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Abstract 

We consider the asymmetric six-vertex model, widely used to describe the equilibrium shape 
of crystals, and the relevant asymmetric X X Z  chain. By means of the Bethe-ansatz solution we 
determine the free energy singularity, as function of the external field, at two special points on 
the phase boundary. We confirm the exponent 3 (checked experimentally), as the antiferroelectric 
ordered phase is reached from the incommensurate phase normally to this boundary, and we 
determine a new singularity along the tangential direction. Both singularities describe the rounding 
off of the crystal near a facet. At this point the hole excitations of the spin chain show dispersion 
relations A E  ~ ( A P ) I / 2  at small momenta, leading to a finite-size scaling AE ~ N -~/2 for the 
|ow-lying excited states, N being the chain size. We discuss the nature of the phase transition 
and the behavior of arrow-arrow correlation lengths in the ordered phase. @ 1997 Published by 
Elsevier Science B.V. 
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1. Introduct ion  

After the pioneering paper of Yang, Yang and Sutherland [ 1 ] the asymmetric six- 

vertex model, i.e. the symmetric six-vertex model in a field, was recently rediscovered 

because of its connection to a number of physically interesting problems, first among 
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Fig. 1. Boltzmann weights in the notation with spectral parameter u compared to that of Ref .  [ 9 ] .  The physical 
region is 0 < u < y .  

them the determination of  the shape of a crystal at equilibrium with its vapor phase 
[2 -4] .  This can be achieved by mapping the asymmetric six-vertex onto, say, the (001) 
facet of  a bcc crystal under the condition that no overhangs or voids are allowed (see e.g. 
Refs. [2,3,5] for details on the mapping). Excitations in the vertex model correspond to 
small tilts away from the (001) facet [5] and it can be shown [6] that the free energy 
as function of  the two components of  the field gives exactly the equilibrium shape of  
the crystal. 

In its own right, the asymmetric six-vertex model provides an interesting two- 
dimensional system of  interacting dipoles in an external field with horizontal and vertical 
components (h, v). Fluctuating two-valued variables (dipoles) are attached to the links 
of  a two-dimensional square lattice, and the model is defined by assigning a set o f  Boltz- 
mann weights (equivalently, interaction energies) to each allowed vertex configuration 
(see Fig. 1 ). The transfer matrix can be diagonalized exactly by the Bethe ansatz in its 
coordinate or algebraic version [7,8]. The phase diagram and the nature of  the phase 
transitions are well understood when h = u = 0 (symmetric six-vertex), or when h = 0 
and v 4= 0 [9,7].  If h, v 4= 0, some general features of  the phase diagram have been de- 
scribed in [ 1 ] and the details of  the calculation spelled out in [ 10], but a few questions 
have remained unanswered. The ferroelectric regime has been recently extensively reex- 
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amined [3,11 ] partly because of its connection to the 1D asymmetric diffusion problem 
[4]. In this regime, there exists also an equivalence between ferroelectric transitions 
at non-zero external field and a KPZ-type growth which, in its turn, is related to the 
equilibrium properties of facet-ridge endpoints on a BCC lattice [ 11,2-4]. 

In this paper we focus on the antiferroelectric regime where the free energy f ( h ,  v) 
remains constant as function of the field ('flat phase') in a bounded region of the 
(h ,v)  plane containing h = v = 0. This corresponds to the flat (001) crystal plane. 
Beyond this region, bounded by a curve F, the field is sufficiently strong to destroy 
the antiferroelectric order of the system, but not strong enough to impose ferroelectric 
order, and an incommensurate phase appears where the polarization (zero in the flat 
phase) changes continuously with the field. Here the spectrum of the transfer matrix is 
gapless with finite-size corrections typical of the gaussian model [ 12]. The singular part 
of the free energy, as F is approached from the incommensurate phase, has been partly 
determined. Lieb and Wu [7] calculated it along the h = 0 line and found an exponent 
3//2, later recognized as typical of a Pokrovskii-Talapov (PT) [13] phase transition 
[ 14]. By upgrading a result of Bogoliubov et al. [ 15], Kim has shown that finite-size 
corrections of the transfer matrix spectrum allow one to compute the Hessian of the free 
energy, which turns out to be related in a simple way to the gaussian coupling constant 
] 12]. Still, the complete, exact form of the leading singular part of f ( h , v )  near F 
has not been found. In this paper we study it near the two points on F, which we call 
(h,., v,.) and ( - h e , - v c ) ,  where the tangent is parallel to the v-axis, and we find 

f (  h,. + ~Sh, v~.) = f (  hc, vc) - cons t (Bh)  3/2 , 

f (  h,., v¢. + 6v) = f (hc ,  Vc) - constl&'l 3 • ( I. 1 ) 

The two points are related by symmetry under arrow reversal, which implies f ( h ,  v)  = 

f ( - h ,  - v )  [ 1 ], and the exponents in Eq. ( 1.1 ) measure the rounding off of the edges 
of the (001) facet. 

Even though our calculation has been carried out only at these points of F, the 
technique we present should work in general, and our result, which generalizes Lieb and 
Wu's method and complements the finite-size techniques of Kim [ 12], strengthens the 
long held belief that the exponent 3/2 should govern the free energy singularity at every 
point of the phase boundary [2,3,10]. This exponent has been measured [ 16] in some 
experiments with Pb crystals some years ago. Our results however show that along the 
tangential direction 3/2 rescales to 3 and this fact, perhaps experimentally observable, 
holds presumably at any other point of F [ 17]. 

However, something more can be said about the nature of the phase transition along 
1'. 

The method of mapping a 2D statistical system into a ID quantum spin chain has 
been fruitful and widely used in the past [ 18]. We pursue it here, regardless of the fact 
that the relevant spin chain, which turns out to be the asymmetric X X Z  spin chain in a 
vertical field V, is not hermitian [ 19]. We find that the flat phase corresponds to a region 
in the (h, V) plane where the ground state energy does not depend on the fields and 
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where excitations are massive. Along the transition line, analogue of F, the excitations 
become massless, but the point (he, V = 0) (with its symmetric ( - h c ,  V = 0) ) is singled 
out by the fact that dispersion relations obey the following law, at small momenta, 

AE ~_ ( A P )  I/2 , (1.2) 

and finite-size corrections for low-lying excitations scale like 

AE ~_ N -1/2 , (1.3) 

where N is the length of the chain. At this point, analogue of (he, Vc) for the statistical 
model, the vanishing of the mass gap exhibits an exponent 1/2 which does not appear 
at any other point of the transition line in the (h, V) plane. In Section 5 we propose 
an explanation of these results. Eqs. (1.2) and (1.3) are consistent with a PT transition 
viewed along the horizontal rather than the vertical direction. Yet, an argument based on 
the spectral decomposition of correlators shows that when (he, vc) is reached from the 
commensurate phase, the vertical arrow correlation length diverges, while everywhere 
else along f '  the transition is induced by level crossing in the transfer matrix spectrum 
which prevents the divergence of the same correlation length. This points to the fact that 
(h~, Vc) and ( - h c , - V c )  are indeed different from all other points o n / ' .  

The paper is divided into five sections. In Section 2 we give definitions and summarize 
previously known results. In Section 3 hole excitations and the spectrum of the spin 
chain are studied and in Section 4 the method of Lieb and Wu is suitably extended 
to determine the free energy singularity when both h and v are non-zero. Section 5 
contains an interpretation of the results. 

2. Definitions 

The model is a natural generalization of the well-known symmetric six-vertex model. 
Arrows are placed on the edges of an N × M square lattice and Boltzmann weights 
R~fl'(u) are assigned to the vertices (see Fig. 1 ) so that the row-to-row transfer matrices t~Ot I 

N 

"',~k,,; (u) (2.1) 

form a commuting family 

IT(u) ,  T(u ' )  ] = 0 

for any two values u, u ~ of the spectral parameter [20]. The associated (integrable) 
spin chain, 

_ e 2 h o - + o  - -  _ ~ "  z = z z ve , 
- T - ( ' + ° ' ) ° ) + ~  ) .i .i+~ .J j+~j ~ _ .  

