(1, 1, 1), e2 =

1

4
(−1,−1, 1), e3 =

1

4
(−1, 1,−1), e4 =

1

4
(1,−1,−1)

These vectors satisfy
∑

i ei = 0. We parameterize the B field by fixing the values

of the skew–symmetric bilinear form Θ on the basis elements (−e1, e2, e3) as follows:

Θ(−e1, e2) = ϕ1 Θ(−e1, e3) = ϕ2 Θ(e2, e3) = ϕ3

Our results will depend on the phases:

χi = eiϕi for i = 1, 2, 3 (3.1)

The Harper Hamiltonian according to the construction of [3] in terms of the partial

isometries reads (
0 U∗

e1
+ U∗

e2
+ U∗

e3
+ U∗

e4

Ue1 + Ue2 + Ue3 + Ue4 0

)
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GP D

Figure 3. The quotient graphs for the cubic, diamond and gyroid lattices

Before we can write down the matrix Harper Hamiltonian, we have to fix some

data and notations. The three edges of the tetrahedron incident to one point are

f2 = 1
2
(−1,−1, 0), f3 = 1

2
(−1, 0,−1), f4 = 1

2
(0,−1,−1). The translation operators

along those edges fulfill the following commutation relations:

Ufi
Ufj

= e2πiΘ(fi,fj)Ufj
Ufi

(3.2)

We set U = χ1Uf2 , V = χ2Uf3 and W = χ̄1χ̄2Uf4 .

These operators span a T3
Θ:

UV = q1V U UW = q2WU V W = q3WV (3.3)

where the qi expressed in terms of the χi are:

q1 = χ̄1
2χ2

2χ
2
3 q2 = χ̄1

6χ̄2
2χ̄3

2 q3 = χ̄1
2χ̄2

6χ2
3 (3.4)

Vice versa, fixing the values of the qi fixes the χi up to eighth roots of unity:

χ8
1 = q̄1q̄2 χ8

2 = q1q̄3 χ8
3 = q2

1 q̄2q3 (3.5)

Other useful relations are q2q̄3 = χ̄4
1χ

4
2χ̄

4
3 and q2q3 = χ̄8

1χ̄
8
2.

Using the e1 edge as the spanning tree with the root being the vertex that

corresponds to π(0, 0, 0), we get that the embedding representation ρ of T3
Θ into M2(T

3
Θ)

defined by the action of L is given by

ρ(U) = diag(U, χ2
1U), ρ(V ) = diag(V, χ2

2V )

ρ(W ) = diag(W, χ̄2
1χ̄

2
2W ). (3.6)

And the matrix Harper Hamiltonian is

H =

(
0 1 + U∗ + V ∗ + W ∗

1 + U + V + W 0

)

3.1. The commutative case

In this case, we see that the algebra BΘ is a subalgebra of M2(C(T 3)), where C(T 3) is

the C∗ algebra of complex functions on the torus T 3.

The space X corresponding to the commutative C∗ algebra is a ramified cover of

T 3 which is generically 2 : 1. The branching locus is given by the degenerate points.

These are computed by:
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Figure 4. Commutative case for the D surface- ramification locus on T 3 depicted as
the cube with periodic boundaries

det(H − λid) = λ2 − (1 + U + V + W )(1 + U + V + W )∗

There are degenerate Eigenvalues of H on a point of T 3 which corresponds to the

character χ : T3 → C, given by evaluating at that point, if the following equations are

satisfied: Set eiφ1 = z1 = χ(U), eiφ2 = z2 = χ(V ), eiφ3 = z3 = χ(W ),∈ S1 ⊂ C then the

square root has only one value 0 if

1 + z1 + z2 + z3 = 0

We calculate

−z1 = 1 + z2 + z3

1 = z1z̄1 = 1 + z2z̄2 + z3z̄3 + z2 + z̄2 + z3 + z̄3 + z2z̄3 + z̄2z3

multiplying by z2z3

0 = 2z2z3 + z2
2z3 + z3 + z2z

2
3 + z2 + z2

2 + z2
3 = (z2 + z3)(z2 + z3 + 1 + z2z3)

This gives the solution z2 = −z3, z1 = −1 or z2(z3 +1) = −(z3 +1). The latter equation

has the solutions z3 = −1, z1 = −z2 and z2 = −1, z3 = −z1.

