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Abstract

We conjecture the factorized scattering description forOSP(m/2n)/OSP(m− 1/2n) supersphere
sigma models andOSP(m/2n) Gross–Neveu models. The non-unitarity of these field theories
translates into a lack of ‘physical unitarity’ of theS-matrices, which are instead unitary with respect
to the non-positive scalar product inherited from the orthosymplectic structure. Nevertheless, we
find that formal thermodynamic Bethe ansatz calculations appear meaningful, reproduce the correct
central charges, and agree with perturbative calculations. This paves the way to a more thorough
study of these and other models with supergroup symmetries using theS-matrix approach. 2002
Elsevier Science B.V. All rights reserved.

PACS: 11.10.-z; 11.55.Ds

1. Introduction

The field theory approach to phase transitions in disordered systems has realized
major progress over the last few years, thanks to an ever deeper understanding of two-
dimensional field theories. Conformal invariance, combined with elegant reformulations
using supersymmetry [1–3], and a greater control of non-unitarity issues [4–6], now
severely constrains the possible fixed points [7,8]. In some simple cases, perturbed
conformal field theory, combined with the use of current algebra symmetries, has even
led to complete solutions [5,9]. Some of the models of interest in the context of disordered
systems have also appeared independently in string theory [10,11], and more progress can
only be expected from the cross fertilization between these two areas.
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Remarkably, the chief non-perturbative method, the integrable approach, has not been
pushed very far to study these models. This is a priori surprising. For instance, several
disordered problems involve variants of theOSP(m/2n) Gross–Neveu model, which
formally appears just as integrable as its well knownO(N) counterpart. The standard
way of proceeding to study such a model would be to determine itsS-matrix, and then
use the thermodynamic Bethe ansatz and form-factors to calculate physical properties.
This approach was pioneered in the elegant papers [12,13], and revived in [14], but so far
the subject was only touched upon in our opinion; for instance, although theS-matrix of
theOSP(2/2) Gross–Neveu model has been conjectured [14], no calculation to justify this
conjecture has been possible. Super sigma models have also been tackled, this time in the
context of string theory [15], but there again results have only been very partial, and the
S-matrix approach even less developed than for super Gross–Neveu models.

The main reasons for this unsatisfactory situation seem technical. While there has
been tremendous progress in the understanding of the sine-Gordon model and theO(3)
sigma models—the archetypes of integrable field theories—models based on other Lie
algebras are only partially understood (see [16,17] for some recent progress), and the
situation becomes even more confusing when it comes to superalgebras. One of the main
difficulties in understanding these theories is physical, and related with a general lack of
unitarity—a feature that is natural from the disordered condensed matter point of view,
but confusing at best from a field theory stand point. Another difficulty is simply the
complexity of the Bethe ansatz for higher rank algebras, in particular, superalgebras. While
these equations can be written sometimes (see the recent tour de force [18]), finding the
pattern of solutions—the generalized string hypothesis—is a daunting task even for the
trained expert [19].

Integrable field theories and lattice models go hand in hand, and the foregoing confusion
seems to extend to spin chains based on superalgebras. Although the formalism is by
now well in place to write the integrable Hamiltonians, their continuum limit is not well
understood. In the case of ordinary algebras for instance, it is known that this continuum
limit is a Wess–Zumino model on the group: whether this is true or not for superalgebras
has been a matter of some debate [20]. Note that in some cases, the super spin chain is
better understood than the field theory: this is the case for instance of thesl(2/1) spin
chain of [21,22] in the spin quantum Hall effect, whose relation to the traditional (super)
Yang–Baxter formalism is also not understood at the present time.

Our purpose in this paper is to develop the integrable approach for the case of
OSP(m/2n) field theories. We will discuss two kinds of models, the supersphere sigma
models, and the Gross–Neveu models, mostly for algebrasOSP(1/2n). In each case, we
will conjecture a scattering theory, whose striking feature will be the lack of unitarity
of the S matrices, as a result of the supergroup symmetry. We will argue that formal
thermodynamical calculations do make sense nevertheless, and illustrate this point for both
types of models.
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2. Algebraic generalities

There are two basic integrable models withO(N) symmetry, the Gross–Neveu model
and the sphere sigma modelSN−1 = O(N)/O(N − 1). Once their integrability is proven,
the scattering theory is determined by implementing the action of the symmetry on the
space of particles, and by requiring factorization. This is not always an obvious task,
because of issues of bound states and charge fractionalization. For instance, the scattering
theory for theO(2P + 1) Gross–Neveu model was completed only very recently [23].
However, the scattering of particles in the defining representation has been known for a
long time [24], and this is where we would like to start here.

Scattering matrices withO(N) symmetry can generally be written in terms of three
independent tensors

(1)Š
j2i2
i1j1

= σ1E + σ2P + σ3I,

where we have set

(2)E
j2i2
i1j1

= δi1j1δ
i2j2, P

j2i2
i1j1

= δ
i2
i1
δ
j2
j1
, I

j2i2
i1j1

= δ
j2
i1
δ
j1
i2

corresponding to the graphical representation in Fig. 1.
We are interested here in models for which none of the amplitudes vanish. Specifically,

for N a positive integer, there are generically two known models whose scattering matrix
for the vector representation has the form (1), with none of theσi ’s vanishing. They are
given by

(3)σ1 = − 2iπ

(N − 2)(iπ − θ)
σ2, σ3 = − 2iπ

(N − 2)θ
σ2

with two possible choices forσ2:

(4)σ±
2 (θ)= Γ

(
1− θ

2iπ

)
Γ
(

θ
2iπ

) Γ
( 1

2 + θ
2iπ

)
Γ
( 1

2 − θ
2iπ

) Γ
(± 1

N−2 + θ
2iπ

)
Γ
(
1± 1

N−2 − θ
2iπ

) Γ (1
2 ± 1

N−2 − θ
2iπ

)
Γ
(1

2 ± 1
N−2 + θ

2iπ

) .
The factorσ+

2 does not have poles in the physical strip forN � 0, and the corresponding
S-matrix for N � 3 is believed to describe theO(N)/O(N − 1) sphere (SN−1) sigma
model. The factorσ−

2 does not have poles in the physical strip forN � 4. ForN > 4, it
describes the scattering of vector particles inO(N) Gross–Neveu model. Recall that for
N = 3,4 the vector particles are unstable and disappear from the spectrum, that contains
only kinks. Some of these features are illustrated for convenience in Fig. 2.

Note that at vanishing rapidity, the scattering matrix reduces toŠ(θ = 0)= ∓I . This is
in agreement with the fundamental particles being bosons in the sigma model, and fermions
in the Gross–Neveu model [25].

Fig. 1. Graphical representation of the invariant tensors appearing in theS-matrix.
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Fig. 2. Pole structure ofσ2 as a function ofN .

Our next step is to try to define models for whichN < 1, in particularN = 0, or N
negative. A similar question has been tackled by Zamolodchikov [26] under the condition
that particles be “impenetrable”, that isσ1 = 0. The (standard) procedure he used was
to study the algebraic relations satisfied by the objectsE,I for integerN , extend these
relations to arbitraryN , and find objects (not necessarilyN × N matrices) satisfying
them. In technical terms, the algebraic relations turned out to be the defining ones for
the Temperley–Lieb algebra [27], for which plenty of representations were known. The
most interestingN = 0 case (corresponding to polymers) could then be studied using the
6-vertex model representation. It could also be studied using algebrasOSP(2n/2n), or
algebrasGL(n/n).

In trying to address the same question for models whereσ1 �= 0, it is natural to
set up the problem in algebraic terms again. The objectsE,P, I can be understood as
providing a particular representation of the following Birman–Wenzl [28] algebra, defined
by generatorsEi,Pi , i = 1, . . . and relations

PiPi±1Pi = Pi±1PiPi±1, P 2
i = 1,

(5)[Pi,Pj ] = 0, |i − j | � 2,

together with

EiEi±1Ei =Ei, E2
i =NEi,

(6)[Ei,Ej ] = 0, |i − j | � 2,

and

PiEi =EiPi =Ei,

(7)EiPi±1Pi = Pi±1PiEi±1 =EiEi±1.

These relations can be interpreted graphically as in Fig. 3; operatorsE define a sub-
Temperley–Lieb algebra [27].

The natural extension of what was done say for polymers would be to look for vertex
representations of the Birman–Wenzl algebra. However, this does not seem possible. The
point is that the full Birman–Wenzl algebra has two parameters, and the representation
furnished say by the spin one vertex model will have, for instance, thatPi �= P−1

i . This
is a property natural from the knot theory framework where this algebra comes from, but
disastrous for the construction of physicalS matrices, where particles cannot “go under”
another. Extending the definition of theS-matrix to arbitrary values ofN thus seems
problematic.
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Fig. 3. Graphical representation for the defining relations of the BW algebra.

It is easy nevertheless to extend it to negative integer values ofN . Indeed, the Birman–
Wenzl algebras arise from representation theory ofO(N), and most of the properties of
these algebras generalize to the superalgebrasOSP(m/2n) [29]. Instead of the vector
representation ofO(N), take the vector representation of the orthosymplectic algebra,
of dimensions(m,2n). For m �= 2n, the tensor product with itself gives rise to three
representations. TakingI as the identity,E as(m− 2n) times the projector on the identity
representation, andP as the graded permutation operator (the extension to the casem= 2n
is easy), it can be checked indeed that the relations (5)–(7) are obeyed withN = m− 2n.
More explicitly, in the usual case, the matrix elements ofE are obtained by contracting
the ingoing and outgoing indices using the unit matrix. In theOSP case, they are obtained
similarly by contracting indices using the defining form of theOSP algebras

(8)J =
(
Im 0 0
0 0 −In
0 In 0

)
.