(2.2) 
. j = l  

is obtained from (2.1) by taking the so-called extremely anisotropic limit (u ---+ O) 
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T(u) =exp ( v + h )  o- T(u) , 
.j=| 

d [ ( h ) L ° " ) ]  sinhTat d 7~=-V~--~vlog exp ( v +  - logT(u)[,=o. 
j=l  

V breaks the Z2 symmetry of spin reversal while h breaks parity invariance (see Ap- 
pendix A lot a complete discussion of symmetries). 

By means of the Bethe ansatz, eigenvalues of (2.1) and (2.2) are found from the 
solution of a set of coupled equations 

[ ietk'~ N r I  ~(ak at)) 2.3) sinh(~ + 2 , l)n+le2h u s inh(y+  i _ 
- -  /a_ff~_'~ = ( - -  ~ Z  i ' 

_ ~ ( a k  al)) 

k = l , 2  . . . . .  n 

and given respectively by 

e~,(N-2n)ehNfSinh(y-- u) ]N f i  sinh(~ + u-- i~ 
, 4 ( u )  = L s~nnh7 j= l  sinh( ~ - u + ~.z ) 

[sinh.l" s i n h (  +u - 2 "  

k ~ J  j=, sinh(2 z - u + 2 " 

=AR(U) + AL(U) , 

2sinhZy - V ( N -  2n) 
E = N c o s h y -  ~ c o s h ~ -  c--oos ak 

B 

= NcoshT + ~ e ( a k )  - V ( N -  2n) . 
k=l 

2.4) 

2.5) 

Here n stands for the number of reversed spins (arrows) with respect to the reference 
1 N ferromagnetic state IT T- . .  T). It is a conserved quantity since S z = 7 ~j=l o'~ commutes 

with 7-( and T(u).  
Beside their energy, given by (2.5), the momentum can also be computed. T -I (0) 

yields the right-shift operator S = e -iP, 

S = [~l,a2 . . . . .  aM) = ]aM,~l,~2 . . . . .  ~M-I) , (2.6) 

and from (2.1) and (2.4) one gets 

e_iP = e_Zh n s i n h (  2 Z -1-- 2 -' 

i=1 sinh(2 z - ~  ' 

17 

P = -2inh - Z p ° ( a i )  
j= I 

(2.7) 

with 
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• , [ s inh(~  + i~) ]  
p°(ce) = - t t n / - -  

[sinh( 2 z - T)]i'~ • 

Unlike most integrable spin chains studied before, (2.2) is not hermitian for h 4~ 0, 

even though the statistical model has physically sensible positive Boltzmann weights. 
The question arises whether (2.1) and (2.2) have a complete set of  eigenvectors. By 
numerically diagonalizing the transfer matrix on small chains it appears that, even though 

a few eigenvalues are degenerate in some charge sectors, the eigenvectors are linearly 

independent. We will assume that a complete set of  eigenvectors exists and it is given 

by the Bethe ansatz. 
We first summarize, for the sake of  completeness, some already known facts that have 

been published elsewhere, beginning with the spin chain because, although the Bethe- 
ansatz equations are identical, the form of  the energy contribution from each rapidity 

crk is simpler. Taking the logarithm of  (2.3) in the usual way we get 

1 n 2¢ri .,  , 
P ° ( C r k ) - - - ~ Z O ( c r k - - c r t ) + 2 i h = - - ~ -  k, k = l , 2 , . ,  n (2.8) 

l=l 

where Ik is half-odd (integer) if  n is even (odd) and 

{-sinh(y + ~ )  ] 
O(o0  = - i l n  . s i n h ( 7 - -  ~--) " 

We define p°(O) = O(0)  = 0 and cuts are chosen to run from iy to ioo and from - i y  

to - i o o  for p ° ( a ) ;  from 2iv to ioo and from - 2 i y  to - i o o  for O(ot).  Notice from 

(2.3) that R e ( a )  E [ - z r , ~ ]  so Re(ak - at) E [ - 2 ~ , 2 ~ - ] .  The cuts are chosen so 
that O(o~) is analytical in - 2 y  < I r a ( a )  < 2y and real, monotonically increasing when 

o~ E [ - 2 ~ ' ,  2~] .  With these conventions, the ground state a at h = 0 in each sector of  
N fixed S ~ = ~- - n corresponds to a sequence of n consecutive numbers .[Ik} in (2.8),  

from - ( n  - 1 ) /2  to ( n -  1 ) /2  symmetric around 0 [21].  The rapidities {a t}  are real 
and distributed symmetrically around a = 0 too. As h ~ 0, the rapidities move into the 
complex plane along a curve C. In a standard way [ 10], one gets in the thermodynamic 
limit from (2.8) 

1 ; l - - y  ~<x~< 1 - - y  pO(cr) -- ~ d d f l O ( ° z - -  ~)R([3)  + 2ih= 27rx, -----4-- - - - ~ '  (2.9) 

c 

x is the real parameter o f  the curve, y is the polarization defined through 

y =  lim 2S z ( 2 _ ~ )  
N~oo ~ = N~oolim 1 -- (2.10) 

and the rapidity density R(at )  = limN~o~ 2~r/N(at+j - at) is determined by solving 
the integral equation 

4 When (2,2) is not hermitean, by ground state we mean the state whose eigenvalue has the lowest real part. 
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Fig. 2. Distribution of the rapidities ctk for N = 44. The lower curve corresponds to the ground state in the 
sector with n = N/2 and exp(2h) = 9, the upper curve to the ground state of the sector with n = N/4 and 
exp(2h) = 1/9. 

, /  ~(oe) - ~ d f l K ( o e -  f l ) R ( f l )  = R(oe) ,  

C 

(2.11) 

where 

d p ° ( a )  d O ( a )  
s~(a) - - -  , K ( a )  - - -  

doe doe 

The energy and the polarization are thus given by 

l im E 1 / N--,oo N = c o s h y  + ~ a d o e e ( a ) R ( o e )  - Vy, (2.12) 

C 

l - Y = 2  --21rl fcloeR(oe) . (2 . [3 )  

c 

Some prel iminary information about the shape of  C and its location in the complex 

plane can be obtained by solving (2.3) numerically. We take as initial solution that 

composed of  real roots and corresponding to the ground state, at fixed S z, for h = 0. 

By the Per ron-Frobenius  theorem [21,22],  the relevant eigenstate remains the ground 

state at fixed S z even when h 4= 0, and the eigenvalue is real. It appears that for h > 0 

(h < 0) the rapidit ies move into the lower (upper)  half-plane as shown in Fig. 2. 

The curve C is invariant under oe -+ -oe*, which is to be expected, this transformation 

being a symmetry of  (2 .3) ,  so we will set A = - a + i b  and B = a + i b  to be the endpoints 

of  the curve. Note that this property makes E real, as it should. 
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Strictly speaking R ( a )  is defined on C only, but (2.11) can be used to define it 

outside o f  C. If  C is contained in the strip - y  < I ra (a )  < y, R(a) is analytic 

in - y  < I r a ( a )  < y, but it inherits the poles of  ( ( a )  at ±iT. Let us consider the 

curve for which a = ~. In this case, since R ( a )  is 27"r periodic, (2.11) can be solved 

straightforwardly by Fourier transform. The solution is 

e-ina 
R(a) = ~ 2 c ~ s h y n ,  - Y  < I m ( a )  < y .  

tl 

(2.14) 

Here and in the following, sums are understood to run from - o ~  to oo unless otherwise 

stated. Beyond this strip (2.14) can be expressed using elliptic functions. Introducing 

the complete elliptic integrals of  the first kind 1 (1') of  modulus k (k ' ) ,  with k2+U 2 = 1 
[23] ,  related to 3 /by 

l l(k) y 
l (k)  7"r ' 

the solution of  (2.11) in a wider domain reads [24,23] 

I(k) d n ( I ( k ) a ; k ) .  
R ( a ) =  ~. \ 7"r (2.15) 

Notice the presence of  a pole at a = ±iv, inherited from ( ( a ) ,  which prevents the 

convergence of  (2.14) beyond the smaller domain. The energy remains constant at its 

value for h = 0 

e0=  lim E0 2 s i n h y  Z e -~'f'f 
N ~ o o  N -  = cosh y - 2 cosh yn 

n 

and from (2.13) y = 0. In fact the solution considered here has n = N/2 rapidities 

(S z = 0) and, as it will be shown in the next section, E0 is the ground state energy for 

h and V sufficiently close to 0. 