Cover of T 3 defined by the D wire network. We see that the space

X defined by B in the commutative case is a generically 2–fold cover of the 3–

torus T 3 where the ramification is along three circles on T 3 given by the equations

φi = π, φj ≡ φk +π mod 2π with {i, j, k} = {1, 2, 3}. They are shown in Figure 4, where

the cube has to be taken with periodic boundaries. Therefore the intersection points

on opposite faces of the cube are identified and the six lines form three circles which

pairwise touch at a point.

3.2. The non–commutative case

In the following we would like to characterize the algebra BΘ for general values of the

magnetic field. The results will split into cases according to the values of the parameters

qi and χi.
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In a first step, set X1 = H − ρ(χ̄2
1U)Hρ(U∗).

X1 =

(
0 (1 − χ̄1

4)(1 + U∗) + (1 − χ̄1
4q̄1)V

∗ + (1 − χ̄1
4q̄2)W

∗

(1 − q1)V + (1 − q2)W 0

)

Now, set X2 = X1 − ρ(χ̄2
2V )X1ρ(V ∗) and X3 = X2 − ρ(χ2

1χ
2
2)X2ρ(U∗

f4
). We obtain

X3 =

(
0 a1 + bU∗ + cV ∗ + dW ∗

0 0

)
(3.7)

with

a = (1 − χ4
1χ

4
2)(1 − χ̄2

4)(1 − χ̄1
4), b = (1 − χ4

1χ
4
2 q2)(1 − χ̄2

4q1)(1 − χ̄1
4)

c = (1 − χ4
1χ

4
2 q3)(1 − χ̄2

4)(1 − χ̄1
4 q̄1), d = (1 − χ4

1χ
4
2)(1 − χ̄2

4q̄3)(1 − χ̄1
4 q̄2)

Now the procedure is as follows. One treats the following two cases. Either all

a = b = c = d = 0 or not all these coefficients vanish. We will summarize our results

here and give the details of the calculation in the appendix.

Classification Theorem. The algebra BΘ is the full matrix algebra except in the

following cases in which it is a proper subalgebra.

(i) q1 = q2 = q3 = 1 (the special bosonic cases) and one of the following is true:

(a) All χ2
i = 1 then BΘ is isomorphic to the commutative algebra in the case of

no magnetic field above.

(b) Two of the χ4
i = −1, the third one necessarily being equal to 1.

(ii) If qi = −1 (special fermionic cases) and χ4
i = 1. This means that either

(a) all χ2
i = −1 or

(b) only one of the χ2
i = −1 the other two being 1.

(iii) q̄1 = q2 = q3 = χ̄4
2 and χ2

1 = 1 it follows that χ4
2 = χ4

3. This is a one parameter

family.

(iv) q1 = q2 = q3 = χ̄4
1 and χ2

2 = 1 it follows that χ4
1 = χ̄4

3. This is a one parameter

family.

(v) q1 = q2 = q̄3 = χ̄4
1 and χ2

1 = χ̄2
2. It follows that χ4

3 = 1. This is a one parameter

family.

The subalgebra in the case (i)(b) is the most complicated. Notice that in this case

Θ has integer entries and so T3
Θ � T3 = T3

Θ=0 is actually commutative, but BΘ is not.

This can happen because we are looking at a sub-algebra of the non–commutative matrix

algebra. It is explicitly given as follows. Consider G1 = (1+U+V +W )(1+U∗+V ∗+W ∗)
then the (2,2) entry of ρ(G1) will be of the form G2 = A − B + iC − iD where the

A, B, C, D and polynomials in the U, V,W, U ∗, V ∗, W ∗ of degree 0, 1, 2 with positive
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Figure 5. One of the channels of the gyroid surface and its skeletal graph

integer coefficients. This is because the χ2
i are ±i or ±1. Let J be ideal of T3 spanned

by G1 and G2, let J12 be the ideal spanned by 1 + U∗ + V ∗ + W ∗ and J21 the ideal

spanned by 1 + U + V + W . Then

BΘ = ρ(T3
Θ) +

(
J J12

J21 J

)
(3.8)