In formulas, we set̄i = i, i = 1, . . . ,m, ī = n + i, i = m + 1, . . . ,m + n, ¯̄i = i. We set
x(i)= 1, i =m+ 1, . . . ,m+ n, x(i)= 0 otherwise, sop(i)= x(i)+ x(ī). One has then

(9)E
j2i2
i1j1

= δi1,j̄1
δi2,j̄2(−1)x(i1)(−1)x(i2)

while the graded permutation operator is of course given by

(10)P
j2i2
i1j1

= (−1)p(i1)p(j1)δ
i2
i1
δ
j2
j1
.

This realization of Birman–Wenzl algebras was first mentioned in the very interesting
paper [20]. It thus follows that the natural orthosymplectic generalization of theŠ-matrix
of theO(N) Gross–Neveu model (or sphere sigma model) does provide a solution of the
Yang–Baxter equation, and realizes algebraically the continuation to values ofN equal to
zero or negative integers. Let us now discuss how meaningful this can be physically.

For this, let us recall some basic features about Yang–Baxter versus graded Yang–
Baxter. In all cases, the Yang–Baxter formalism deals with two related objects that are
usually calledR, Ř in a general context,S, Š in the context of scattering theory, and differ
by some (graded) permutations.

In the ordinary case, we reserve the unchecked symbol to the matrix obeying

R12(u− v)R13(u)R23(v) =R23(v)R13(u)R12(u− v),
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whereu,v are spectral parameters. The equivalent of this relation for the superalgebra case
is the graded Yang–Baxter equation, and it involves signs [30]:

R
k1k2
i1i2

(u− v)R
j1k3
k1i3

(u)R
j2j3
k2k3

(v)(−1)p(i1)p(i2)+p(k1)p(k3)+p(k2)p(k3)

(11)=R
k2k3
i2i3

(v)R
k1j3
i1k3

(u)R
j1j2
k1k2

(u− v)(−1)p(i2)p(i3)+p(i1)p(k3)+p(k1)p(k2),

wherep(k) = 1,0 is the parity of thek coordinate. These signs occur because, in the
graded tensor product formalism,R13 acts on the first and third components, hence
giving rise to potential minus signs when commuting through the elements of the second
component. An ordinary (super)R-matrix does not solve the graded (ordinary) Yang–
Baxter equation. However, ifR does solve the graded Yang–Baxter equation, the object
R̃kl
ij ≡ (−1)p(i)p(j)Rkl

ij solves then the ordinary Yang–Baxter equation, so it is easy to go
from one point of view to the other.

In the ordinary case, one can also consider the objectŘ = PR, P the permutation
operator: this is what we gave in formula (1) for the caseN a positive integer. It satisfies a
different relation,Ř12(u− v)Ř23(u)Ř12(v) = Ř23(v)Ř12(u)Ř23(u− v). Observe that this
relation now involves only neighboring spaces in the tensor product, and thus is insensitive
to grading. If R were to solve the graded Yang–Baxter equations instead, the same
relation would be obeyed by the matrix̌R = PR, where nowP is the graded permutation
operator. WhetherR satisfies the ordinary or the graded Yang–Baxter equation, it follows
that matricesŘ do satisfy the same equation. Conversely, a solution ofŘ12Ř23Ř12 =
Ř23Ř12Ř23 can be interpreted as arising from a graded or a non-graded structure. The
graded Yang–Baxter equation appears more as an aesthetically appealing object than a
fundamental one. It is especially nice because it admits a classical limit, and fits in the
general formalism of quantum supergroups [31].

In the context of scattering theories, which are our main interest here, it is convenient
to define theS-matrix through the Fadeev–Zamolodchikov algebra [32]. Theories based
on supergroups will have a spectrum of particles containing both bosons and fermions.
Their creation and annihilation operators will be denotedZ(†), and obey for instance
Z

†
i (θ1)Z

†
j (θ2)= (−1)p(i)p(j)Sklij (θ1 − θ2)Z

†
l (θ2)Z

†
l (θ1). The consistency of these relations

requires thatS satisfies the graded Yang–Baxter equation, or, equivalently, thatS̃ satisfies
the ordinary Yang–Baxter equation. Amplitudes of physical processes are then derived
in the usual way. An important feature is that the monodromy matrix, which describes
scattering of a particle through others, is built out ofS̃ like in the non-graded case (the
same thing happens for integrable lattice models [31]).

Taking therefore ourOSP Š-matrix, and theS-matrix that follows from it,S = σ1E +
σ2I +σ3P , it is natural to ask about the physical meaning of these amplitudes. This reveals
some surprises. Crossing and unitarity are well implemented in the cases when the particles
are bosons or fermions. Mixing the two kinds does not seem, a priori, to give rise to any
difficulty. For instance the relationS(θ)S(−θ) = Š(θ)Š(−θ)= I holds in the graded case
with proper choice of normalization factors. It will turn out however that in the graded case,
the S-matrix is, as a matrix,not unitary.1 It is thus difficult to interpret ourS-matrices

1 This is a stronger violation of unitarity than in cases like the Lee–Yang singularity, whereSS† = 1 still
holds, but unphysical signs appear inS-matrix residues. For a thorough discussion of unitarity issues see [33].
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in terms of a ‘physical’ scattering. The most useful way to think of theS-matrices will
probably be as an object describing the monodromy of wave functions, like in imaginary
Toda theories [16,34]. Crossing follows then fromŠ(iπ−θ)= σ1(θ)I +σ2(θ)P +σ3(θ)E,
with an obvious graphical interpretation, and charge conjugation being defined through the
defining form of theOSP algebra.

Leaving aside the unitary difficulty, the usual formal procedure thus selects once again
the factorsσ±

2 as minimal prefactors, with the continued valuesN =m−2n. The question
is then to establish the relation what field theory, if any.

Obvious candidates are theOSP(m/2n) Gross–Neveu model with action (in all this
paper, normal ordering is left implicit)

(12)

S =
∫

d2x

2π

[
m∑
i=1

ψi
L∂ψ

i
L +ψi

R∂̄ψ
i
R +

n∑
j=1

β
j
L∂γ

j
L + β

j
R∂̄γ

j
R

+ g
(
ψi
Lψ

i
R + β

j
Lγ

j
R − γ

j
Lβ

j
R

)2]
,

where theψ are Majorana fermions of conformal weight 1/2, and theβγ are bosonic
ghosts of weight 1/2 as well. Perturbative calculations of the beta function [3,35] suggest
that this model behaves like the continuation of theO(N) Gross–Neveu model to the value
N = m − 2n. Similarly, the natural generalization of the sphere sigma model is a super
sphere sigma model, which can be described as the cosetOSP(m/2n)/OSP(m − 1/2n).
There again, perturbative beta functions do match. It is therefore natural to expect that the
S-matrices built onOSP(m/2n) will describe, depending on the prefactorσ±

2 , these two
models in the appropriate physical regimes. This will be discussed in the next section.

3. TheOSP(1/2) sigma modelS-matrix

3.1. The S-matrix

To make things more concrete, let us discuss the caseN = −1, and its realization using
OSP(1/2). Instead of the Gross–Neveu model, it will turn out to be easier to study the
equivalent of the sigma model, because of its relation with thea

(2)
2 Toda theory and spin

chain.
The solution of the graded Yang–Baxter equation relevant here is the well known

OSP(1/2) one, given by

(13)ROSP(1/2) = 1

1− 3 θ
2iπ

[
P + 3θ

2iπ
I + θ

iπ − θ
E

]
,

where we have chosen the normalization factor for later purposes,I is the identity.
Denote the basis vectors in the fundamental representation ofOSP(1/2) asb,f1, f2. The
operatorE is given by the matrix

(14)E =
( 1 −1 1

1 −1 1
−1 1 −1

)
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in the subspace spanned by(b, b), (f1, f2), (f2, f1) in that order,E = 0 otherwise. In that
same subspace, the graded permutation operator reads

(15)P =
(1 0 0

0 0 −1
0 −1 0

)
.

The operatorsE,P satisfy the defining relations of the Birman–Wenzl algebra with
N = −1.

The non-gradeďR matrix meanwhile reads

(16)ŘOSP(1/2) = 1

1− 3 θ
2iπ

[
I + 3θ

2iπ
P + θ

iπ − θ
E

]
.

Let us now discuss the issue of unitarity. WhileR(θ)R(−θ) = Ř(θ)Ř(−θ) = 1, R, Ř,
and R̃ as matrices, are unitary only with respect to an indefinite metric induced by the
supergroup structure. Explicitly, one has for instance

(17)Řbb
bbŘ

∗bb
bb − Ř

f1f2
bb Ř

∗f1f2
bb − Ř

f2f1
bb Ř

∗f2f1
bb = 1

and in fact Ř conserves a scalar product that allows for negative norm square states
〈ff |ff 〉 = −1, all others equal to+1. It is well-known indeed [36] that the structure
of OSP(1/2) is not compatible with a positive scalar product. The mere presence of
supergroup symmetry leads necessarily to the existence of negative norm-square states,
and therefore to unitarity problems.

The resulting scattering matrix is therefore non-unitary, in the usual sense. This is a
consequence of the orthosymplectic supergroup symmetry, and originates physically in the
non-unitarity of the field theory described by theS-matrix. This does not prevent one from
using theS-matrix at least to describe the monodromy of the wave functions, as we will
do in the section devoted to TBA. Similarly, thisS-matrix could also be used to describe
aspects of the finite size spectrum [33,34].

An intriguing remark is that, although the matrix̃R is not unitary, its eigenvalues happen
to be complex numbers of modulus one (the same hold forR andŘ),2 and there are reasons
to believe that this is true for the eigenvalues of the monodromy matrices involving an
arbitrary number of particles. This means that the non-unitarity situation is not as stringent
as say in thea(1)2 case [16], and that, for instance, the spectrum of the theory in finite size
will be real.

Let us now consider the ‘scattering’ theory that is the continuation of the sphere sigma
model toN = −1: we take theOSP(1/2) realization, and as a prefactorσ+

2 . It then turns

out that theS-matrix is identical to the one of thea(2)2 Toda theory for a particular value of
the coupling constant! This will allow us to explicitly perform the TBA, and identify the
scattering theory indeed. While we were carrying out these calculations, we found out two
papers where the idea has been carried out to some extent already: one by Martins [37],
and one by Sakai and Tsuboi [38]. Our approach has little overlap with these papers, and
stems from our earlier work on thea(1)2 theory instead.