As to the precise position of  the curve, one has to revert to (2.9). Since O ( a + 2 c r )  = 

O(a) + 27"r, we use the expansion 

O (  a )  = cl + i Z e-in'~-2rl"l 
gl 

n4~O 

, - 2 9 ,  < I m ( a )  < 2 y  

and 

p O ( a )  = ol + i Z e-ina-~flnl 
n 

n4:O 

(2.16) 

and we introduce 

p(ce) = ~ + i Z 2 n c o s h y  n = a m  ;k  . 
n ~ 0  

(2.17) 
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The series in (2.16) and (2.17) are certainly convergent when - y  < I m ( a )  < y, but 

they converge also at a = iT r  ± iy, because of the alternating sign. Eq. (2.9) reduces to 

ib ~ e "h I 1 
p ( a ) + = - + i ) ( - )  n + 2 i h = 2 7 r x  - <~x<~ 

,,~0 2n cosh yn ' 4 4 '  2 z..~ 

Specialization to the endpoints permits relating the value of  h to b [7,10] 

b 
o o  

h ( b )  . . . .  ~--~(_),,  sinh nb 
2 ,~=l n cosh ny  

(2.18) 

so that the final equation of  the curve is 

1 1 
p ( a ) + i h = 2 cr x , - -~ <~ x <~ -~ . 

Notice that the points on the curve are characterized by 

I m ( p ( c r ) )  + h = 0 .  (2.19) 

W% set h,: -= h ( b  = - y ) .  One might suspect that, when h > hc, the endpoints would 
remain at a = ~ but with b < - y  (or b > y if h < - h c ) .  If  C does not cross the point 

- i y ,  where ((a~) has a pole, it can always be deformed to the real axis in (2.1 1 ) 

,/ R ( a )  + ~ - ~  d u K ( a - u ) R ( u )  = g:(a) 

-- ') 'r 

(2.20) 

so that the solution is still given by 

l ( k )dn ( l ( - - k~  ) ) 
- -  - - a ; k  , 

77" 

but the expansion (2.14) is no longer useful. To find the h ( b )  relation, we close C in 
(2.9) to the real axis, and take a = A, 

/ / l ¢r 
p ° ( A )  - ~ d u O ( A  - u ) R ( u )  + d f l R ( f l )  + 2 i h =  - ~ - .  

--'IF --71" 

(2.21 

The integral of  R ( a )  is obtained by integrating both sides of  (2.20),  and from (2.21 

we conclude 

cosh ( ~ - ~ )  E ( _ ) , ,  e;i~ihnnhynb (2.22) 
2 h ( b )  = b + 21n cosh (2 z + ~) + 2 

n > O  

which reduces to (2.18) when Ibl ~< 7. Eq. (2.22) though cannot give the right de- 
pendence h ( b )  at Ibj > y, because h ( b )  decreases when b < - Y  and increases tbr 
b > y, going back to the range of values it had as b 6 [ - y , y ] .  Clearly the initial 
assumption a = 7r cannot be correct. To gain more insight we resort as usual to the 
numerical solution of  (2.3) ,  which shows that, as h > he, the curve with v = 0 has 
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Table 1 
Position of the endpoints 4-a + ib of the curve C for h < he; exp(2h) = 3 

Lattice size a b 

8 2.226901585 -i.186380535 
12 2.522418777 -1.215745628 
16 2.674453171 -1.227403536 
20 2.766810718 -1.233071106 
24 2.828778340 -1.236225697 
28 2.873206253 -1.238154458 
32 2.906605731 -1.239417236 
36 2.932624180 -1.240288031 
40 2.953462078 -1.240913442 
Extrap. oo 3.141592659(9) -1,243603723(1) 

= 3.141592653 - y  = -3.737102242 

Table 2 
Position of the endpoints q-a + ib of the curve C for h > h,.; exp(2h) = 18 

Lattice size a b 

8 1.345603261 -3.0497549071 
12 1.479730321 -3.2366686985 
16 1.535932819 -3.3472122872 
20 1.564274277 -3.4190538006 
24 1.580405494 -3.4690826450 
28 1.590409443 -3.5057653322 
32 1.597021761 -3.5337453681 
36 1.601612009 -3.5557588049 
40 1.604924714 -3.5735136386 
Extrap. oo 1.6193362(3) -3.737102232(7) 

= 3.141592653 - y  = -3.737102242 

endpoin ts  at (see  Table 2. For  compar i son  with the case h < hc see Table 1. Note  that 

all ex t rapola t ions  presented  in the tables have been done  using data up to 80 sites. We 

give howeve r  only the first values, up to N = 40, for they already show clearly that the 

values are converg ing  towards a limit.  Al l  tables have been calculated for cosh y = 21, 

where  e x p ( 2 h c )  = 10,51787)  

b = - y ,  a <  qr. 

This ( n e w )  result  wil l  be used in the calculat ion o f  the free energy s ingular i ty  in 

Sect ion  4. 

Turning next  to the statistical model ,  the largest e igenvalue  o f  the transfer matr ix  

yie lds  the free energy per  site ( w e  drop here the inessential  f ac to r /3 )  

In Ao(u, ~, h, v) 
f ( u ,  y,  h, v) = - l im 

N~oo N 

whose  value, as N ---, cx~, is domina ted  by the largest o f  the two l imits  
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1 
lira In AR(U) F R ( u , y , h , v )  + v y = h + l n  s i n h ( y - u )  - -  = . + ~ , y  

N ~  N sinh y 

, /  +~-~ doLR(a ) fa (a ;u )  , 

c 

lira l ,,~oc N In AL(U)  = FL ( U, y ,  h, .V ) + vy = - h + In sinh(U)sinh_____.~ + cy 

' /  +~--~ do~R(~) fL(a;u)  , 

c 

where we have defined 

fR(ol;u)  =ln sinh(2Z + u  - 2 , 
i__~ ~ , 

s i n h ( Z - u +  2 , 

f L ( a ;  u) = In sinh( -2-~ + u - ~ )  
sinh( 2 z - u + ~z ) 

If FR, Fu are known, and we call F the dominant one, the equilibrium value of y and 

the free energy are determined by the minimum condition 

f ( u , y , h , v ) =  rain { - F ( u , y , h , y ) - t : v } .  (2.23) 
• - l ~ < y ~ < l  " " 

When - h c  <~ h ~< hc and for small enough values of z, the state defined by C 
(a = 7"r; - y  ~< b ~< y) also yields the largest eigenvalue of the transfer matrix. The free 
energy 5 

oo e--27n 

f ( u ,  y, h, u) = - 2  Z ncoshyn sinh(nu) s inhn(y - u) (2.24) 
n=l 

is constant in a whole region of the (h, v) plane bounded by a curve F ( 'flat '  phase). 

The parametric equation ( h ( b ) , v ( b ) )  of F is given by (2.20) and by 

OF h fixed v--0 
= - - g y  

which can be explicitly computed 

O 0  

2 v ( b ) = y - I y - 2 u - b l + 2 Z  ( - ) n s i n h [ n ( y - l y - 2 u - b  I)] 
. 7oN  

n = 1 

- y ~ b < ~ y .  

(2.25) 

The other half of the curve F (see Fig. 3) can be recovered from the symmetry 

f ( - h  - u )  = f ( h , u )  (see Appendix A). Most of these results have been obtained 

5 The only part in which our analysis differs from Ref. 110] is that AR is exponentially larger for d < 3' - 2 u  
and AL for d > y -- 2u, where id is the point in which C crosses the imaginary axis. A comparison of (2.24) 
with Ref. [ 101 should take into account the different normalization of the Boltzmann weights. 
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Fig. 3. Curve F in the h-v plane for u = / and cosh(y) = 21. 

elsewhere and we have presented them here only for the sake of  completeness. It should 

be pointed out that the fact that the ground state energy does not depend on h is simply 

a consequence of  the analogous property of  the free energy. 