The special fermionic case (ii) is related to Clifford algebras. Consider the quadratic

form Q on R3 with basis vectors b1, b2, b3 given by diag(χ2
1, χ

2
2, χ̄

2
1χ̄

2
2). The condition

χ4
i = 1 translates to the fact that the entries are ±1. Let Cl = Cliff (Q) ⊗ C be

the complexified Clifford algebra of Q. In the fermionic case all the qi = −1 so the

generators of T3
Θ anti–commute and there is a C∗ algebra map φ : T3

Θ → Cl given by

φ(U) = b1, φ(V ) = b2, φ(W ) = b3. Let J := ker(φ) be the ideal defined by the kernel

of φ. Since the χ2
i = ±1 there is an involutionˆ: T3

Θ → T3
Θ given by Û = χ2

1U, V̂ = χ2
2V

and Ŵ = χ̄1χ̄2W . With these notations:

BΘ = {
(

a b

b̂ â

)
+ J, with a, b ∈ T3

Θ and J ∈ M2(J )}. (3.9)

In the three families the algebra BΘ is the C∗ algebra generated by T3
Θ and two

elements A and B, which commute with each other and T3
Θ, and satisfy equations A2 = p

and B2 = q for fixed p and q in T3
Θ, i.e. there are adjoined square roots. For details on

p and q, see the Appendix.

4. The Gyroid (G) case

We recall some of the setup from [3]. The Gyroid and its graph are very complex and

we will not give all the details here. One channel and the Gyroid graph Γ+ are shown

in Figure 5. The symmetry group is Ia3̄d. This means that the translation group is the

bcc lattice. The graph Γ̄+ is the full square, see Figure 3.

We choose the generators of bcc to be the vectors g1 = 1
2
(1,−1, 1), g2 =

1
2
(−1, 1, 1), g3 = 1

2
(1, 1,−1). These can be used these to fix the cocycle defining the
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interaction with the magnetic field:

θ12 =
1

2π
B · (g1 × g2), θ13 =

1

2π
B · (g1 × g3), θ23 =

1

2π
B · (g2 × g3)

The edge vectors of Γ+ span the fcc group. Explicitly the edge vectors are

e1 = 1
4
(−1, 1, 0), e2 = 1

4
(0,−1, 1), e3 = 1

4
(1, 0,−1), e4 = 1

4
(1, 1, 0), e5 =

1
4
(0,−1,−1), e6 = 1

4
(−1, 0,−1).

In the direct sum decomposition of H the Harper Hamiltonian reads

HΓ̄+
=

⎛
⎜⎜⎜⎝

0 U∗
1 U∗

2 U∗
3

U1 0 U∗
6 U5

U2 U6 0 U4

U3 U∗
5 U∗

4 0

⎞
⎟⎟⎟⎠ (4.1)

We choose the rooted spanning tree τ (root A, edges e1, e2, e3) Using this we obtain

the following matrix Harper operator according to [3]

H=

⎛
⎜⎜⎜⎝

0 1 1 1

1 0 U∗
1 U∗

6 U2 U∗
1 U5U3

1 U∗
2 U6U1 0 U∗

2 U4U3

1 U∗
3 U∗

5 U1 U∗
3 U∗

4 U2 0

⎞
⎟⎟⎟⎠ =:

⎛
⎜⎜⎜⎝

0 1 1 1

1 0 A B∗

1 A∗ 0 C

1 B C∗ 0

⎞
⎟⎟⎟⎠ (4.2)

The operators A, B, C again span a non–commutative three torus:

AB = α1BA, AC = ᾱ2CA, BC = α3CB (4.3)

where now in terms of the B field α1 := e2πiθ12 , ᾱ2 := e2πiθ13 , α3 := e2πiθ23 .

4.1. The commutative case.

It is easy to check that generically the Hamiltonian has 4 distinct Eigenvalues. We

can use the character χ(A) = −1, χ(b) = 1, χ(C) = −1 for this. The corresponding

Eigenvalues are ±√
5,±1. By the general theory we then know that the commutative

geometry if given by a generically unramified 4-fold cover of the three torus, see [3].

The actual calculation of the branching behavior is more difficult. For this we have to

analyze the characteristic polynomial of H and thus we have to deal with a fourth order

equation. Although it is in principle possible to solve the equation, this is rather difficult

and lengthy. We will treat this case in a subsequent paper [15]. There we show that

there are only 4 ramification points. This means that the locus is of real codimension 3

contrary to the D case where it was of codimension 2. Furthermore the degenerations

are 3 branches coming together at 2 points and 2 pairs of branches coming together at

the other two points.
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4.2. Non-commutative case

To state the results of [3] we use

φ1 = e
π
2

iθ12 , φ2 = e
π
2

iθ31 , φ3 = e
π
2

iθ23 , Φ = φ1φ2φ3

Classification Theorem.

