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Abstract We conjecture the factorized scattering description for OSP(m/2n)/ OSP (m—
eveu models. The

i 1/2n) supersphere sigma models and OSP(m/2n) Gross-N

non unitarity of these field theories, which translates into 2 lack of “physical
unitarity” of the S matrices, is a sticky issue, but we find that formal thermody-
namic Bethe ansatz calculations appear meaningful, reproduce the cormrect central
charges, and agree with perturbative calculations. This hopefully paves the way

to a more thorough study of these and other models with supergroup symmetries
using the S matrix approach.

Keywords: OSP(m/2n) field theories, scattering theory, Supergroups

L Introduction

mﬁ field theory approach to phase transitions in disordered systems has
realized major progress over the last few year, thanks to an ever deeper under-
Stz_‘ndi“g of two dimensional field theories. Conformal invariance, combined
with elegant reformulations using supersymmetry (1,2,22}),and greater con-

trol of non unitarity issues [4, 3, 14}, now severely constrains the possible fixed

points [7, 8].

Remarkably, the chief non perturbative method, the integrable approach, has
not been pushed very far to study these models. This is a priori surprising.
For instance, several disordered problems involve variants of the OSP(m/2n)
Gross-Neveu model, which formally appears justas integrableasits well known
O(N) counterpart. The standard way of proceeding to study such a model
would be to determine its S matrix, an
ansatz and form-factors to calculate physical properties.
pioneered in the elegant papers [9; 10], and revived in m

d then use the thermodynamic Bethe
This approach was
], but so far the
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240 STATISTICAL FIELD THEQRIES

subject was only touched upon in our opinion; for instance, although the §
matrix of the OSP(2/2) Gross-Neveu model has been conjectured [11], no
calculation to justify this conjecture has been possible. Super sigma models
have also been tackled, this time in the context of string theory [12], but there
again results have only been very partial, and the S matrix approach even less
developed than for super Gross-Neveu models.

The main reasons for this unsatisfactory situation seem technical. While
there has been tremendous progress in understanding the sine-Gordon model
and the O(3) sigma models - the archetypes of integrable field theories - models
based on other Lie algebras are only partially understood (see {13, 14] for some
recent progress), and the situation becomes even more confusing when it comes
to super-algebras. One of the main difficulties in understanding these theories
is physical, and related with a general lack of unitarity - a feature that is natural
from the disordered condensed matter point of view, but confusing at best from
the field theory stand point. Another difficulty is simply the complexity of the
Bethe ansatz for higher rank algebras, in particular super algebras.

The present note is a short summary of our ongoing work on the integrable
approach for the case of O.S P(m /2n) field theories. We will discuss briefly two
kinds of models, the supersphere sigma-models, and the Gross-Neveu models,
mostly for algebras OSP(1/2n). In each case, we will conjecture a scattering
theory, whose striking feature will be the lack of unitarity of the S matrices, as
aresult of the supergroup symmetry. We will argue that formal thermodynamic
calculations do make sense nevertheless, and illustrate this point for both types
of models. More details will appear in {15].

2. Algebraic generalities

There are two basic integrable models with O(N) symmetry, the Gross-
Neveu model and the sphere sigma model S¥~! = O(N)/O(N —1). The
scattering theory for the O(2P + 1) Gross-Neveu model was completed only
very recently [16]. However, the scattering of particles in the defining represen-
tation has been known for a long time [17] for both models, and this is where
we would like to start here.

Scattering matrices with O(N} symmetry can generally be written in terms
of three independent tensors:

§732 = g\ B+ 03P + a3l , ()

i1 71
where we have set,

Elte Bivi gizdz pita _ iz 502 P22 — glagh Q)

i 1151 o5 ? 1171 i1 42

We are interested here in models for which none of the amplitudes vanish.
Specifically, for IV a positive integer, there are generically two known models
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whose scattering matrix for the vector representation has the form (1), with
none of the ¢;’s vanishing. They are given by

=Gy, =gy, O)
(N - 2)(ir — ) (N —2)8
with two possible choices for o5:
1 6. 141 _ 8
s T ) Pty ) P12 =)
DR TG (125~ &) 0 (3wl + )

C))
The factor 5 does not have poles in the physical strip for N > 0, and the
comesponding S matrix for V > 3 is believed to describe the O({N)/O(N —1)
sphere (SV—1) sigma model. The factor o}, does not have poles in the physical
strip for N < 4. For N > 4, it describes the scattering of vector particles in
O(N) Gross-Neveu modél. Recall that for N = 3,4 the vector particles are
unstable and disappear from the spectrum, that contains only kinks.