3. Hole excitations of the spin chain 

To understand the nature of  the phase transition along F we turn to the calculation 
of  the excitation energies, and we set V = 0, since the role of  V is simply to shift the 

spectra at S z ~ O. As  proven in Appendix A it is sufficient to consider h >/0. 

A complete treatment o f  the spectrum should rely on the classification of  all possible 

solutions of  (2.3). This is usually done in the framework of  the string hypothesis, 

according to which complex rapidities (at h = 0) have an imaginary part which tends to 

well-defined values in the thermodynamic limit. Exceptional solutions other than strings, 

but that still appear in complex conjugate pairs, can be handled in a similar way [25] .  

Yet, from the numerical analysis of  (2.3), it appears that strings do not survive at 
moderately strong values of  h. Therefore, we shall limit our calculation to the so-called 

hole excitations, that is holes in the ground state distribution of  rapidities, occurring in 
sectors with S z > 0 (n < no = N / 2 ) .  We introduce the counting function 

Z ( a ,  {o~.i}) _ p ° ( a )  1 ~ O ( a _ a i ) + i  h (3.1) 
27r 2~rN " ¢r 

j =  1 

so that (2.8) is rewritten 
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Fig. 4. Distribution of lk's for the ground state and an excited state with n = no - 2 rapidities. 

lk 
z ( a ~ )  = - - .  

N 

Set vac = number of  vacancies available for the quantum numbers {Ik}. With the usual 

hypothesis  that Z ( a )  be monotonical ly increasing, we have 

def vac 
AZ = Z ( a )  Ine( , , )=~ - Z ( a ) [ n e ( , , ) = _ ~  = - - i f - .  ( 3 . 2 )  

On the other hand, from (3 .1) ,  we find AZ = 1 - ( n / N ) .  For the ground state n = 

no = N / 2  and so vac = no, i.e. the available vacancies are all filled. For n rapidities, 

n = no - r, where r = 1,2 . . . . .  we have 

n o - -  r 
A Z = I  , v a c = n 0 + r  

N 

so that no + r vacancies are partially filled with (no - r)  lk's, leaving Nh = 2r  holes. 

We will resort to the 'backflow method'  [24,26] in dealing with (2.5) ,  (3.1) and 

(2.7) in the limit N ~ oc. The calculation differs slightly for the 2 cases r = even or 

odd, but the results are identical and we will present the case r = even only. I f  this is 

the case, then n = no (mod 2) and the quantum numbers {Ik} of  the excited state have 

the same oddness of  the quantum numbers {lO} of  the ground state. We assume that 

the r additional vacancies for {Ik} are placed r /2  to the left and r /2  to the right of  the 

sequence (see Fig. 4) .  

We call {/311)} the r / 2  additional rapidities at the left edge, {/3~ 2)} the r /2  additional 

rapidities at the right edge and {a(/0 } the Nh holes. Then, for the ground state 

_ _  ~0 h 
Z o ( c e l _ p ° ( a )  1 Z O ( a _ a o ) + i  - (3.3) 

27r 2 7r N • ~r ' 
j=l 

Zo( a °) = 1° (3.4) 
N '  

and lor  the excited state, adding and subtracting the holes 

Z(a) P°(a) 1 no I NI, (h ) )  
= 2 ~  2 7 r N Z O ( ° l - - c e J ) + - 2 - ~  Z O ( ° t - c e j  

j= l  j= l  
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2rrN .i=l 

Z(o~k) = ~ ,  N 

+ o ( .  - + i , ( 3 . 5 )  

(3.6) 

As N ~ c~z {fl)')} ~ A and {fl)2)} --~ B. Subtracting (3.4) from (3.6) and retaining 
terms of order 1IN (this is a standard Bethe-ansatz calculation) [26] we find that 

O( 1 - -  O~ 0 
j (a l )  = lim 

4+,  - 4 

satisfies 

1/ 
j(ce) + ~ d f l K ( a  - f l ) j ( f l )  

C 

Nit 
= 1 ZO(a__(h)~o~j ) 

j=l 

rE +~--~ O(a  - B) + O (a  - A) (3.7) 

with 

f Nt~ r 
AE= d a e ' ( a ) j ( a )  - Z e(aJ  h)) + 2 (e(A) + e(B)) 

C j=l 

Nh 
~0 t ~(h) r dP=ihUh - dee~(a)j(a) +~--~t" t - j  ) - "~ (P°(A) + P ° ( B ) )  • 

C j=l 

Eq. (3.7) defines the analytical properties of j (a )  in the complex plane. Since for 
0 <~ h <~ hc the curve C is contained in - y  ~< Ira(a)  ~< 0, j (a )  is certainly analytic in 
-23, < Im(oz) < y and the curve can be closed to the real axis. Noticing, from (3.7), 
that j ( a  + 2rr) - j ( a )  = --Nh/2 we get, with u E [-Tr, 7r], 

1 7 1 N,, 
j (u)  + ~ J dv K(u - v)j(v) = 47r NhO(u + or) - ~ Z O(U -- uj-(h)) _ ~,r 

--¢r j=l 

Nh 
d E =  d u e t ( u ) j ( u )  + - ~ e ( r r ) -  Z e(ot}h))  , 

--'n" j=l 

Nit 
AP =ihNh - / du( (u) j (u )  + ZpO(~Jh) ) .  

_ ~  j=l 

(3.8) 

(3.9) 

(3.10) 

Eq. (3.8) can be solved by Fourier transform, paying attention to the fact that j (u)  
is not periodic, but obeys the quasiperiodicity condition j (u + 27r) - j(u) = --Nh/2, 

1 Alternatively, and with identical results, the symmetric integral operator (1 + y-;K) at 
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the left side of (3.8) can be formally inverted and the solution plugged in (3.9) and 

(3.10) [26]. The result has the usual additive form 

ZIE= 2 s i n h T ~ e ( ~ h ) ) ,  (3.11) 
.j=l 

where the dressed energy e(u)  satisfies 

e(u)  + ~ d v g ( u  - v ) e ( v )  = ( ( u )  

- -  T T  

and therefore coincides with R(u)  = ~,~ dn (i(_~; k). As to the momentum, one has 

] z I P = ~  p(c~} h ) ) + i h  , (3.12) 
./=1 

where p(c~) has been defined in (2.17). The calculation for r odd differs slightly m 
the intermediate steps but also yields (3.11) and (3.12), which are then true for Nh 
arbitrary (but obviously even). The fact that Nh is even was missed in [271 where, 
lollowing the same assumption made in [24], one hole was kept fixed at the edge. In 
other words, only a subset of the two-hole band of states was dealt with. 6 

Eqs. (3.11) and (3.12) are simple generalizations of their limit at h = 0, since h 
appears only additively in zIP and, implicitly, in the position of the hole which is bound 
to be on the curve C. This simple dependence could not be derived immediately from 
(2.5) and (2.7) because the rapidities {~} depend on h in a non-trivial way through 

(2.3), and only the explicit calculation guarantees that (3.11 ) and (3.12) are correct. 
Several comments are in order. Unlike the energy, which being the eigenvalue of a 

non-hermitian operator can, and indeed does have an imaginary part, the momentum 
must be real. This is guaranteed by (2.19), since a (h) C C. It is well known that, from 
(2.7), (2.8) and the oddness of O(c~), the momentum can be obtained by summing 
(2.8) over k, 

P -  2¢r n 
N ~-'~ Ik. (3.13) 

k=l 

The momentum of the ground state p0 is therefore always zero, while the momentum 
of an excited state is 