2 We thank G. Takacs for suggesting this may be the case.
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To proceed, we now discuss thea(2)2 Toda theory in more details.

3.2. A detour through a
(2)
2

This theory has action

(18)S = 1

8π

∫
dx dy

[
(∂xΦ)2 + (∂yΦ)2 +Λ

(
2e

− i√
2
βΦ + ei

√
2βΦ)].

The conformal weight of the first field is∆1 = β2/4, while the one of the second is

∆2 = β2. The dimension ofΛ is such that[Λ]3L−2h2−4h1 = L−6, so[Λ] = L−2L
2h2+4h1

3 ,
i.e., [Λ] = Lβ2−2, and the “effective” dimension (i.e., twice the conformal weight) of the
perturbation isd = β2.

The domain we shall be interested in primarily corresponds toβ2 � 1. We will
parameterize

(19)β2 = 2
t − 1

t

so h1 = β2

4 = t−1
2t , [Λ] = L−2/t . The caset = 2 corresponds toh1 = 1/4, and the limit

t → ∞ to h1 = 1/2.
The massless or massive nature of the theory depends on the sign ofΛ and on the value

of β2 [39]. Forβ2 � 1, the theory is massive forΛ< 0, but for the region we are interested
in, Λ> 0 is required, and we will restrict to this in the following.

In the t ∈ [2,∞] domain, the scattering matrix has been first conjectured by
Smirnov [40]. The spectrum does not contain any bound states, and is simply made
of solitons with topological charges±1,0 (where the topological charge is defined as
q = 1

2
√

2πβ

∫
∂xφ). The relation between the mass of the solitons and the coupling constant

reads [39]

Λ3 = − 1

16π3

Γ 2(β2/4)Γ (β2)

Γ 2(1− β2/4)Γ (1− β2)

[
πM√

3Γ (1/3)

Γ (2/3(2− β2))

Γ
(
β2/3(2− β2)

)]3(2−β2)

.

(20)

Near β2 = 2, which will turn out to be the point withOSP(1/2) symmetry, setting
β2 = 2− ε, one hasΛ3 ∝ εM3ε .

The Š-matrix is proportional to theŘ-matrix of the Izergin–Korepin model [41].
Although this may seem laborious, we will write it explicitly here. Introducing the
parameter

(21)ξ = 2

3

πβ2

2− β2

and the variablesλ = e−2πθ/5ξ , p = eiπ/2eiπ/3ξ , we write

Š =Σ0
1

λ5p5 − λ−1p−5 + p−1 − p
Ř
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with [41,42]

Ř11
11 = Ř

−1,−1
−1,−1 = λ5p5 − λ−1p−5 + p−1 − p,

Ř
0,1
1,0 = Ř

1,0
0,1 = Ř

−1,0
0,−1 = Ř

0,−1
−1,0 = λp3 − λ−1p−3 + p−3 −p3,

Ř
−1,1
1,−1 = Ř

1,−1
−1,1 = λp − λ−1p−1 + p−1 − p,

Ř00
00 = λp3 − λ−1p−3 + p−3 − p3 +p−1 − p + p5 − p−5,

Ř01
01 = Ř

−1,0
−1,0 = λ

(
p5 − p

)+ p−1 −p−5,

Ř
−1,1
0,0 = Ř

0,0
−1,1 = λ

(
p4 − 1

)+ 1− p4,

Ř
1,0
1,0 = Ř

0,−1
0,−1 = λ−1(p−1 − p−5)+ p5 − p,

Ř
0,0
1,−1 = Ř

1,−1
0,0 = λ−1(1− p−4)+ p−4 − 1,

Ř
−1,1
1,−1 = λ

(
p5 − p − p3 + p−1)+ p3 − p−5,

(22)Ř
1,−1
1,−1 = λ−1(p−1 − p−5 − p + p−3)+ p5 −p−3.

The normalization factor admits the representation

(23)Σ0 = −exp

[
i

∞∫
−∞

dω

ω
e−3iωθ/π sinh(3ω)cosh(3ω(2ξ − π)/4)

sinh(3ωξ/2π)cosh(3ω/2)

]
.

It is equal to the amplitude for the scattering processes 11→ 11.
In the caseξ → ∞, one checks that

(24)
1

λ5p5 − λ−1p−5 + p−1 − p
Ř −→ Řosp(1/2)

(with b ↔ 0, f1,2 ↔ ±1) up to an irrelevant gauge transformation. Moreover, it turns out
that

(25)Σ0

3θ
2iπ

1− 3θ
2iπ

−→ σ+
2

or Σ0 = σ+
3 − σ+

2 for N = −1, confirming the identification of thea(2)2 Š-matrix in the

limit t → ∞ with theOSP(1/2) “sphere sigma model”̌S-matrix.
This coincidence has a simple algebraic origin. Indeed recall [43,44], that thea

(2)
2 Toda

theory has symmetryUq

(
a
(2)
2

)
, q = eiπ/β

2
. The Dynkin diagram for the algebraa(2)2 turns

out to be almost identical to the one for the algebraosp(1|2)(1) [29], as represented in
Fig. 4, although in the latter case, one of the roots is fermionic, and therefore the basic
relations involve an anticommutator instead of a commutator.

It can be hoped that for some particular value ofq , theq-deformation of one algebra
gives rise to the other, and this is what we shall now demonstrate—namely, that there is
a mapping betweenUq

(
a
(2)
2

)
andU(osp(1|2)(1)), for q = i. This should not come as a

surprise, and has algebraic roots going back as far as [45]. For recent related works, see
[46,47].
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Fig. 4. Dynkin diagrams fora(2)2 andosp(1/2)(1) .

Traditionally, the Cartan matrix ofa(2)2 is written as
( 8 −4

−4 2

)
, and the commutation

relations are

[Hi,Hj ] = 0, [Hi,Ej ] = aijEj ,

[Hi,Fj ] = −aijFj ,

(26)[Ei,Fj ] = δij
qHi − q−Hi

qi − q−1
i

, qi = qaii/2.

This means, in particular, that the generatorsE0,F0,H0 satisfy aUq4(a1) algebra

[H0,E0] = 8E0, [H0,F0] = −8F0,

(27)[E0,F0] = qH0 − q−H0

q4 − q−4

while the generatorsE1,F1,H1 satisfy aUq(a1) algebra

[H1,E1] = 2E1, [H1,F1] = −2F1,

(28)[E1,F1] = qH1 − q−H1

q − q−1 .

The Cartan matrix ofosp(1|2)(1) on the other hand reads usually
(4 −2

−2 1

)
. Commutation

relations are similar to (26), but involve anticommutators instead of commutators for the
fermionic generators. The generatorse0, f0, h0 satisfy thus aa1-algebra

[h0, e0] = 4e0, [h0, f0] = −4f0,

(29)[e0, f0] = h0,

while for the generatorsψ†
1 ,ψ1, h1 one has[

h1,ψ
†
1

]= ψ
†
1, [h1,ψ1] = −ψ1,

(30)
{
ψ

†
1,ψ1

}= h1.

Taking q = i for Uq

(
a
(2)
2

)
makes the subalgebra generated byE0,F0,H0 and U(a1)

algebra. The valueq = i for the other deformeda1 was already observed in [46] to
allow a simple relation with a fermionic algebra, a fact also used in mappingUi(a1) onto
a supersymmetricN = 1 algebra. Here, observe that by settingψ

†
1 = q−(H1+1)/2E1 and

ψ1 = q(H1−1)/2F1/(q + q−1), one finds,for representations where H1 is even (the only
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ones of interest in our case), that, whenq → i,{
ψ

†
1,ψ1

}= H1

2

in agreement with the anticommutation relation forU(osp(1|2)) if h1 = H1/2. The rest
of the relations then are in complete agreement, up to some straightforward changes of
normalization.

We conclude that, restricting to representations withH1 even, the two algebras are
isomorphic. Since this constraint is satisfied in the case at hand, theosp(1/2)(1) symmetry
of thea(2)2 Toda theory is thus explained.

3.3. Thermodynamic Bethe ansatz

Throughout this paper, we will use the thermodynamic Bethe ansatz to calculate
physical properties of our theory. It is a priori unclear whether the method—which involves
maximizing a free energy—makes much sense in a theory whose Hamiltonian is not
Hermitian, but the results we obtain seem perfectly meaningful, like in other similar
examples. Two additional remarks about the TBA are relevant. First, the scattering matrix
appearing in the auxiliary monodromy problem (diagonalizing the matrix describing the
effect of passing a particle through the others) is notS but S̃. This means that, although
theS-matrices of theosp(1) anda(2)2 differ because of the grading, the objects used in the

TBA (like the S̃ matrices) are identical, and known results abouta
(2)
2 Toda theories can be

used. Second, one may worry that mixing bosons and fermions could give rise to problems
in applying the TBA. This is not quite so however. Most TBAs known so far—and the
ones we will introduce here will be no exceptions—allow at most one particle in a state
of a given rapidity. As discussed in Zamolodchikov [48], this corresponds, in the diagonal
case, to havingSiiii (0) = −(−1)F , whereF is the fermion number of particlei. In our
case, we haveSiiii (0)= ∓P ii

ii . For the supersphere sigma model, the particles with bosonic
internal labelsi = 1, . . . ,m, will be bosons, soP ii

ii = (−1)F . For the super Gross–Neveu
model, the particles with bosonic internal labels are now fermions, soP ii

ii = −(−1)F . In
both cases, the required result holds.