Our next step is to try to define models for which N < 1, in particular
N =0, or N negative. A similar question has been tackled by Zamolodchikov
(18] under the condition that particles be “impenetrable”, that is oy = 0. The
(standard) procedure he used was to study the algebraic relations satisfied by
the objects E, T for integer N, extend these relations to arbitrary N, and find
objects (not necessarily N x N matrices) satisfying them.

Intrying to address the same question for models where a; # 0, it is natural
10 set up the problem in algebraic terms again. The objects E, P, I can be
understood as providing a particular representation of the Birman-Wenzl algebra
[19]. (The definition of this algebra can also be found in [15].)

Although it seems to be problematic to extend the definition of the S matrix
10 arbitrary values of N, it is easy nevertheless to extend it to negative integer
values of N. Indeed, the Birman-Wenzl algebras arise from the representation
theory of O(IV), and most of the properties of these algebras generalize to the
superalgebras OSP(m/2n). Instead of the vector representation of O(NV'), take
the vector representation of the orthosymplectic algebra, of dimensions (m, 2n).
For m £ 2n, the tensor product with itself gives rise to three representations.
Taking 7 as the identity, E as (m — 2n) times the projector on the identity
Iepresentation, and P as the graded permutation operator (the extension to the
Case m = 2n is easy), it can be checked indeed that the defining relations of
the Birman- Wenzl algebra are obeyed with N = m — 2n.

Leaving aside the unitary difficuity, the usual formal procedure selects once
again the factors o5 as minimal prefactors, with the continued values N =
m ~ 2n. The question is then to establish the relations with field theory, if any.

Taking the OSP S matrix, and the S matrix that follows from it (§ = PS§
where P is the graded permutation operator), S = oy E 4 o2l + o3P, itis
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natural to ask about the physical meaning of these amplitudes. This reveals
some surprises. Crossing and unitarity are well implemented in the cases when
the particles are bosons or fermions. Mixing the two kinds does not seem, 2
priori, to give rise to any difficulty. It will turn out however that in the graded
case, the S matrix is, as a matrix, not unitary. It is thus difficult to interpret our
S matrices in terms of a “physical” scattering. The most useful way to think
of the S matrices will probably be as an object describing the monodromy of
wave functions, like in imaginary Toda theories [13, 20]. Crossing follows then
from S(in — 8) = 61(8)I + 02(8)P + 03(9)E, with an obvious graphical
interpretation, and charge conjugation being defined through the defining form
of the OS P algebra.

3.  Scattering theory with o and the sphere sigma model
31  0SP(1/2) with o} and the a{” Toda theory

Let us now consider the “scattering” theory that is the continuation of the

sphere sigma model to N = —1: we take the OSP(1/2) realization, and asa
prefactor o3 .

It then tumns out that the § matrix is identical to the one of the Léz) Toda
theory for a particular value of the coupling constant! This will allow us to
explicitly perform the TBA, and identify the scattering theory indeed. While
we were carrying out these calculations, we found out two papers where the
idea has been carried out to some extent already: one by Martins {21}, and one
by Sakai and Tsuboi [22]. Our approach has little overlap with these papers,

and stems from our earlier work on the a.gl) theory instead.