2 f r  Nh 
P = - f f Z J 2  h) 

k=l 

from which one sees that, as N --~ oo, - ~  ~< AP(hole) ~< -~'~r This is also confirmed by 
(2.17) and (3.12). The dispersion relations are obtained by eliminating c~ (h~ in (3.11) 
and (3.12) using 

(' One of  the authors (G.A.)  is grateful to Prof. C. Destri for pointing this out. 
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Table 3 
Energy gap of  the spin chain for the first excited state for different values of  h compared to the analytical 
result (3.15) 

Lattice size e 2h = 1.0 e 2h = 9.0 

8 38.8549946261240 27.3592680025296 
12 38.4729554492734 23.5353424072427 
16 38.3095545699746 21.4216001709441 
20 38.2251709688714 20.0937869680560 
24 38.1760618666305 19.1948069770300 
28 38.1450125441243 18.5549980007490 
32 38.1241500821837 18.0828136699350 
36 38.1094640015976 17.7244227601235 
40 38.0987382252780 17.4461598430727 
E x t r a p . ~  38.04991359(1) 15.8884(8) 
Exact eq. 38.04991361 15.8887254 

/ 
dn(a;  k) = ~ 1  - k 2 sin2(am(a; k) ) ,  

which yields 

A E ( A P )  = m o X / 1  --  k 2 sin 2 ( A P  - i h ) ,  mo = 2 s i n h y  l ( k ) -  (3.14) 
v qT" 

An apparent discrepancy with Gaudin's result (for the case h = 0) is clarified in 
Appendix B. The dn(ce) function (and consequently e(ce)) has a non-negative real part 
in the rectangle [-Tr;  -Tr - iy;  7r - i y ;  rr] and this lifts the ambiguity in the sign of 

(3.14). It also confirms that the choice of the ground state was correct, because the 
real part of  the energy, at least under 'small '  variations (a countable number of  holes), 
increases. The minimum of Re (dE)  is reached when a (h) = A or B. When this happens 

A P  = i ~  and the gap in the spectrum is (remember that 2 holes are present in the 
lowest excited state) 

dE(gap)  = 2rn0v/1 - k2cosb2(h) ,  (3.15) 

which guarantees that the 'mass gap' is real (see Table 3 for a comparison with numerical 

results). In particular it vanishes at b = - y ,  that is when A = - r r  - i y ,  B = rr - i y  and 

3' Z ( _ )  . sinh(ny) 
h = he = ~ + n c o s h ( n y )  " 

n~O 

This is most easily seen from (3.11) 

dE(gap)  = 2 m o d n ( ~ - ~ ( i r r - i y ) ;  k )  = 2 m o d n ( i l ( k )  - i l ' ( k ) ; k )  = 0 .  

Therefore, from (3.15) an alternative equation for hc is 

1 
cosh (he) = - • 

k 
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It is particularly interesting to see how the mass gap vanishes as h --~ h,. 

AE(gap)  ~ 23 /2mov~(hc-  h ) U Z +  O ( h c -  h) .  (3.16) 

The vanishing with an exponent 1/2 is peculiar of  the point under consideration, as it 

will appear clear from the general case, to be discussed later, which includes the vertical 

field V. Finally, we specialize (3.15) at h = hc. Then the hole excitations are massless 
7"/" and if we set Ap = - ~  + e or AP = ~ -- e, 0 < • << 1, we get, respectively 

AE( AP) ~ 2 m o ~ e  a/2. (3.17) 

This dispersion relation is certainly surprising and reflects itself in the peculiar behavior 

of the finite-size corrections of  the low-lying energy gaps at h = he. In marked contrast 
l with the O ( ~ )  scaling typical of  spin chains, which describe conformally invariant 

models in the continuum limit [28] ,  we find 
c 

AE ~ NI/----- 5 + O ( N  -3 ) ,  (3.18) 

where c depends on the state under consideration. The momentum being quantized in 

units of  27r/N on the finite lattice (3.13), this behavior is well in agreement with 

(3.17). 

The sector S z = 0 deserves a special comment. Not knowing what takes the place of  

strings, the analysis of  the excitations has been necessarily numerical. Two things have 

been determined. Setting Eo(S z = O, N, h) and El (S: = 0, N, h) to be respectively the 
ground state and the lowest lying of  the first band of  excited states in the sector S: = 0, 
on a chain of  N sites, and at fixed horizontal field h <<, he, we found 

AE(S~ =O,h) = I i m  [E,(Sz =O,N,h)  - Eo(SZ =O,N,h)] (3.19) 

to be positive, non-zero for h < h, and 

lira AE(S z = 0 ,  h ) = 0  
/~ ~ tT,- 

so that, even in this sector, the spectrum becomes massless at h = h, (see Table 4).  
Secondly, the (Q(N -1/2)  scaling is preserved at hc (see Table 5) 

c 
EI(S ~ =O,N, h c ) - E o ( S  z = 0 ,  N, hc) ~ N1/2, N>> 1. 

E~ must not be confused with the other (degenerate in the thermodynamic limit) ground 

state that appears in this sector at momentum P = 7r and is responsible for the spon- 

taneous breaking of  the arrow-reversal symmetry in the symmetric six-vertex model 

[9,24].  Since we do not study the order parameter (staggered polarization) this state 

will not be discussed here. 

We can now reintroduce V, whose effect is to shift the spectra at S: 4= 0. The mass 

gap for a state with n = no • r, and consequently 2r holes is easily read from (2.5) and 

(3.15) 

~/1 k 2 cosh2(h)  2 V ( ± r )  . (3 .20)  AE(gap;n) = 2rmo - 
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Table 4 
Mass gap of the 
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spin chain in the sector S z = 0 for different values of h <~ hc 

Lattice size e 2h = 9.0 e 2h = 9.5 e 2h = 10.0 e TM = 10.51787 

8 40.28463586426577 40.60665243638542 41.00560893816288 41.50186071099847 
12 32.50806556257382 32.33242547913501 32.27369006467646 32.34509918439876 
16 28.03119022066448 27.47527007849106 27.06291429820305 26.80804074773090 
20 25.23278497081201 24.37422080701744 23.67516261790179 23.15771126310622 
24 23.35422673956813 22.24638140499817 21.30438602193786 20.56522041772249 
28 22.02474072486461 20.70732422258583 19.55338243467817 18.62033939778466 
32 21.04552971555199 19.54981005828927 18.20747202515815 17.10061549106331 
36 20.30141022559842 18.65287555243093 17.14104807658379 15.87553491911761 
40 19.72145517781357 17.94130164070793 16.27579201027032 14.86352304583235 
Extrap.:xD 15.946(3) 13.054(9) 9.37499(4) -1.3(3) × 10 -5 

Table 5 
Exponent of N for the finite-size corrections of the energy gap in the sector S z = 0 on the critical line h = hc 

Lattice size Exponent 

8 -0.6147896371667922 
12 -0.6526671750014708 
16 -0.6559635919155932 
20 -0.6511929107450443 
24 -0.6444786397317260 
28 -0.6376031966136601 
32 -0.6311198906745727 
36 -0.6251786621408798 
40 -0.6197881465618827 
Extrap.:x:> -0.5031(I) 
Expcc~d value -0.5 

An al ternative way to reach the boundary  with the massless phase is to have a sufficiently 

large IWl. F r o m  (3 .20)  the crossing occurs at 

V = i m o ~ / 1  - k 2 cosh2(h)  (3 .21)  

and moves the ground state to sectors of  S z > 0 (i.e. n < no) if  V >  0, and to sectors of  

S: < 0 (i.e. n > no) i f  V <  0, as it was intui t ively predictable from (2 .5) .  Notice that, 

unl ike  what  happens  in (3 .16) ,  the mass gap goes to zero l inearly in V or l inearly in h 

if V v~ 0 were kept fixed and h ~ h ( V ) ,  where h ( V )  is defined by (3 .21) .  The poin t  

V = 0, h = hc (or  equivalent ly  h = - h e ) ,  where the exponent  1/2 of  (3 .16)  appears, 

is clearly special. Even i f  it were approached by changing h and V s imultaneously,  the 

term (h~ - h)  1/2 would  domina te  over the l inear  term in V. There is no way to erase 

this effect because it is imposs ib le  to reach (hc,  V = 0) by changing V only:  the l ine 

h = hc in the (h ,  V) p lane  is tangent  to the phase boundary  curve defined by (3 .21) .  