The TBA analysis can be performed using the well known strategies. The only difficulty
is the diagonalization of the monodromy matrix, which involves solving an auxiliary
problem based on thea(2)2 vertex model. String solutions for this model were not known

before, but they can easily be obtained using our recent results on thea
(1)
2 case. Setting

γ = π
t−1, thea(2)2 Bethe equations have the form

(31)
∏
α

sinh1
2(yi − uα − iγ )

sinh1
2(yi − uα + iγ )

=
∏
j

sinh1
2(yi − yj − 2iγ )

sinh1
2(yi − yj + 2iγ )

sinh1
2(yi − yj + iγ )

sinh1
2(yi − yj − iγ )

,

where theyi are Bethe roots, and theuα are spectral parameter heterogeneities (corre-
sponding to the rapidities of particles already present in the system). The solutions of these
equations in the thermodynamic limit are as follows. They ’s can be 1,2, . . . , t −1, strings,
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or antistrings. In addition, it is possible to have at string centered on an antistring, or to
have a complex of the formy = yr ± iγ

2 + iπ .
After the usual manipulations, one ends up with equations for the pseudoenergies, that

can be represented using a TBA diagram. The ‘left part’ of the diagram corresponds to the
following equations

εj (θ)

T
= φ3(θ − θ ′) ? ln

(
1+ eεj (θ

′)/T )
(32)−

t−3∑
l=0

(δj,l+1 + δj,l−1)φ3(θ − θ ′) ? ln
(
1+ e−εl(θ

′)/T ),
where we denoteφP (θ) = P

2 cosh(P θ/2) , f ? g(θ) = ∫∞
−∞

dθ ′
2π f (θ − θ ′)g(θ ′). We use in the

following the Fourier transform

(33)f̂ (ω)=
∫

dθ

2π
eiPωθ/πf (θ)

so (̂f ? g) = 2πf̂ ĝ, and φ̂P = 1
2 coshω . We introduce the other kernelψ defined by

ψ̂ = coshω/2
coshω .

In addition, there is a set of equations providing a closure on the right part.

εt−3(θ)

T
= φ3(θ − θ ′) ? ln

(
1+ eεt−3(θ

′)/T )− φ3(θ − θ ′) ? ln
(
1+ e−εt−4(θ

′)/T )
−

3∑
i=1

φ3(θ − θ ′) ? ln
(
1+ e−εai (θ

′)/T )−ψ(θ − θ ′) ? ln
(
1+ e−εb(θ

′)/T ).
(34)

Together with

εai (θ)

T
= −φ3(θ − θ ′) ? ln

(
1+ e−εt−3(θ

′)/T )+ φ3(θ − θ ′) ? ln
(
1+ eεai (θ

′)/T )
+
∑
j �=i

φ3(θ − θ ′) ? ln
(
1+ e

−εaj (θ
′)/T )+ψ(θ − θ ′) ? ln

(
1+ e−εb(θ

′)/T )
(35)

and

εb(θ)

T
= −ψ(θ − θ ′) ? ln

(
1+ e−εt−3(θ

′)/T )+ 2φ3(θ − θ ′) ? ln
(
1+ eεb(θ

′)/T )
+
∑
i=1,2

ψ(θ − θ ′) ? ln
(
1+ e−εai (θ

′)/T )+ψ(θ − θ ′) ? ln
(
1+ eεa3(θ

′)/T ).
(36)

Finally, the asymptotic conditionsε0(θ → ∞) → mcoshθ must be imposed. This system
can be conveniently encoded in the diagram of Fig. 5. The free energy per unit length reads
as usual

(37)F = −T

∞∫
−∞

dθ

2π
mcoshθ ln

(
1+ e−ε0/T

)
.
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Fig. 5. Incidence diagram for the TBA of the (anisotropic)a(2)2 theory. Nodes are associated with the
pseudoenergiesε, and the cross indicates the presence of a massive asymptotic behavior forε0.

We will consider the more general case of twisted boundary conditions, by adding a
phase factor in the traceZ = Tr[e−βH eiαq/(t−1)], q the topological charge. The kinks have
therefore a fugacity(e±iα/t−1,1). We concentrate on the central charge, which is expressed
in terms of the quantitiesx = e−ε/T in the limits of large and small temperature. At large
temperature (UV), thexj go to constants, which solve the following system (here we set
λ = eiα , which appears in the equations due to a renormalization of the spin [49]):

x0 = (1+ x1)
1/2
(

1+ 1

x0

)−1/2

,

. . .

xn = (1+ xn−1)
1/2(1+ xn+1)

1/2
(

1+ 1

xn

)−1/2

,

. . .

xt−3 = (1+ xt−4)
1/2(1+ xa)

1/2(1+ λxa)
1/2(1+ λ−1xa

)1/2

×
(

1+ 1

xt−3

)−1/2

(1+ xb),

xa = (1+ xt−3)
1/2
(

1+ 1

xa

)−1/2

(1+ λxa)
−1/2(1+ λ−1xa

)−1/2
(1+ xb)

−1,

(38)xb = (1+ xt−3)

(
1+ 1

xa

)−1

(1+ λxa)
−1(1+ λ−1xa

)−1
(1+ xb)

−1,

and recall that there are three (like the dimension of the fundamental representation) nodes
with a common value ofxa . The solution of this system is

xj = sin (j+1)α
2t sin (j+4)α

2t

sin α
2t sin α

t

, j = 0, . . . , t − 3,

(39)xa = sin (t−1)α
2t

sin (t+1)α
2t

, xb = sin2 (t−1)α
2t

sin α
t

sinα
.

What we will in general call the UV contribution to the central charge isc1 =
6
π2

∑
L
( xj

1+xj

)
. At small temperature (IR), thexj go similarly to constants solving the

same system but with one less node on the left, becausex0 → 0. We first consider the case
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α = 0, i.e., periodic boundary conditions for the bosons, antiperiodic boundary conditions
for the fermions. In that case, the UV sum of dilogarithms gives a contribution(t − 1),
while one gets a similar contribution from the IR sum aftert → t − 1, c2 = t − 2. The
central charge is thusc = c1 − c2 = 1, as expected.

(Here we include two specialized remarks:
A point of some interest isγ = π/2, corresponding toh1 = 1/4. In that case, thea(2)2

Bethe equations do coincide (after a shifty → y + iπ
2 ) with thea(1)1 Bethe equations that

appear in solving the sine-Gordon model with
β2

SG
8π = 1/4. This point is in the attractive

regime, with one soliton and one antisoliton of massm, and one breather of the same mass.
It is easy to check that in that case, thea

(2)
2 TBA is in fact identical with the well known

SG TBA indeed. The equivalence between the two theories is not so obvious when one
looks at the actions.

Also, asa(2)2 is related toa(1)2 , so does thea(2)2 theory bear some resemblance to thea
(1)
2

Toda theory with the following action

(40)

S = 1

8π

∫
dx dy

[
2∑

i=1

(∂xφi)
2 + (∂yφi)

2

−Λ′(ei β√
2
(φ1+

√
3φ2) + e

i
β√
2
(φ1−

√
3φ2) + e−i

√
2βφ1

)]
.

Here the perturbation has a single dimensionh = β2, and the dimension of the coupling is
[Λ] = L2β2−2. Parameterizingβ in (40) byβ2 = t−1

t
, it turns out that the free energy of the

a
(2)
2 theory is exactly half the free energy of thea(1)2 theory, once the fundamental masses

have been matched. This fact does not appear obvious in the least when one compares
perturbative expansions!)

Twistings and truncations of thea(2)2 model are of the highest interest and have been
widely discussed in the literature [40,42,44]. Twisting (that is, putting a charge at infinity)
in such a way thateiβφ becomes a screening operator of weight∆ = 1, gives the central

chargec = 1 − 3(t−2)2

(t−1)t . RSOS restriction is then possible fort even, giving rise to
the minimal modelMt−1,t/2. The perturbation in the minimal model has then weight
∆21 = 1 − 3

2t (its coupling is real, and the sign does not matter because it has only even
non-vanishing correlators). Meanwhile, the lowest weight∆12 = 4−t

8(t−1) becomes negative

for t � 4, after which the effective central charge readsceff = c− 24h12 = 1− 12
t (t−1) . One

can also twist in such a way thate−iβφ/2 becomes a screening operator, giving the central

chargec = 1− 3(t+2)2

(t−1)t . RSOS restriction is then possible fort odd, giving rise toMt,(t−1)/2

perturbed by the operator of weight∆15 = 1− 3
t
.3

3 Notice that the combination 2− x = 3/t , respectively, 6/t for t even (respectively, odd). In fact, the
perturbative series for the free energy always has the same structure, and does not exhibit parity effects ast

is changed. But the physical interpretation does, and rightly so, since forφ21, only even correlation functions do
not vanish, while forφ15, all correlation functions are a priori non-vanishing.
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Fig. 6. Incidence diagram of the truncateda(2)2 TBA. This TBA also describes perturbations of the
OSP(1/2)(4−t)/SU(2)(t−4)/2 models fort even, see later.

The twisting can also be studied with the TBA using nowα �= 0. The UV sum

of dilogarithms gives then a contribution(t − 1) − 3 t−1
t

α2

π2 , while one gets a similar

contribution from the IR sum aftert → t − 1. The central charge is thusc = 1− 3
t (t−1)

α2

π2 .
In general, twisting terms affecting nodes ‘far to the right’ of the TBA diagram do not

affect the central charge in the isotropic limit. Indeed, ifα were to remain finite here as
t → ∞, the central charge of the twisted theory would be stillc = 1. We shall however be
interested in giving antiperiodic boundary conditions to the kinks of chargeq = ±1, which
translates into a phase that blows up likeα ≈ tπ ast → ∞. As a result, the central charge
of interest isc → −2, in agreement with the sigma model interpretation to be discussed
next.

Finally, we notice that choosingα = 2π leads toxt−4 = 0, and a truncation of the
diagram to the one represented in Fig. 6. This is the same as folding the TBA for thea

(1)
2

RSOS model with central chargec = 2− 24
(t−1)t . The first model in the series hasceff = 2/5,

the next oneceff = 3/5 (the latter TBA has some fascinating properties, due to the fact that
2/5 + 3/5 = 1). This was first observed in [50]. We will comment about the relation of
these models toOSP(1/2) in the conclusion. For TBAs related witha(2)2 in other regimes,
see [51,52].