Let us first introduce the scattering matrices for the two theories we will
identify with each other:

On the one hand, the solution of the graded Yang Baxter equation relevant
here is the well known OSP(1/2) one, given by:

1 36 0
= —F 5

Rospum = T3 [P+2i7r +m—oE] ! ©)
where we have chosen the normalization factor for later purposes, 7 is the iden-
tity. Denote the basis vectors in the fundamental representation of OSP(1/2)
as b, f1, fo. The operators E and P are given by the following matrices:

1 -1 1 1 0 0
E=|l1 -1 1}, P={o0o o0 -1}, ®
-1 1 -1 0 -1 0

in the subspace spanned by (b, b), (f1, f2), (f2, f1) in that order, F = 0 other-
wise. The operators E, P satisfy the defining relations of the Birman-Wenzl
algebra with N = ~1.
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On the other hand, we will consider the o Toda theory. It has the action:
1 s |
S = v /d:z:dy [(Bm(I’)2 + (8,®)* + A(2e v LA e‘ﬁﬁ‘p)] . D

The “effective” dimension of the perturbation is d = /£ and the region we shall
primarily be interested corresponds to % > 1. We will parametrize 8% = 2451

50 hy = %3 = 52_7‘-1—, and we will restrict ourselves to the region A > 0 in
the following. In the ¢ € [2,00] domain, the scattering matrix has been first
conjectured by Smirnov [23]. The S matrix is proportional to the £ matrix of

the Izergin Korepin model [24].
The correspondence between the scattering theories of 0SP(1/2) and Jf)

results from the observation that the aéz) S matrix can be identified in the limit
t = oo with the OSP(1/2) “sphere sigma-model” S matrix corresponding to
the expression given in (5) [15].

This coincidence has a simple algebraic origin. Indeed recall [25, 26], that
the a{”) Toda theory has symmetry U, (a2), q = ¢""/#°. The Dynkin diagram
for the algebra a,gz) turns out to be almost identical to the one for the algebra
0sp(112)(1), although in the latter case, one of the roots is fermionic, and there-
fore the basic relations involve an anticommutator instead of a commutator. It
can be shown that for a particular value of q, namely ¢ = , and an additional
restriction which is satisfied in the case at hand, the g-deformation of one al-

gebra gives rise to the other, so that there is a mapping between D{,(agf)) and
Ulosp(1]2)() ), for ¢ = 4. This should not come as a surprise, and has algebraic
roots going back as far as [27]. For recent related works, see [28, 29].
Throughout this paper, we will use the thermodynamic Bethe ansatz to calcu-
late physical properties of our theory. It is a priori unclear whether the method
- which involves maximizing a free energy - makes much sense in a theory
whose Hamiltonian is not Hermitian, but the results we obtain seem perfectly

meaningful, like in other similar examples. String solutions for the agz) model
were not known before, but they can easily be obtained using our recent results

on the aé_,l) case. Setting v = %5, the agz) Bethe equations have the form:

I sinh §(yi — 3o —17) _ I sinh 3(y; — y; — 2i7) sinh 3 (y; — y; +1i7)
sinh 1 (y; — tq + i7) sinh 4(y; — yj + 2iy) sinh 3 (v — y; — #7)’

a i
where the y; are Bethe roots, and the u, are spectral parameter heterogeneities
(comresponding to the rapidities of particles already present in the system). The
solutions of these equations in the thermodynamic limit are as follows. The
y'scan be 1,2,...,¢ — 1 strings, or antistrings. In addition, it is possible to
have a t string centered on an antistring, or to have a complex of the form
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y=yrt 1% + i7. The solutions for the more general case of twisted boundary
conditions are given in [15].

The Bethe ansatz equations for a.g") in the t — oo limit, with y = 7,
u = yu, ¥ — 0 match the Bethe Ansatz equations for the OSP(1/2) model
given in [30):

/\i—pa—-z'__ Ai — Aj— 2 Ai — Aj+1
hi—peti M- N422 LA )i

@)

Twisting and truncating the a.(zg) models one can obtain the RSOS models
Mt—l,t/2 for t even and Alt,(t—l)/2 for ¢ odd.

3.2 The OSP(1/2) limit of al” and the sphere sigma
model

It is also possible to establish a correspondence between the actions of the

OSP(1/2) limit of a§2) and the sphere sigma model. After identifying the
twisted Toda theory in the limit £ — oo with symplectic fermions, the corre-
sponding action can be rescaled and can be brought into the form:

d?
S = [ S Bumum + Mmdmdum) o

where the coupling A is positive,

On the other hand, the action of the sphere sigma model can generally be
written using bosonic and fermionic coordinates of the supersphere %~1%".
In the §%2 case, the action can be shown to be [15]:

1 1 '
S = Tl d’z [6;17713[1772 ~ 57717723#?713;1772] . (10)
Note that a rescaling combined with a relabeling can always bring this action
into the form (9) with A o |g|, identifying the two actions.