This  result  may look odd, because the energy difference between sectors of  different 

S: corresponds  to the step free energy for the statistical model,  and from (2.4)  it is hard 

to see how it could vanish other than linearly. Yet it is readily seen that the p h e n o m e n o n  
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is not an artifact of the spin chain. An explicit calculation of the step free energy 

fstep =-[ lnAmax(SZ=l)- lnamax(S z = 0 ) ]  

can be by-passed observing that the vanishing of fstep signals the transition to the 
incommensurate phase and therefore must be given by (2.25) 

~X3 ( _ ) , ,  s inh[n(y I r  2u b[)] 
Atep = 2v - y +  [ r  - 2 u  - bl  - 2 ~ - ~  

, ,  Vo n- ; ' 
/t=[ 

The points (h~,vc) and ( - h c , - v c ) ,  reached on /" when b = - y  (or y) are the 

equivalent of (±hc ,  V = 0) in the spin-chain phase diagram. They, again, cannot be 
approached from the fiat phase by changing v only, since the line h = h~. in the (h ,v)  
plane is tangent to F. But, from (2.18), near b = - y ,  

hc - h ~ -~ k ' (b  + 3,) 2 

and since f~tep is linear in b near b = - Y  (unless u = O) 

fstep ~'~ const (he - h)1/2 + const (v - Vc) 

at (hc, v~). This shows that, like for the spin chain, the exponent 1/2 dominates and 

signals that the points (h~, v¢) and ( - h , , , - v c )  are essentially different from the other 
points of F. 

As to the sector S z = 0, we have to extend the numerical analysis carried out for 

the spin chain. If Ao(S  z = O,N ,h ,  vc) and A l ( S  z = O,N,h ,  vc) are the largest and 

next-to-largest eigenvalues on the finite lattice in the sector under consideration, we find 
that 

A l n a ( S  z =O,h ,  vc) = -limcc[lnAl(SZ_ = O , N , h ,  vc) - l n a o ( S :  =O,N ,h , v , . ) ]  

is positive for h < hc and vanishes when h = hc. Furthermore, 

[ I c' - I nAI (S :  =O,N,  h c , v c ) - l n A o ( S  z = O , N , h c , v c )  ~ N l / 2 ,  N>> I 

in perfect correspondence with the spin-chain scaling of low-lying excitations (see 
Table 6). 

4. The exponent 3 /2  of the free energy singularity 

As the field crosses the critical value of the F line (2.18), (2.25) the system enters a 
phase where horizontal and vertical polarizations, zero in the "flat phase", start to change 
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Table 6 
Exponent for the scaling of the free energy gap in the sector S z = 0 

Lattice size Exponent 

8 -0.6696077334198590 
12 -0.6362863326795953 
16 -0.6165741467010993 
20 -0.603244670912252 
24 -0.5934852417528157 
28 -0.5859536198128706 
32 -0.5799199948938484 
36 -0.5749497141578801 
40 -0.5707659045338731 
Ex~ap. oo -0 .499998(4)  

continuously. This is an incommensurate phase belonging to the universality class of 
the gaussian model [ 12]. It is interesting to determine the singularity of the free energy 
as (h, v) approach F from the incommensurate regime. It is widely believed [2,3,10] 
that the free energy singularity should be governed by an exponent 3/2, but an exact 
calculation has been done by Lieb and Wu when h = 0 only [7], in which case 

f ,,~ c(y,u) [c, - vc(y,u,b =O)] 3/2. 

Our calculation is an extension of Lieb's and Wu's method. We will apply it first to 
the ground state energy of the spin chain, and later extend if to the free energy of the 
statistical model. 

Eqs. (2.9), (2.12) and (2.13) determine, through the solution of (2.11), e0, y and 
h as functions of A and B. We suppose that such dependence is analytic and e0, y and 
h can be expanded in powers of 6A, ~B as A ~ A + ~A, B --+ B + ~B. In making such 
hypothesis we rely on the fact that the points A, B around which one expands are far 
from the singularities of the inhomogeneous term ( ( a )  in (2.11) and that the resulting 
expansion (see (4 .3) - (4 .5) )  is consistent with the solution at Ibl ~< y (see Section 2). 
A rigorous proof along the lines of [21 ] is beyond the scope of this paper. 

Making explicit the dependence of R(a )  on A, B by writing R(a;  A, B) we have, 
from (2.12), 

B 

cgAy(A,B) =-~-~ daOAR(ol;A,B) + R(A;A,B)  , 
A 

B 

OBy(A,B) =-~-~ do~OBR(ot;A,B) - R(B;A,B)  , 
A 

8y = Oay(A, B)SA + OBy( A, B)SB + O(SA 2, 6B 2, 8A 8B) . (4.1) 

Likewise, the energy per site 
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B 

eo(A,B) = coshT + ~ do~e(ot)R(o~;A,B) - Vy =cosh  T - Vy+e~I)(A,B) 
A 

yields the derivatives 

B 

OAe(oI~(A,B)=-~ do~e(o~)c~AR(~;A,B) - e (A)R(A;A,B) ,  
A 

B 

08e(o~(a,B) = ~  do~e(ot)OBR(ot;A,B) + }--~e(B)R(B;A,B), 
A 

~eo(A, B) = Oae(o l~ (A, B)SA + OBe(o s) (A, B)SB + O(SA 2, 8B 2, ~A 8B) , (4.2) 

etc. Similar equations can be obtained for h, specializing (2.9) to the endpoints of  the 
curve and taking the symmetric form 

B 

- 4 i h ( A , B ) = p ° ( A ) + p ° ( B ) - - 2 - - ~  d~R(8;A ,B)  O ( A - 8 ) + O ( B - 8 )  
A 

hence 

B 

' /  [ 1 -4iOah(A,B) =-}--~ dSOaR(8;A,B) O ( A -  8) + O ( B  - 8 )  
a 

B 

-4iOeh(A,B) = -~--~ dBOeR(B;A,B) o ( a  - / 3 )  + O(B - 8) 
a 

etc. Equations for the derivatives of  R(a;  A, B) are readily obtained from (2.1 l)  

B 

cgAR(c~;A,B) + ~--~ d S g ( a -  fl)cgAR(8;A,B)= K ( a -  A)R(A;A,B) , 

A 

B 

OsR(o~;A,B) +-~--~ df lK(ce-  8 )OBR(f l ;A,B)=-  K(c~- B)R(B;A,B) , 

A 

etc. 
We have carried out these expansions to the third order in 6A, 6B. In principle they 

can be used for any A, B with a = rr, Ibm ~< ~', and the integrals computed by Fourier 
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transform. However, as it is already evident from the first order terms, the expansions 

simplify considerably when carried out around Ao = - z r  ± iy ,  Bo = rr ± iy,  which are 

zeros of  the dn function 

R(A0; A0, B0) = R(Bo; Ao, B0) = 0.  