3.4. The OSP(1/2) limit, and the relation with the sigma model

As explained previously, theOSP(1/2) scattering theory can be studied by taking
the t → ∞ limit of the a

(2)
2 model. The identification could in fact be seen directly by

identifying Bethe equations. This seems a bit strange at first, because thea
(2)
2 equations

do not have a structure that is reminiscent of theosp(1/2) Dynkin diagram. One has
to remember however that theosp(1/2) Bethe ansatz equations are peculiar, and their
structure is not related with the Cartan matrix in the usual way. They read in fact [18]

(41)
∏ λi −µα − i

λi −µα + i
=
∏ λi − λj − 2i

λi − λ′ + 2i

∏ λi − λj + i

λi − λj − i

and match thea(2)2 equations in thet → ∞ limit, with y = γ λ, u= γµ, γ → 0.
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The Toda theory (18) can then be rewritten in terms of a Dirac fermion as

(42)S =
∫

d2x

2π

[
ψ

†
R∂ψR +ψ

†
L∂̄ψL +Λ

(
ψ

†
RψL +ψR∂ψRψ

†
L∂̄ψ

†
L

)]
the perturbation is the sum of a term of dimensionh1 = 1/2, and a term of dimension
h2 = 2 (the relative normalization between the two fermionic terms is irrelevant, since it
can be adjusted byψR → λψR , ψ†

R → λ−1ψ
†
R , or similarly for left fermions). It is likely

that this model could be directly diagonalized using the coordinate Bethe ansatz, like the
ordinary massive Thirring model, but we have not carried out such a calculation. Conserved
quantities can be found in terms of the fermions; the first ones areψ

†
R , ψ†

R∂(∂ψ
†
RψR) . . . .

The twisted theory meanwhile hasc = −2, ceff = 1, and the perturbations both acquire
dimensions(1,1). This can be identified with a symplectic fermion theory with action [53]

(43)S =
∫

d2x

2π

[
∂µη1∂µη2 +Λ′∂µη1∂µη2 +Λ′′η1η2∂µη1∂µη2

]
.

Hereη1 andη2 are two fermionic fields with propagator, in the free theory,〈
η1(z, z̄)η2(0)

〉= − lnzz̄.

Notice how non-unitarity is manifest in (42) as well as (43).
From the point of view of the twisted theory, the perturbation involves two fields of

weights (1,1) which should be identified withφ21 and φ15, respectively, using fusion
relations. That both fields appear is not unexpected, since thec = −2 point is a limit,
and should have the characteristics of botht-even andt-odd.

The identification of∂µη1∂µη2 with φ21 can actually be completed accurately, by
comparing the four point functions as calculated in the fermion theory and the minimal
model using the Dotsenko–Fateev general results [54]. An interesting sign subtlety appears
in that case. Indeed,∂µη1∂µη2 = ∂̄η1∂η2 + ∂η1∂̄η2, and if we call this operatorO ,〈

O(1)O(2)
〉= − 1

z2
12z̄

2
12

because of anticommutation relations. Hence,∂µη1∂µη2 should actually be identified with

iφ21. In fact, when one compares the amplitude of the perturbation in thea
(2)
2 Toda theory

and the twisted version [39], one finds that, with the usual normalizations,Λ positive
gives rise to the amplitude ofφ21 being purely imaginary, that is the coefficientΛ′ in (43)
real. The sign ofΛ′ is irrelevant, as only terms even inΛ′ will appear in the perturbative
expansions of physical quantities.

It would be very interesting to complete the identification ofφ15 with η1η2∂µη1∂µη2,
but we have not finished this calculation. Note, however, that there is little doubt this
identification is correct, as there is no other object with the right dimension and statistics
in the symplectic fermion theory. DefiningO = η1η2∂µη1∂µη2, one finds〈

O(1)O(2)
〉= 1+ (ln |z12|2)2

|z12|2 .

The massive perturbation withφ15 is obtained with a coefficient that is real and positive
nearβ2 = 2 [39]. Therefore, we expectΛ′′ in (43) to be positive. Note that the apparition of
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logarithms in the two point function of the perturbing operator makes the field theory (43)
a bit problematic. Issues of renormalizability arise, in particular, and it is probably better
to think of (43) as a sector of (42) rather than the defining theory. This is reflected in
the structure of the TBA: althoughc = −2 can formally be obtained as the UV value of
the central charge in the untwisted model, this value appears only after proper analytic
continuation of the dilogarithms. Indeed, the fugacity given to end nodes of the TBA
diagram iseiα , and ast → ∞, α ≈ tπ , it winds an infinite number of times around the
origin: in practice, following the free energy would presumably require following analytic
continuations on an infinity of different branches, a difficult task at best.

The fermions can always be rescaled to bring the action into the form

(44)S =
∫

d2x

2π
[∂µη1∂µη2 +Λη1η2∂µη1∂µη2],

where again the couplingΛ is positive. We will now see how this related to the supersigma
model.

In general, the coset spaceOSP(m/2n)/OSP(m−1/2n) has dimensions(m−1,2n) and
can be interpreted as the supersphereSm−1,2n [6]. The case of interest here ism = n = 1,
and corresponds to theS0,2 supersphere, parameterized by the coordinates

(45)x1 = 1− 1

2
η1η2, ξ1 = η1, ξ2 = η2

such thatx2
1 + ξ1ξ2 = 1. The action of the sigma model will generally be of the form

1

g

(
m∑
i=1

(∂µxi)
2 +

n∑
j=1

∂µξ2j−1∂µξ2j j

)

(our convention is that the Boltzmann weight ise−S). The beta function will be to first order
β ∝ (m − 2n− 2)g2, so for the regionm− 2n < 2 in which we are interested, the model
will be free in the UV and massive in the IR for anegative coupling constant,g = −|g|. In
theS0,2 case, this action therefore reads

(46)S = − 1

|g|
∫

d2x

[
∂µη1∂µη2 − 1

2
η1η2∂µη1∂µη2

]
.

Note that a rescaling combined with a relabeling can always bring this action into the form

(47)S =
∫

d2x

[
∂µη1∂µη2 + |g|

4π
η1η2∂µη1∂µη2

]
matching thet → ∞ limit of the a

(2)
2 theory, withΛ∝ |g|.

4. Supersphere sigma models and integrable superspin chains

The relation we uncovered betweena(2)2 andOSP(1/2) extends immediately to the case

of a(2)2n andOSP(1/2n): one can establish, for general values ofn, the relation between the
quantum affine algebras, the Bethe ansatz equations, the scattering matrices etc. We thus
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propose that theS-matrix withOSP(1/2n) symmetry, represented in (1), (3), (4) withN =
1 − 2n, and the prefactorσ+

2 , provides an analytic continuation of theO(N)/O(N − 1)
“sphere” sigma model to this value ofN .

Of course, the analytic continuation of the sigma model should be interpreted as the
cosetOSP(1/2n)/OSP(0/2n). The effective central charge of the UV limit isceff = n,
while its true central charge will bec = −2n. For the ordinary sigma models, the UV
central charge isN − 1, so the UV value in the analytic continuation just matches.

Thea(2)2n Toda theory has an interaction term of the form

e
i√
2
β(φ1−φ2) + e

i√
2
β(φ2−φ3) + · · · + e

i√
2
β(φn−1−φn) + ei

√
2βφn .

The dimension of vertex operators exp
(
i
∑

δjφj
)

is h = ∑ 1
2δ

2
j − δ0

∑
δj , whereδ0

measures the twist, and the central charge isc = n(1 − 12δ2
0). The operators in the

interaction term all haveh = 1 whenδ0 = 1/2, andβ = √
2. In that case,c = −2n, while

all the operatorse
± i√

2
(φj−φk) ande2iφj have dimensions(1,1).

The manifold relevant forOSP(1,2n) on the other hand isS0,2n, i.e., a purely
“fermionic sphere”. For instance,S0,4 can be parameterized by

x1 = 1− 1

2
(η1η2 + η3η4)− 1

4
η1η2η3η4,

(48)ξ1 = η1, ξ2 = η2, ξ3 = η3, ξ4 = η4.

The action of the sigma model is not particularly illuminating; it involves four and six
fermions couplings, and reduces to 2n symplectic fermions in the UV limit. Like in the
n= 1 case, it can be matched onto the appropriate limit of thea

(2)
2n theory.

On the other hand, it is also possible to extend the analysis of thea
(2)
2 TBA to arbitrary

value ofn, so we also know the TBA for this scattering theory, which is simply given by a
Z2 folding of thea(1)2n TBA. The TBA is represented in Fig. 7.

Notice that there aren massive particles: while forN integer positive theO(N)/

O(N−1) S-matrix has no bound states, with simplyN fundamental particles (in the vector
representation), poles do enter the physical strip forN < 2. For the valueN = 1 − 2n we
are interested in, the masses of the particles aremi ∝ sin iπ

2n+1, i = 1, . . . , n. The UV central
charge is easily checked to beceff = n. We do not know how to obtain the central charge
of the untwisted theory, as this would require a knowledge of the ‘closure’ of the TBA
diagram for twisted theories, an unsolved problem whenn > 1.

Our results have an immediate application to the study of quantum spin chains. Indeed,
the Bethe equations which appear in the solution of theOSP(1/2n) sigma models are
similar to the ones appearing in the solution of the integrableOSP(1/2n) chains studied, in
particular, by Martins and Nienhuis [20]. More detailed calculations show that these chains
are critical, and that they coincide at large distance with the weakly coupled supersphere
sigma models, that is, a system of 2n free symplectic fermions. This is in disagreement
with the conjecture in [20,37] that this continuum limit should be a WZW model on the
supergroup: although the central charge agrees with both proposals, detailed calculations
of the thermodynamics or finite size spectra show that the WZW proposal is not correct,
and confirm the sigma model proposal instead. A similar conclusion holds forOSP(m/2n)
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Fig. 7. Incidence diagram for the TBA ofOSP(1/2n) sigma models (the diagram hasn rows).

whenm−2n < 2. That the spin chain flows to the weakly coupled sigma model is certainly
related with the change of sign of the beta function whenm−2n crosses the value 2, but we
lack a detailed understanding, similar to the ones proposed in [55,56], of the mechanisms
involved.