3.3 Supersphere sigma models with OSP(1/2n)

symmetry and agf,)

The relation we uncovered between a.gz) and OS P(1/2) extends immediately

to the case of a.gi) and OSP(1/2n): one can establish, for general values of n,
the relation between the quantum affine algebras, the Bethe ansatz equations,
the scattering matrices etc. We thus propose that the S matrix with OSP(1/2n)
symmetry, represented in (1),(3),(4) with N = 1 — 2n, and the prefactor af ,
provides an analytic continuation of the O(N)/O(N — 1)} “sphere” sigma mode!
to this value of /N where the analytic continuation of the sigma mode! should be
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interpreted as the coset OSP(1/2n) /OSP(0/2n). Theeffective central charge
of the UV limit is cogr = n, while its true central charge will be ¢ = ~2n. For
the ordinary sigma models, the UV central charge is N — 1, so the UV value in
the analytic continuation just matches.

Itis also possible to extend the analysis of the aff’ TBA to arbitrary value of
n, 50 we also know the TBA for this scattering theory, which is simply given by

a Zy folding of the agl) TBA. The corresponding TBA diagram can be found
in [15].

Our results have an immediate application to the study of quantum spin
chains. Indeed, the Bethe equations which appear in the solution of the
OSP(1/2n) sigma models are similar to the ones appearing in the solution of
the integrable 0.5 P(1/2n) chains studied in particular by Martins and Nienhuis
[31]. More detailed calculations show that these chains are critical, and that they
coincide at large distance with the weakly coupled supersphere sigma models,
that is, a system of 2n free symplectic fermions. This is in disagreement with
the conjecture in [21, 31] that this continuum limit should be a WZW model
on the supergroup: although the central charge agrees with both proposals,
detailed calculations of the thermodynamics or finite size spectra show that the
WZW proposal is not correct, and confirm the sigma model proposal instead.
A similar conclusion holds for QS P{m/2n) when m — 2n < 2. That the spin
chain flows to the weakly coupled sigma model is certainly related with the
change of sign of the beta function when m — 2n crosses the value 2, but we
lack a detailed understanding of the mechanisms involved.

4. Scattering theory with o; and super Gross-Neveu
models

4.1 Gross-Neveu and WZW models

If we consider a scattering matrix defined again by (1),(3), (4) but now with
the prefactor o5 instead, it is natural to expect that it describes OS P(m/2n)
Gross-Neveu models, the analytic continuation of the O(/N) GN models to
O(m — 2n). The OSP(m/2n) Gross-Neveu models read:

§ = [ %—i—f— D VLOVL + VRdvR + 3 B0, + B0
=1 j=1 '
.. . .. N\2
+ g (v ik o)’ an

where the 1) are Majorana fermions of conformal weight 1/2, and the v are
bosonic ghosts of weight 1/2 as well. This theory has central charge c = 3 —n,
effective central charge i = 5 + 2n. Perturbative calculations of the beta
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function [22, 32] suggest that this model behaves like the continuation of the
O(N) Gross-Neveu model to the value N = m — 2n: The beta function for
the model (11) is of the form 3, & (m — 2n — 2)g?, the same as the one for the
O(m—2n) GNmodel. Forrn—2n > 2, itis thus positive, so a positive coupling
g 1s marginally relevant - this is the usual massive GN model - while a negative
one is marginally irrelevant. If instead we consider the case m — 2n < 2, these
results are switched: it is a negative coupling that is marginally relevant, and
makes the theory massive in the IR . The case . = 1 should be described by
the foregoing scattering theory.

Note that the GN model is equivalent to the appropriate WZW model with
a current current perturbation. Indeed, the system of m Majorana fermions
and n symplectic bosons constitutes in fact a certain representation of the

OSP(m/2n) current algebra where the level depends on the choice of nor-
malization.