The details of  the expansion are lengthy but straightforward, so only the final form is 

of  interest. Writing 

6A = - 6 a  4- i6b , 6B  = Sa + i6b 

and considering first the expansion around A0 = -~ r  - iT, Bo = rr - iT, we have 

6e0 = 2c2 [ (~a)  3 - 36a (6b)  2] - V6y + . . . .  (4.3) 

~y = - C l  6 a 6 b  + C3~b(6a)2  + . . . .  (4.4) 
7"1" 77" 

f ih= -~-cl [(fia)2 _ (6b)2] + 3 ( 6 a ) 3  + . . .  (4.5) 

with 

cl = k '  > 0 ,  

cIC2 _ sinh y [ ~ 3 ~ .  + Z (-1)nnexp-(-nY)]cosh y J > 0 ,  
n>0 

=--1 ~ e x p ( - I n l y )  > O. C3 

c~ 7r z .~  2 cosh y n  
i; 

Notice that ~y = 0 = ~e0 when 6a = 0, as it should, since by taking &a = 0 and 6b > 0 

we reenter the 'flat phase ' .  It is also important to check that if 6a = 0 there is no way 
to increase h by changing b, as already discussed in Section 2. An increase in h, when 
keeping y fixed at y = 0, can instead be achieved by 6a < 0, 6b = 0, which confirms 
the numerical findings presented in Section 2. A variation 6a > 0 is ruled out a priori, 
because the periodicity of  (2.3) in the real direction implies that rapidities are contained 

in the strip - ~  ~< R e ( a )  ~< cr and a cannot exceed zr. 
Another point to discuss is the reliability of  (4 .3 ) - (4 .5 )  when n > N / 2 ,  that is 

8y < 0. The Bethe-ansatz equations for the symmetric six-vertex model are always 
discussed keeping n <~ N / 2 ,  since the Z2 symmetry of  arrow reversal guarantees that 
the spectrum is the same when N / 2  < n <~ N. It is not immediately clear what happens 
to (2.3) when n > N / 2 .  As an example, consider the one-dimensional sector S z = - N  

(n = N) ,  whose only eigenstate is I .[J.J- . . -  J.). It is not obvious that (2.3) should have 
only one solution when the number of  unknowns is N. To be on the safe side we will 

N trust ( 4 . 3 ) - ( 4 . 5 )  only for n ~< ~- (y  ~> 0). In this case 6b ~> 0 and 6a ~< 0. To deal 
N with the states at n > ~- (y  < 0) ,  one must resort to (A.2),  which implies 

e0(y,  he + 6h, V , -y )  = e0(y,  - h e  - 6h,  - V , y ) .  (4.6) 
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Hence it is necessary to consider also an expansion around h = - h e ,  y = 0. This can be 

done evaluating (4.1) and the following equations at the endpoints A~ = -Tr + iT, B~ = 

• r + iy.  The  result is that (4 .3 ) - (4 .5 )  still hold, with 6b > 0 ( <  0) if 6y > 0 ( <  0), 
A final observation about (4 .3 ) - (4 .5 )  is that it is legitimate to neglect higher order 

terms in (4.4) and (4.5).  The parameters 6a and 6b are independent and there is no 

control over their relative magnitude, but the second order term in (4.5) is dominant 

unless 6a ~- ± 6 b ,  in which case the third order term is certainly larger than all possible 

fourth order terms. Likewise, in (4.4), no term 6a" or 6b" is allowed since we know 

that 6y = 0 if ~a = 0 or ~b = 0. Consequently, all higher order terms can certainly be 

neglected and one can further limit the expansion to 

6y = - ~ 6 a  6b .  
77" 

Suppose now that h is kept fixed at hc and V 4: 0. Then, from (4.5), 

6b = T S a ,  

where the upper (lower) sign holds for 6y > 0 ( <  0). Consider first 6y > 0. Then 

~3y = Cl 6a2 , 
77" 

8eo( 6a)  = - 4 c 2 6 a  3 - VCl ~a2 , 
"17" 

which has a minimum, when V > 0, at 

VCI 
~ a o  = - - -  

6"rrc2 

that yields 

2 ( Vc , "~ 3 
6eo( h = he, V >  O) = -c-~2 / 

Notice that no minimum occurs if V < 0. Instead, if we consider 8y < 0, one has a 

minimum at 

Vcl 

6 a o -  6rrc2 

that yields 

8 e o ( h  = h,., V <  O) = c~ \ 6 7 r J  

when V < 0. Consequently, 

2 ( c , ~  3 
e o ( h = h c , V ) = e 0 ( h  = h c , V = 0 )  - c-222 \ -~--~c7r j IV[ 3 , 

( vc, cl 
8y  = sgn(V) - -  

77" \6 'c2 / 
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is the ground state energy singularity as one approaches the point (he, V = 0) along the 
V direction. 

The case V = 0, 8h ~ 0 is more involved. We want 8h > 0, in order to move into 
the incommensurate phase. From (4.3)-(4.5)  

~3b = +v/ f ( ,~a)  f(r~a) = ¢5a 2 + 2C36a3 - 2 ~ h ,  (4.7) 
' 3 cl c) 

6y = - C l S a ( ± v / f ( S a ) ) ,  (4.8) 
77" 

~ e o ( S a ) = 2 c 2 8 a ( - 2 ( ~ a ) 2 - 2 c 3 ( s a ) 3 + 6 8 h ) , c l  (4.9) 

where the sign in (4.8) depends on whether we want ~y > 0 or 8y < 0. The variation 
6a must be negative and contained in a range where f ( Sa )  is non-negative, so if 

f (6ao) = O, 

we consider 

8a ~< 8ao. 

8a0 = -V~c~ (t3h)1/2 + O(Sh) ,  

It is not difficult to see that there is a left neighborhood of 8a0 (of the order t~hl/2), 

where 
(1) f ( 6 a )  is positive. 
(2) 8y(Sa) is monotonic. 

(3) 8eo(Sa) is decreasing. 
Consequently, regardless of the sign in (4.8), 6a = 8ao is a local minimum of 

8eo(6a), which, incidentally, corresponds to 6y = 0. Inserting (3a0 in (4.9), 

eo(hc + 6h, V = O) = eo(hc, V = O) - 2c2 8h (4.10) 

Although it is not obvious from the previous proof, 8y = 0 is actually a stationary point 

for 8eo(Sy). In fact 

38eo 
O~y = ( c98eo/ &3a) [aao / ( &3y / aSa) )aao 

and 

becomes infinite at 8a0. 
The calculation of the free energy singularity is a simple extension of this method. 

The variation of the ground state energy is now replaced by (see (2.23)) 

- 6 (  F(u, y ,h ,  y) + vy) = - 6 F  - 8y(vc + 8v) . 
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The variation of F is computed by means of an expansion analogous to (4.1) and (4.2). 

To keep things simple we consider d < y -  2u, which is certainly true for u sufficiently 
small, so that AR dominates over AL. The surprisingly simple result is that, like for 
the spin chain, the first non-zero contribution comes at the third order. The quantity to 
minimize is 

2c~ ( ~a  3 - 3 ~ a 6 b  2) - 6 y ~ v  , 

where 

c2 = ~ + cosh(yn) > O, n>0 

which looks exactly like (4.3) provided c2 -+ c~ and V -+ &,. The conclusions are 
therefore the same and the free energy leading singularities approaching (h<., v,.) from 
the incommensurate phase are 

f 2 ,, 3/2 
+  h,vc): - , 

2 ¢ cl ~31&13 ' 
f ( u , r , h < . , v c  + & )  = f (u ,~ , ,h<. ,v<)  - 7 2  \ -dg~) 

C 2 

5. Discussion 

It is interesting to speculate about the nature of the phase transition at (h, . ,  v~) and 
compare it with what happens at the other points of F. 