5. The super Gross–Neveu models

5.1. Generalities

If we consider a scattering matrix defined again by (1), (3), but now with the prefactor
σ−

2 instead, it is natural to expect that it describesOSP(m/2n) Gross–Neveu models, the
analytic continuation of theO(N) GN models toO(m − 2n). Having a control on the
diagonalization ofOSP(1/2n) scattering matrices will allow us to study this scattering
theory easily, and confirm the identification for these algebras. Notice that since theO(N)

scattering matrix has no poles in the regionN < 2, the roles of the GN and sigma models
are completely exchanged in the domain of values ofN we are considering.

TheOSP(m/2n) Gross–Neveu models read

(49)

S =
∫

d2x

2π

[
m∑
i=1

ψi
L∂ψ

i
L +ψi

R∂̄ψ
i
R +

n∑
j=1

β
j

L∂γ
j

L + β
j

R∂̄γ
j

R

+ g
(
ψi
Lψ

i
R + β

j
Lγ

j
R − γ

j
Lβ

j
R

)2]
.

This theory has central chargec = m/2 − n, effective central chargeceff = m/2 + 2n.
The beta function for this model is of the formβg ∝ (m − 2n − 2)g2, the same as the
one for theO(m − 2n) GN model. Form − 2n > 2, it is thus positive, so a positive
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couplingg is marginally relevant—this is the usual massive GN model—while a negative
one is marginally irrelevant. If instead we consider the casem− 2n < 2, these results are
switched: it is a negative coupling that is marginally relevant, and makes the theory massive
in the IR.4 The casem= 1 should be described by the foregoing scattering theory.

Note that the GN model is equivalent to the appropriate WZW model with a current–
current perturbation. Indeed, the system ofm Majorana fermions andn symplectic bosons
constitutes in fact a certain representation of theOSP(m/2n) current algebra. The level
depends on the choice of normalization; it would be calledk = 1/2 in [57], k = −1/2 in
[58], k = 1 elsewhere. We adopt the latter convention here, and thus the levelk WZW
model based onOSP(m/2n) has central charge

(50)c = (m− 2n)(m− 2n− 1)k

2(m− 2n− 2+ k)
.

Particular cases areOSP(0/2n), which coincides with theSP(2n) WZW model at level
−k/2, andOSP(m/0), which coincides with theO(m) WZW model at levelk. Super-
symmetric space theorems give rise to free fields representations at levelk = 1, where
c = m−2n

2 , at levelk =m− 2n− 2, where

c = (m− 2n)(m− 2n− 1)

4
= sdimOSP(m/2n)

2
.

Notice that the representation at level−2 for OSP(2/2) described recently in [59] is a
particular case of the supersymmetric space theorem discussed in Goddard et al. [57] (for
k = −1 in their notations).

The OSP(m/2n) Gross–Neveu models present additional non-unitarity problems not
encountered in the sigma models discussed above. To tackle these problems, we first
discuss the simplest case of all.

5.2. The OSP(0/2) case

We consider the case of the GN model forN = −2, corresponding formally to
OSP(0/2), i.e., aβγ system. TheS-matrix should act on a doublet of particles, and reads,
from the general formulas

(51)Š = tan

(
π

4
+ iθ

2

)
Γ
( 1

2 + θ
2iπ

)
Γ
( 1

2 − θ
2iπ

) Γ (− θ
2iπ

)
Γ
(

θ
2iπ

)


−1 0 0 0
0 1

θ−iπ
− θ

θ−iπ
0

0 − θ
θ−iπ

1
θ−iπ

0
0 0 0 −1

 .

It turns out thatŠ = i tanh
(
θ
2 − iπ

4

)
ŠSG(β

2
SG = 8π) whereSSG is the solitonS-matrix of

the sine-Gordon model. At couplingβ2
SG = 8π , it coincides with theS-matrix of theSU(2)

invariant Thirring model, or the level 1 WZW model with a current–current perturbation.

4 In [14], the four fermion coupling is defined through combinationsψ̄−ψ+ +ψ−ψ̄+ = 2i
(
ψ1
L
ψ1
R

+ψ2
L
ψ2
R

)
,

so what is calledg there is the opposite of our convention.
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Fig. 8. Incidence diagram for the TBA describing the current–current perturbation of the (anisotropic)βγ system
(or OSP(0/2)) model.

The scattering matrix is thus the same as the one for thek = 1 SU(2) WZW model up to
a CDD factor. This CDD factor does not introduce any additional physical pole, but affects
the TBA in an essential way.

Note that theN = −2 Gross–Neveu model can also be considered as a current–current
perturbation of theSU(2) WZW model at levelk = −1/2, or theSU(1,1) model at level
k = 1/2.

To study the TBA, it is useful as in the sigma model case to consider the anisotropic

deformation, with the sine-Gordon part now corresponding to
β2

SG
8π = t−1

t
. The diagram is

represented in Fig. 8. The UV solutions have to obey the usual SG equations plus the fact
that

(52)x0 = (1+ x1)
1/2(1+ x0)

1/2.

The solution is obtained by settingxj = (j + α)2 − 1, j = 0, . . . , t − 3, xt−2 = xt−1 =
t − 3 + α, and lettingα → ∞. The contribution to the central charge in the UV is then
c1 = t , the number of nodes. The solution in the IR is obtained by discarding the first
node, and then coincides with the usual IR solution of the SG equations, withα = 1. The
contribution to the central charge is equal toc2 = t − 2, the number of nodesminus one.
The final central charge is thusc = 2, as expected for the effective central charge of theβγ

system.

The same calculation with a fugacityei±
α

t−1 givesc = 2 − 6α2

(t−1)π2 . This is because in

the UV, all thex ’s are still infinite, giving rise this time toc1 = t − 6α2

π2 , while in the IR, the

x ’s are the same as the ones for the ordinary sine-Gordon model, withc2 = t−2−6 t−2
t−1

α2

π2 .
This result requires explanations; in particular, settingα = (t − 1)π and lettingt → ∞ as
in the sigma model case givesc = −∞!

5.3. The role of zero modes

We want to consider in more details theβγ system with action

(53)S =
∫

d2x

2π
(βL∂γL + βR∂̄γR).

The propagators are

γR(z)βR(w) = −βR(z)γR(w) = 1

z−w
.
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We can ‘bosonize’ the ghosts by introducing a scalar fieldΦ = φR + φL, such
that φR(z)φR(w) = − ln(z − w). We also introduce fermionic ghostsηR(z)ξR(w) =
ξR(z)ηR(w) = 1

z−w
, and thus

γR = eφRηR, γL = e−φLηL,

(54)βR = e−φR ∂ξR, βL = eφL ∂̄ξL.

The corresponding action is then

(55)S = 1

8π

∫
d2x (∂µΦ)2 = 1

2π

∫
d2x ∂Φ∂̄Φ.

Theβγ Hamiltonian is

(56)H = 1

4π

∫
dx (βL∂xγL + βR∂xγR)

with commutators[βL(x), γL(y)] = i
4π δ(x − y), [βR(x), γR(y)] = − i

4π δ(x − y). The
U(1) current is given byJR = γRβR = ∂φR, JL = γLβL = −∂φL. The topological charge
is

(57)Q = 1

2π

∫
dx (JR − JL)= 1

2π

∫
dx ∂xΦ.

The topological charge ofγL andγR is 1, while the charge ofβL andβR is −1.
A key feature of this system is the existence of zero modes. With periodic boundary

conditions, it is indeed easy to see that[H,
∫
dx βL,R] = [H,

∫
dx γL,R] = 0. It follows

from this that, if we add to the Hamiltonian a term of the form−hQ, the system will fill up
with an infinity of zero mode particles ofβ or γ type depending on the sign ofh, sending
the ground state energy to−∞. The theory is thus unstable without a mass term. In the
current algebra language, the infinite-dimensional space associated with the zero mode
decomposes into lowest weight representations ofSU(1,1)1/2 of ‘angular momentum’
j = −1/4 andj = −3/4. The conformal weight of these states is∆ = −1/8, giving the
effective central chargeceff = 2 for ac = −1 theory indeed.

The mass term (which is actually a current–current perturbation) in theOSP(0/2) GN
model does stabilize the theory. To see how, let us add to the action a term

(58)δS = − h

2π

∫
d2x (γRβR − γLβL)+ g

8π

∫
d2x (γRβL − γLβR)

2.

The classical minima ofS + δS occur forγR = γL = c andβR = −βL = b, and, turning to
the Hamiltonian formalism, the minimum energy becomes then

(59)
1

L
Egs = − 1

2π

h2

g
.

We now recall the RG equation for the coupling constantg in (58):

(60)ġ = −2g2.
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From this, the coupling constant at scale 1/m goes likeg = 1
2 lncst/m . The constant term is

a UV cut-off, provided here by the fieldh. It follows that

(61)
1

L
Egs = − 1

π
h2 ln(h/m)

at leading order. Ifm→ 0 (g → 0), we recover the resultEgs → −∞ anticipated before.
We will comment more on the behavior of theOSP(0/2) and other GN models later.

For the moment, our goal is to explain the behavior of the central charge in the anisotropic
case obtained in the previous section. So, we now consider the case where an anisotropy is
imposed on the system by adding a coupling of the formJLJR. More explicitly, consider

(62)δA = − h

2π

∫
d2x (γRβR − γLβL)− g

8π

∫
d2x 2γRβRγLβL.

It is easy to calculate the ground state energy at leading order asg → 0, which turns out

to be finite now, even though the theory is still massless:Egs/L = − h2

πg
. Anisotropy has

stabilized the UV theory.
We can now calculate this ground state energy using theS-matrix approach. To do so,

we perturb the action by a term of the formβ2
Rγ

2
L + β2

Lγ
2
R . In the bosonized version, this

reads

e−2Φ∂̄ηLηL∂
2ξR∂ξR + e2Φ∂ηRηR∂̄

2ξL∂̄ξL.