(i) If Φ �= 1 or Φ = 1 and at least one αi �= 1 and all φi are different then BΘ = M4(T
3
Θ).

(ii) If φi = 1 for all i then the algebra is the same as in the commutative case.

(iii) In all other cases B is non–commutative and BΘ � M4(T
3
Θ).

Further information, which is too lengthy to reproduce here, about the case (iii) is in [3].

We only wish to point out that the fermionic case αi = −1 is not a special case. Rather

it is a mixed case in which two of the αi = −1 and one αi = 1 which yields a proper

subalgebra involving a Clifford algebra.

5. Conclusion

We have treated all the triply periodic self-dual symmetric surface wire arrays —given by

the P, D, G geometries— using the methods developed in [3] to study their commutative

and noncommutative geometry. We gave the commutative geometry as an explicit

branched cover of the three torus and classified all the noncommutative C∗ algebras

that arise from turning on a constant magnetic field.

The G case was considered before in [3]. As we discussed the P case can be reduced

to information contained in that paper as well. Here we completely treated the D case

which has a much richer structure. A new feature of the commutative case is that the

branching locus is not of dimension zero, but rather of dimension one. A novel trait of

the non–commutative case for the D surface is the appearance of whole one–dimension

families where the algebra drops to a proper subalgebra of the matrix algebra.

An intriguing question is if these two features are related. Although the base space

is T 3 in both cases, it parameterizes completely different moduli. In the commutative

case the parameters are the momenta, while in the non–commutative case they are the

parameters of the noncommutative torus which are given by the magnetic field, which

is completely absent in the commutative case. Thus there does not seem to be a direct

relation, but one could expect such a relation on the grounds of a, yet to be determined,

duality. We leave this for further investigation.

Acknowledgments

RK thankfully acknowledges support from NSF DMS-0805881. BWK thankfully

acknowledges support from the NSF under the grant PHY-0969689.

Any opinions, findings and conclusions or recommendations expressed in this

material are those of the authors and do not necessarily reflect the views of the National

Science Foundation.

7th International Conference on Quantum Theory and Symmetries (QTS7) IOP Publishing
Journal of Physics: Conference Series 343 (2012) 012054 doi:10.1088/1742-6596/343/1/012054

12



Appendix

In this appendix we give the details of the calculations for the D surface wire network.

As mentioned above the proof boils down to two major cases depending on wether the

matrix X3 of equation (3.7) is zero or not.

5.1. The matrix X3 �= 0

We also assume that all the qi �= 1. The case of all qi = 1 will be treated separately

below. The strategy is to reduce the matrix by conjugation so that only one term is

non–zero. After multiplication with the appropriate matrix one can obtain the matrix

E12 and hence the whole matrix algebra.

The subcases one treats are (I) a �= 0 and (II) a = 0. In case (I), one can successively

kill all the entries except for the one proportional to 1. Explicitly, after performing the

three operations X4 = q̄1X3 − χ4
1ρ(Uf2)X3ρ(U∗

f2
), then X5 = q1X4 − χ4

2ρ(Uf3)X4ρ(U∗
f3

),

and finally X6 = q̄2X5 − χ̄1
4χ̄2

4ρ(Uf4)X5ρ(U∗
f4

), we obtain X6 = a′′E12 which has only

one possibly non–zero entry,

a′′ = (q̄2 − 1)(q1 − 1)(q̄1 − 1)(1 − χ4
1χ

4
2)(1 − χ̄2

4)(1 − χ̄1
4)

Hence X6 can be brought to E12 by dividing by a′′, provided it is non–zero. Since we

assume not all qi = 1 and a �= 0, the remaining cases are when one or both q1 = 1, q2 = 1

but not all three qi = 1. These can be handled similarly and all lead to the full matrix

algebra.

The case (II) splits as several subcases corresponding to the factors of a: (A) χ4
1 = 1,

(B) χ4
2 = 1 and (C) χ4

1χ
4
2 = 1. All these cases are similar, we show how to treat (A).