4.2 The OSP(0/2) case

The simplest case is the GN model for N = —2, corresponding formally to
OSP(0/2), ie. a ,8'7 system. The scattering matrix for this system turns out
tobe S = itanh (§ — ) Ss (B2, = 8n) where Ssg is the soliton S matrix
of the sine-Gordon model. At coupling 2, = 8, it coincides with the 5
matrix of the SU(2) invariant Thirring model, or the level 1 WZW model with
a current current perturbation. The scattering matrix is thus the same as the one
for the k = 1 SU(2) WZW model up to a CDD factor. This CDD factor does
not introduce any additional physical pole, but affects the TBA in an essential
way. In fact, the study of the TBA for the anisotropic deformation of the model
(the same that was used in the sigma model case) reveals a surprise. Fora
particular value of the fugacity (namely %), and taking the limit t — oo, the
central charge is ¢ = —oo! This fact can be explained by the existence of zero
modes which render the §+ system unstable. It can be shown that adding a
mass term (which is actually a current-current perturbanon) in the OSP(0/2)
GN model stabilizes the theory [15].

4.3 The OSP(1/2n) case

We now consider the OSP(1/2n) case. The TBA turns out to have a simple

description in terms of ag,) again. Consider therefore, not the SU(2n + 1)
GN model, but a related scattering theory with only two multiplets of particles,
corresponding respectively to the defining representation and its conjugate.
Considering more generally the case of SU(P) models, the relation between

Uin [11], the four fermion coupling is defined through combinations P ¢4 + Y-+ = 2i(y} o} +
¥% ¥}). so what is called g there is the opposite of our convention.
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the SU(P) GN scattering theory and this new theory is similar to the relation
between the O(P) GN model and the O(P)/O(P — 1) sigma model [33]. We
will thus call this scattering theory “sigma model! like”, but we are not aware
of any physical interpretation for it. The TBA can be found in [15] and is
quite similar to the one of the A = 2 supersymmetric SU(P) Toda theory [34]
(the generalization of the supersymmetric sine-Gordon model for SU(2)): the
difference affects only which nodes correspond to massive particles, and which
ones to pseudo particles. As a result, the central charge is easily determined,
¢ = 2P — 1. Getting back to the particular case P = 2n + 1, we can then
fold this system to obtain (see [15] for the proof) the TBA for the OSP(1/2n)
Gross-Neveu model, whose effective central charge reads therefore Gff =

322 +1) - 1) =20 + L

5. Finite field calculations

. Further evidence for our S matrices can be obtained from finite field calcula-
Flons. The idea, which has been worked out in great details in other cases [35],
IS to compare S matrix and perturbative calculations for the ground state energy
of the theory in the presence of an external field.

It turns out [15] that the ground state energy of the OSP(m/2n) Gross-
Neveu model and the OSP(1m/2n) sigma model can be obtained easily from
known expressions for the O(I) sphere sigma model and the O(IV) Gross-
Neveu model, respectively (the roles of the two models are interchanged here).

From these results we can compute the ratio of the first two coefficients of

the beta function as %% = 'A%z The ratios we found turn out to be the analytic
. . i . . .
Continuations to N — m — 2n in the two respective cases, as desired.

6.  Conclusions and speculations

To conclude, although more verifications ought to be carried out to complete
our identifications, we believe we have determined the scattering matrices for
the massive regimes of the OSP(m/2n) GN and the OS P(m/2n)/OSP(m~
1/ 2n) sigma models in the simple case m = 1, based on algebraic considera-
tions as well as thermodynamic Bethe ansatz calculations.

It is tempting to expect that at least some of our results generalize to other
cases OSP(m/2n) form > 1 and m — 2n < 2. In all these cases, we expect
that the S matrix of the sphere sigma model will be obtained from the conjecture
at the beginning of this paper, with N = m — 2n, for N < 2. The S matrix of
the GN model is probably more complicated. Recall that in the case N > 2, it
is given by the general conjecture only for N > 4. When N < 2, we think it
is probably given by the conjecture only for N < 0.

Besides completing the identifications we have sketched here, the most press-
ing questions that come to mind are: what are the S matrices of the Gross-Neveu



248 STATISTICAL FIELD THEORIES

models for non—generic values of N, whatare the S matrices for the multifiavour
GN models, what are the S matrices for the orthosymplectic Principal Chiral
Models? We hope to report some answers to these questions soon.
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