The anisotropic term changes the kinetic term to1
8π (1− g/2)(∂µΦ)2. We can renormalize

the field so the kinetic term looks as before, and then the exponentials in the perturbation

becomee±2β̂Φ with β̂2 = 1
1+g/2. Non-local conserved currents are then obtained using

exp

(−2φ

β̂

)
∂2ξR∂ξR, exp

(
2φ

β̂

)
∂2ηRηR

of dimension∆c = 3− 2/β̂2. They lead to a quantum deformation of thea
(1)
1 algebra with

quantum parameterq = e−iπ∆c . Settingq = eiπ
t−2
t−1 , this corresponds to a thermodynamic

Bethe ansatz diagram witht nodes (including the source one), i.e., the TBA studied in the
previous section and represented in Fig. 8. The point is, we now have the correspondence
between the couplingg in the anisotropic action and the parametert in the anisotropic
TBA, with, at smallg or larget , g ≈ 1/t . To use this TBA, we finally need to establish
the correspondence between the magnetic field and the kinks fugacity: settinge±h/T =
ei±α/t−1, whereT is the temperature, givesh = T iα

t−1. Using this, the TBA resultc =
2 − 6

π
α2

t−1 does match the ground state energyEgs = − h2

πg
at leading order asg → 0.

We thus have explained the TBA results of the previous section in the light of the ground
state instability of theβγ system.

For theβγ system itself, we of course obtainc = −∞ for any non-trivial fugacity of the
kinks. This can also be understood as follows: the partition function of theβγ conformal
field theory with periodic boundary conditions is infinite because of the presence of a
bosonic zero mode [60]. On the other hand, in the periodic sector, the TBA gives a finite
result, with the central chargec = 1/2 + 2. Therefore, the TBA approach must describe
a renormalized partition function, divided by the infinite contribution of the bosonic zero
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mode. In the antiperiodic sector where there is no such zero mode, the result of this division
is to give zero, or, formally, a central charge equal to−∞. Nevertheless, the dependence of
the ground state energy onα can be predicted and checked using the TBA, which provides
another non-trivial check of theS-matrix.

5.4. The OSP(1/2n) case

We now get back to theOSP(1/2n) case. The TBA turns out to have a simple description
in terms ofa(2)2n again. Consider therefore, not theSU(2n + 1) GN model, but a related
scattering theory with only two multiplets of particles, corresponding, respectively, to the
defining representation and its conjugate. Considering more generally the case ofSU(P )

models, the relation between theSU(P ) GN scattering theory and this new theory is
similar to the relation between theO(P) GN model and theO(P)/O(P −1) sigma model
[61]. We will thus call this scattering theory ‘sigma model like’, but we are not aware of
any physical interpretation for it. The TBA equations can be written following the usual
procedure. They read

εaj

T
=

P−1∑
b=1

I
(P )
ab φP ? ln

(
1+ eεbj /T

)−
∞∑
l=1

I
(∞)
j l φP ? ln

(
1+ e−εal/T

)
, j � 2,

εa1

T
=

P−1∑
b=1

I
(P )
ab φP ? ln

(
1+ eεbj /T

)− φP ? ln
(
1+ e−εa2/T

)
(63)− (δa1 + δa,P−1)φP ? ln

(
1+ e−εa0/T

)
for the pseudoparticles, and

ε10

T
= mcoshθ

T
+

P−1∑
a=1

φ1a ? ln
(
1+ eεa1/T

)
,

(64)
εP−1,0

T
= mcoshθ

T
+

P−1∑
a=1

φP−1,a ? ln
(
1+ eεa1/T

)
.

In these equations again,φP (θ)= P

2 coshPθ
2

, φP−1,a = φ1,P−a , andφ̂1a(ω)= sinh(P−a)ω
sinhPω

.

This TBA is in fact quite similar to the one of theN = 2 supersymmetricSU(P )

Toda theory [62] (the generalization of the supersymmetric sine-Gordon model forSU(2)):
the difference affects only which nodes correspond to massive particles, and which ones
to pseudo-particles. As a result, the central charge is easily determined,c = 2P − 1.
Getting back to the particular caseP = 2n + 1, we can then fold this system to obtain
(see Appendix A for the proof) the TBA for theOSP(1/2n) Gross–Neveu model, whose
effective central charge reads thereforeceff = 1/2(2(2n+ 1)− 1)= 2n+ 1/2.

As an example, we can discuss in more details the case of theOSP(1/2) GN model
whose TBA is represented in Fig. 9. We will even consider an anisotropic generalization
of this TBA, where the diagram is truncated to the right in a way that is equivalent to what
happened in the sigma model case.
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Fig. 9. Incidence diagram for the TBA describing the anisotropic version of theOSP(1/2) GN model.

There is now a single color index, and we relabelεa,j = εj . Introducingxj = e−εj /T ,

the equations in the UV are the same as for thea
(2)
2 Toda theory, except for the first one

that reads now simply

(65)x0 = 1+ x1.

The closure equations in particular are the same as for thea
(2)
2 anisotropic model.

The solution in the case of a vanishing twist first is

xj = (j + α)(j + α + 3)

2
,

in the limit α → ∞, for j = 0, . . . , t − 3. In addition one hasxa = t−2+α
t+α

and xb =
(t−2+α)2

4(t−1+α)
. As α → ∞, all the x ’s go to infinity but xa which goes to one. As a result,

the UV contribution to the central charge isc1 = t − 1 + 3 × 1/2 = t + 1/2. In the IR,
the modification due to theσ2 factor is not seen any longer, and thex ’s obey the same
equations as for thea(2)2 case, with a contributiont − 2 to the central charge. It follows that
c = 5/2, as expected.

The twisted TBA follows from similar principles as in the sigma model case. This
time however, because ofα = ∞, the UV valuesxj are unaffected by the twisting. The
contribution to the central charge is

c = t − 1+ 1

2
+ (Lλ +Lλ−1)(xa = 1)= t + 1

2
− 3α2

π2 .

The IR values do depend onα, with formulas identical to the sigma model case, and a
contribution

c = t − 2− 3
t − 2

t − 1

α2

π2
.

The resulting central charge is

c = 5

2
− 3

α2

(t − 1)π2 .

The dependence onα is similar to what we observed in theOSP(0,2) case, for similar
reasons. The factor 3 in this formula, as opposed to the factor 6 in theOSP(0,2) case, has
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its origin in the different relations between the physical anisotropy and the parametert in
the TBA: in theOSP(1/2) case,g ≈ 1

2t .

6. Finite field calculations

To give further evidence for ourS matrices, we now present some finite field
calculations. The idea, which has been worked out in great details in other cases [63], is to
compareS-matrix and perturbative calculations for the ground state energy of the theory
in the presence of an external field. TheS-matrix calculations are considerably simpler
than the TBA ones because, for a proper choice of charge coupling to the external field
the ground state fills up with only one type of particles, with diagonal scattering, and the
Wiener–Hopf method can be used to solve the integral equations analytically.

TheS-matrix calculations are very close to the ones already performed for theO(N)

sigma model and theO(N) Gross–Neveu models. In fact, in the regionm − 2n � 2,
the calculations are identical, since theS-matrix elements are obtained by continuation
N ≡ m − 2n, and, in the domainm − 2n � 2, the integral representations are obtained
by the same continuation as well. For these cases, one thus immediately checks that the
continuation of theS-matrix toN = m − 2n matches the beta functions of the sigma or
Gross–Neveu models, which are, too, obtained by this continuation.

Things are more interesting in the casem− 2n < 0, in particular, to which we turn now.
We consider first theOSP sigma model, withS matrices determined byσ+. If we couple
the external field to a charge of the form

(66)Q ∝
∫
(x1∂t x2 − x2∂t x1) dx

the ground state fills up with bosonic particles of the form|1〉 + i|2〉, with diagonal
scatterings = σ+

2 + σ+
3 (θ). If meanwhile we couple the external field to a charge of the

form

(67)Q ∝
∫
(ξ1∂t ξ2 + ξ2∂tξ1) dx

the ground state fills up with fermionic particles of the form|1〉 + |2〉, with diagonal
scatterings = σ+

2 − σ+
3 .

Let us consider this latter case. Using formulas given in the first section, one finds

(68)σ+
2 − σ+

3 = Γ (1+ x)

Γ (1− x)

Γ (1/2− x)

Γ (1/2+ x)

Γ (1/2+∆+ x)

Γ (1/2+∆− x)

Γ (1+∆− x)

Γ (1+∆+ x)
,

wherex = iθ
2π and∆= 1

N−2. This turns out to coincide with

(69)σ−
2 + σ−

3 = Γ (1+ x)

Γ (1− x)

Γ (1/2− x)

Γ (1/2+ x)

Γ (1/2−∆+ x)

Γ (1/2−∆− x)

Γ (1−∆− x)

Γ (1−∆+ x)

after a continuation∆→ −∆. Similarly,

(70)σ−
2 − σ−

3 = Γ (1+ x)

Γ (1− x)

Γ (1/2− x)

Γ (1/2+ x)

Γ (1/2−∆+ x)

Γ (1/2−∆− x)

Γ (−∆− x)

Γ (−∆+ x)
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does coincide with

(71)σ+
2 + σ+

3 = Γ (1+ x)

Γ (1− x)

Γ (1/2− x)

Γ (1/2+ x)

Γ (1/2+∆+ x)

Γ (1/2+∆− x)

Γ (∆− x)

Γ (∆+ x)

after the same continuation.
This means that, in a TBA calculation, the ground state energy of theOSP(m/2n) sigma

model coupled to a fermionic charge follows from known calculations about theO(N)

Gross–Neveu model after formally settingN = m − 2n and performing a continuation
N − 2→ 2−N . From expressions in [63] we find therefore, form− 2n < 0

(72)

E(h)−E(0)= − h2

2π

[
1+ 1

N − 2

1

ln(h/m)
−
(

1

N − 2

)2 ln ln(h/m)

ln2(h/m)

+ 1

N − 2

CN

ln2(h/m)
+O

(
ln ln(h/m)

ln3(h/m)

)]
with

CN = lnΓ

(
1+ 1

N − 2

)
−
(

1− 1

N − 2

)
ln2+ 1,

andN =m−2n. From this we deduce [64] the ratio of the first two coefficients of the beta
function asβ2/β

2
1 = 1

N−2 .
Similarly, from TBA calculations, the ground state energy of theOSP(m/2n) Gross–

Neveu model follows from known calculations about theO(N) sphere sigma model after
formally settingN = m − 2n and performing a continuationN − 2 → 2 − N . From
expressions in [63] we find therefore form− 2n < 2

E(h)−E(0)

(73)= (N − 2)
h2

4π

[
ln(h/m)− 1

N − 2
ln ln(h/m)+DN +O

(
ln ln(h/m)

ln(h/m)

)]
,

where

DN = − 3

N − 2
ln2−

(
1

2
+ 1

N − 2

)
− lnΓ

(
1− 1

N − 2

)
.