We have always worked in the assumption that a complete set of eigenstates exists for 
the transfer matrix. It is well known that correlation functions can be analysed through 

a spectral decomposition by inserting a complete set of transfer matrix eigenvectors in 
the correlator [29]. For the correlator of two vertical arrows along the same colunm 
one has, on a N x M lattice 

T r ( o ' ~ T " o ' ~ T  M - "  ) T r T  M M ~  2 ( ...~_ ~ n \ d l O / '  (o,o.o <~o,.)= (OIo-~lk) (5.1) 
k 

and tbr the correlation function of the same variables, but along the horizontal direction 

(o~0.0 o~,,,0) = Tr (o-~o-~,T M) M ~  (0]@6o-~,10) (5.2) 
TrT M 

where we have denoted with [0) the eigenstate of the largest eigenvalue of the transfer 
matrix on a finite lattice of width N. Here ~ k  denotes the sum over a complete set of 
eigenvectors of the transfer matrix. Eqs. (5.1) and (5.2) define, in the ordered phase 
within F, two correlation lengths that we will denote by ~,, and ~h, respectively. We 
further consider a third correlator 
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Tr(o'~Tno'~T M M---*~ ~ (01°~lk) 2 \Aoj(Ak~" (5.3) i 

k 

In terms of  a statistical average, (5.3) introduces two spin flips on the 0th column at 

distance n (in the vertical direction) from each other. Eq. (5.3) defines a third length, 

say ( f ,  which, like sty, applies to correlations in the vertical direction. It is useful to 

consider first what happens at h = 0. Since, obviously 

N 

and the ground state of  the ordered phase lies in the sector S z -- 0, only this sector 

contributes to (5.1) and (5.2). Furthermore, v does not change the spectrum within a 

sector of  fixed S z, and it does not modify the eigenvectors which depend (as explicitly 

seen from the Bethe ansatz [7,8] ) on y and h only. We conclude that v has no effect 

whatsoever on the correlators (5.1) and (5.2), which remain those of  the symmetric 

six-vertex model, until a level-crossing transition takes place at v = v(~,, u, b = 0), as 

given by (2.25).  Here the system moves into the gaussian incommensurate phase, and 

the ground state, even for small 8v = v - u ('y, u, b = 0) falls into a sector at y 4= 0 [7] ,  

hence with S z of  order N. The transition occurs without divergence of  the lengths sty, and 

sth which jump from the (finite) value of  the symmetric six-vertex to infinity. On the 
contrary, the operator o -x in (5.3) connects the ground state to the sectors S: = ±1 that 

become gapless linearly in v at v (y ,  u, b = 0). The same happens to the spin chain at V 

given by Eq. (3.21).  One expects that stfl ~ v - v (y,  u, b = 0) [ 14]. Our conjecture is 

that this picture does not change when - h c  < h < hc, and the level crossing transition 

persists with the same features along all F,  up to the points (hc, Vc) or ( - h c ,  -Vc) .  This 

is confirmed by numerical analysis that reveals a scaling of  the energy gap AE ~_ N -2 

for all points on F except (hc, vc) and ( - h c , - r e ) .  At (he, vc) the correlation lengths 

(,. and (/, should diverge according to the following argument. The fact that in the sector 

S z = 0, as found numerically in Section 3, 

lira A I n A ( S  z =O,h ,  vc) = 0  
h -.-~ h,T 

would suggest that st,,(h) diverges as h ---* h~, but it is not sufficient to prove it. The 
fact that Ak in (5.1) are generally complex forces one to sum over a whole band of  
them because oscillations can affect the behavior of  st,, [29] (the same caution should 

he applied when dealing with sty). This in not doable until it is clarified what takes 
the place o f  strings in the sector under consideration. Nevertheless, one can look at 

sth(h), as h ~ h~-. As shown in Section 4, it is possible to enter the gaussian phase at 

(he, Vc) while keeping the ground state at y = 0. From (2.10) y = 0 does not necessarily 
imply that S z = 0 (n = N/2 ) ,  since S z can be non-zero but remain finite in the limit 

N --~ cxD and y would still he zero. Still it is tempting to conjecture that the ground 
state remains at S z = 0, and this is confirmed by preliminary numerical results on the 
spin chain. Hence no level crossing occurs here, because the Perron-Frohenius theorem 
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prevents it in a sector of fixed S z ,  and the expectation value in (5.2) is taken with the 

same Bethe-ansatz eigenvector in the two phases. Since in the gaussian phase ~:h (h) is 
infinite, it must diverge as h ~ h c (or h ~ - h + ) .  

This argument applies to the ordered commensurate phase, but it does not explain 
the dispersion relation (3.17) nor the scaling (3.18). In the incommensurate phase, 

characteristic lengths can be defined in the horizontal and vertical direction which scale 
at the Prokovskii-Talapov transition, like [14] 

I,. ~- l~, . (5.4) 

In the usual setting, e.g, at the point (h = 0, v = v (y, u, b = 0) ), z = 2 and the spin-chain 
excitations in sectors with Sz 4 : 0  become massless with the non-relativistic dispersion 

law A E  ~_ A P  2. It appears that Eq. (3.17) might arise from a Prokovskii-Talapov 

transition when the two coordinate axes are interchanged and therefore z = 1/2. Yet the 
previous discussion indicates that the point (hc, vc)  shows some peculiar features that 

do not appear at other points on F and that warrant further investigations. 
After the first submission of the paper, Kim has proved analytically some of the 

numerical results presented here [30]. 
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Appendix A 

We discuss here the symmetries of 7-( and of the transfer matrix. Under the action of 

the (unitary) charge conjugation operator 

N 

c-- H < ,  c : c ,  : c - ' ,  
k=l 

7-( transforms as 

C~(7, h,V)C = 7--/('y, - h ,  - V )  . (A.I )  

Since 

C ~r C = - ~r~ 
\.J=~ / 
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the spectra of  the sectors at fixed S z are related by 

S ( y ,  h, V,S z ) = S ( T ,  - h ,  - V , - S  z ) .  (A.2) 

The same symmetry operation can be applied to the transfer matrix, using the matrix 

form of  C 

N 

= 1-I  
k=l 

From (2.1) and the definition of  the Botzmann weights it is elementary to see that 

C T ( y ,  u, h, v)  Cla_,~_, = T(T ,  u, - h ,  -v)1_~,~_,, (A.3) 

which implies the relation between spectra 

STM{h, V, S z } = STM{--h, --V, - S  z }. (A.4)  

This symmetry manifests itself in the fact that the partition function 

Zpv(h, v) = ZpF(--h, --v) . 

As far as 7-t is concerned, another symmetry is in effect, implemented by the space 

inversion operator (not to be confused with the momentum) 

P[cq,ce2 . . . . .  a N _ l , a U } = l t r N ,  teN--I . . . . .  a 2 , a l } ,  p 2 = l ,  

P 7-{(y, h, v)e  = 7-/(~,, - h ,  v ) .  

Hence 

CPT-/( T, h, V = O)PC = 7-/(7, h, V = O). 

So at V = 0 the spin chain recovers the Z2 symmetry under spin reversal and the spectra 

at S z and - S  z are identical. It is noteworthy that the same is not true for the transfer 

matrix. 

A p p e n d i x  B 

Our Hamiltonian, at h = 0, V = 0, can be written, neglecting a constant additive term 

1 A°', i°')+l . + o-). o-)+ 1 (B .1 )  = + o-jo'/+ 1 with d < - 1  
- 2  m 

and it is mapped onto the Hamiltonian (see, e.g. Ref. [24] ) 

1 Ao')o' i+ 1 + o )  or)+ l (B .2 )  7"/6 = ~ j=l " °-J°~i+l + with A > 1 
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through a uni tary t ransformat ion 

N/2 

~ c ~ = u ~ u  -1 , U = I I  o'2j_ , . 
j=l 

Consider  the shift operator  S of  (2 .6) .  Let lq-'n, P)  be an eigenstate of  7~ with m o m e n t u m  
N P and S: = ~ - n  

, -  

j= 1 

S I ~ , ,  P)  = e x p ( - i t ' ) 1 ~ , ,  P ) .  

Define U0 as 

N 

Vole,,.P) :=  = ( - 1 ) "  

.j=l 

Then, an eigenstate of  7-¢o with the same energy is U IT,,, P).  Since 

SUN'. ,  P) = e x p ( - i P )  SUS-t Ig',,, P) 
N/2 

= e x p ( - i P )  H ~2jl~,,, P ) ,  
j=l 

e x p ( - i P )  UUo I ~ , ,  P} = exp( - i ( P  + nTr) ) UI~,, ,  P)  

= e x p ( - i P )  UI qt,,) 

UI'P',,, P )  has m o m e n t u m  P = P + nrr. Hence  the ground state of  (B.2)  has m o m e n t u m  

= n07r = UTr, whi le  P0 = 0. As to the excitat ions 

A P  = A P  + (n  - no)~" = A P  NhTr 
2 

Each hole carries an addit ional  m o m e n t u m  - 7 r / 2 ,  which implies  

A E  = m0v/1 - k Z s i n 2 ( A P )  --+ A E  = m0~/1 - k 2 c o s 2 ( A p )  . 
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