In this case, we already know that b = 0 and if we further assume that d = 0 it follows

c = 0 and we are in the case X3 = 0. So, we assume d �= 0. If c = 0 there is only one

term and we are done. If c �= 0 then we can conjugate with ρ(V ) and kill the V ∗ term

leaving only the W ∗ term and we are done.

5.2. The matrix X3 = 0.

This is more tedious. The cases we get from assuming that all the coefficients are zero

are: (A) χ4
1 = χ4

2 = 1 which implies q1 = q̄2 = q3. (B) χ4
1 = 1 and (1) q3 = χ̄4

2 which

implies q̄1 = q2 = q3, χ4
2 = χ4

3 or (2) q2 = 1 which implies q1 = q2 = 1, χ̄4
2 = χ4

3. (C)

χ4
2 = 1 and (1) q2 = χ̄4

1 which implies q1 = q2 = q3, χ̄4
1 = χ4

3 or (2) q3 = 1 which implies

q1 = q3 = 1, χ4
1 = χ4

3. And finally (D) χ4
1 = χ̄4

2 = 1 and (1) q1 = χ4
2 which implies

q1 = q2 = q̄3, χ4
3 = 1 or (2) q2 = 1 which implies q2 = q3 = 1, q1 = χ4

3.

Again all qi = 1 will be treated separately.

In case (A), either q3 �= q̄3 and we can proceed as usual and obtain the full matrix

algebra. Or q3 = q̄3, and then either all qi = 1 or all qi = −1. In the latter case we

will show that BΘ is indeed the algebra given by (3.9). For the time being denote that
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algebra by B′. It is easy to check that B′ is a subalgebra. It is also proper, since it

does not surject onto the image of φ, for instance E12 is not in the image. Since

H =

(
0 1 + Û + V̂ + Ŵ

1 + U + V + W 0

)
+

(
0 U∗ − Û + V ∗ − V̂ + W ∗ − Ŵ

0 0

)

we see that H ∈ B′, likewise one checks that ρ(T3
Θ) ⊂ B′ and hence BΘ ⊂ B′. To get

the other inclusion, one proceeds in the usual fashion to obtain the matrices

I =

(
0 1

1 0

)
,

(
0 U ∗

U 0

)
,

(
0 V ∗

V 0

)
,

(
0 W ∗

W 0

)

By multiplying I with elements of ρ(T3
Θ) and subtracting we get the matrices U∗ −

ÛE12,U
∗ − ÛE12,V

∗ − V̂ E12 and W ∗ − ŴE12 which generate J . Thus B′ ⊂ BΘ.

In case (B) (1) with the assumption qi �= 1, we can either have χ2
1 �= 1 in which

case the usual procedure produces the full matrix algebra or χ2
1 = 1 in which case

we obtain the matrices A =

(
0 U∗

1 0

)
, C =

(
0 W ∗

V 0

)
and their adjoints. Set

B = Cρ(V ∗) =

(
0 χ̄2

2W
∗V ∗

1 0

)
. Then both A and B commute with ρ(T3

Θ) and with

each other. Now A2 = ρ(U) and B2 = χ2
2ρ(W ∗V ∗). Since H = A + A∗ + C + C∗ we see

that H is in the C∗ sub–algebra spanned by ρ(T3
Θ), A and B with the given relations.

To show that this is not the full matrix algebra, we can use the mapping of φ : T3
Θ → T2

1
2

given by φ(U) = S, φ(V ) = T, φ(W ) = S∗T where S, T are the generators of T2
1
2

, which

satisfy ST = −TS. We see that ker(φ) is the two sided C∗ ideal generated by V ∗W −U .

The map φ induced a map φ̂ : M2(T
3
Θ) → M2(T

2
1
2

). Since the image of A is the image

of χ̄2
2B, we see that the image of B is generated by φ̂ρ(T3

Θ) and φ̂(A), which does not

contain E12. Hence φ̂|BΘ
is not surjective and BΘ is not the full algebra. From this it

is also easy to see that in M2(T
3
Θ), A and B satisfy no other relations modulo ρ(T3

Θ).

This is the family (iii).

The case (B)(2) yields the full algebra unless q3 �= 1 and hence all qi = 1.

The case (C) is completely analogous upon switching U and V . (C)(1) yields the

family (iv).

In the case (D) W plays the special role, which U played in (B)(1) and hence the

condition is that χ2
1 = χ2

2 = 1. This yields the case of the family (v).
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