From this we deduce the ratioβ2/β
2
1 = − 1

N−2. Observe that the leading term follows
from the calculations for theβγ system described in the previous section; all that
has to be changed is the beta function for the couplingg in (59), resulting inEgs =
−N−2

4π h2 ln(h/m) indeed. Remarkably, it is the ground state of the Gross–Neveu model
that has a leadingh2 ln(h/m) dependence, while the ground state of the sigma model has
a leading pureh2 dependence: the roles of Gross–Neveu and sigma model are therefore
switched compared to the usualO(N) situation.

The calculation with a coupling to the first kind of charge (66) form − 2n < 2 or the
second type of charge (67) form−2n > 2 poses difficulties, as the kernel does not factorize
in the usual way then, so the Wiener–Hopf method does not seem applicable.
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Now recall that for the usualO(N) sphere sigma model,β2/β
2
1 = 1

N−2, and for the

usualO(N) Gross–Neveu model,β2/β
2
1 = −1

N−2. The ratios we found are thus the analytic

continuations toN → m− 2n, as desired.5

7. Conclusions and speculations

To conclude, although more verifications ought to be carried out to complete our
identifications, we believe we have determined the scattering matrices for the massive
regimes of theOSP(m/2n) GN and theOSP(m/2n)/OSP(m − 1/2n) sigma models in
the simple casem= 1, based on algebraic considerations as well as thermodynamic Bethe
ansatz calculations.

It is tempting to expect that at least some of our results generalize to other cases
OSP(m/2n) for m > 1 andm − 2n < 2. In all these cases, we expect that theS-matrix
of the sphere sigma model will be obtained from the conjecture at the beginning of this
paper, withN = m − 2n, for N < 2. TheS-matrix of the GN model is probably more
complicated. Recall that in the caseN � 2, it is given by the general conjecture only for
N > 4. WhenN � 2, we think it is probably given by the conjecture only forN < 0.

Observe now that for the usualO(N) case, the factorsσ+
2 andσ−

2 do not exhibit poles
and are equal forN = 3,4. For these values, the (unique)S-matrix based on the general
conjecture (1) describes correctly the sigma model. As for the Gross–Neveu model, its
description is more subtle: it turns out that the vector particles are actually unstable, and
that the spectrum is made of kinks only.

In the caseN < 2 of interest here, the factorsσ+
2 andσ−

2 similarly do not exhibit poles
and are equal forN = 1,0. These cases would correspond for instance toOSP(3/2) and
OSP(2/2), respectively. It is very likely that there again, theS matrices describe the sigma
model, and not the Gross–Neveu model, for which the proper particle content has still to
be identified.

TheOSP(2/2) case is particularly intriguing. TheS1,2 sphere can be parameterized by

x1 = cosφ

(
1− 1

2
η1η2

)
, x2 = sinφ

(
1− 1

2
η1η2

)
,

(74)ξ1 = η1, ξ2 = η2.

The action of the sigma model now reads

(75)S = − 1

|g|
∫

d2x
[
(∂µΦ)2(1− η1η2)+ ∂µη1∂µη2 − η1η2∂µη1∂µη2

]
,

whereΦ is compactified,Φ ≡ Φmod2π . A rescaling and a relabeling brings it into the
form

(76)S =
∫

d2x
[−(∂µΦ)2(1+ |g|η1η2)+ ∂µη1∂µη2 + |g|η1η2∂µη1∂µη2

]
5 The existence of different sectors in theOSP(m/2n) models does not spoil this conclusion, as the beta

functions are only trivially affected by the twists.
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with now Φ ≡ Φmod 2π√|g| . We see, in particular, that in the limitg → 0, the action is

simply the one of a free uncompactified boson and a free fermion, of total central charge
c = −1, and that the boson has anegative coupling: this system therefore coincides with
the standard “bosonization” of theβγ system in the limit|g| → 0!

Notice that as soon asm> 1, the negative sign of the bosons coupling forOSP(m/2n)
sigma models will have to be handled carefully; presumably theOSP(2/2), βγ example
will provide a good example of how to do this.

Finally, we discuss the boundary valueN = 2, which exhibits some exceptional
features. Indeed, from the integrable point of view, the solution of the Yang–Baxter
equation (combined with crossing and unitarity) based on the genericS-matrix is not
unique forN = 2 (in contrast with the other values ofN ) but admits one continuous
parameterγ . This solution is close to the sine-Gordon solution, and is related to it by

(77)S = σ2 + σ3, ST = σ1 + σ2, SR = σ1 + σ3,

whereS,ST , SR are the usual sine-Gordon amplitudes

ST = −i
sinh(8πθ/γ )

sin(8π2/γ )
, S = −i

sinh(8π(iπ − θ)/γ )

sin(8π2/γ )
SR,

(78)SR = 1

π
sin(8π2/γ )U(θ)

andU(θ) is given, e.g., in [65].
In the case ofO(2), the existence of this parameter corresponds to the fact that the

O(2)/O(1) sigma model, or theO(2) GN model are actually massless critical theories,
the couplingg being exactly marginal. TheS-matrices then provide a massless description
of these theories. Sinceσ+

2 = σ−
2 , theO(2)/O(1) sigma model and theO(2) GN model

coincide; their identity follows from bosonization of the massless Thirring model into the
Gaussian model. The free parameter in theS-matrices is related with the coupling constant
in either version of the model. (Note that theS-matrices can also be used to describe some
massive perturbations. These, however, give rise to different type of models than the ones
we are interested in, like the massive Thirring model.)

It seems very likely that similar things occur forOSP(2n+ 2/2n) models as well. The
identity of the sigma model and the GN model in that case is not obvious, but one can at
least check using our general formulas that the central charge and the effective central
charge do match,ceff = 3n + 1, c = 1. There are on the other hand strong arguments
showing that the beta function is exactly zero [35], so these models should have a line
of fixed points indeed [10], in agreement with theS-matrix prediction.

Besides completing the identifications we have sketched here, the most pressing
questions that come to mind are: what are theS-matrices of the Gross–Neveu models for
non-generic values ofN , what are theS-matrices for the multiflavour GN models, what
are theS-matrices for the orthosymplectic Principal Chiral Models? We hope to report
some answers to these questions soon. As a final related remark, recall [66] that there is an
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embedding6

(79)OSP(1/2)−2k ≈ SU(2)k × OSP(1/2)−2k

SU(2)k
and that the branching functions of the latter part define a Virasoro minimal model, with

cosp = 2k

2k + 3
, csu(2) = 3k

k + 2
,

(80)cvirasoro= 1− 6
(k + 1)2

(k + 2)(2k + 3)
.

For k an integer, the situation is especially interesting. The Virasoro models which appear
there havep = 2k + 3, q = k + 2; they are non-unitary, and their effective central charge
is ceff = 1− 6

(k+2)(2k+3) . These models can thus be considered asUOSP/SU coset models.

Their perturbation by the operatorφ21 with dimensionh = 1 − 3
4(k+2) coincides with the

RSOS models defined in Section 3 as truncations of thea
(2)
2 theories witht = 2k + 4. We

thus see that the supersphere sigma model appears as the limitk → ∞ of a series of coset
models [61], just like the ordinary sphere sigma model say appears as the limit of a series
of parafermion theories, this time ofSU(2)/U(1) type. There are many other interesting
aspects ofOSP coset models in relation with the present paper which we also plan to
discuss elsewhere.
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Appendix A. Folding the SU(P ) TBAs

The quantization equations for theSU(P ) GN model have been written for instance
in [17]:

2πPa0 =ma coshβ +
P−1∑
b=1

Y
(P )
ab ? ρb0 −

∞∑
j=1

σ
(∞)
j ? ρ̃aj , a = 1, . . . ,P − 1,

(A.1)2πρaj = σ
(∞)
j ? ρa0 −

P−1∑
b=1

∞∑
l=1

A
(∞)
j l ? K

(P)
ab ? ρ̃bl .

6 The level−2k in this formula stems from our conventions; it would bek if it were defined with respect to
the subSU(2).
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Using Fourier transform:̂f (ω)= ∫∞
−∞

dω
2π e

P iωβ/πf (β), one then has

(A.2)Ŷ
(P )
ab = δab − e|ω| sinh((P − a)ω)sinh(bω)

sinh(Pω)sinh(ω)
, a � b

with Ŷab = Ŷba . The Y (P ) kernels are logarithmic derivatives of the scattering matrix
between top components in each of the fundamental representations. The group structure
is encoded in the densitiesρ of (massless) pseudoparticles, which appear in the solution of
the auxiliary Bethe system diagonalizing the monodromy matrix.

We now setP = 2n+ 1. The folded equations then read

2πPa0 =ma coshβ +
n∑

b=1

(
Y
(2n+1)
ab + Y

(2n+1)
a,2n+1−b

)
? ρb0

−
∞∑
j=1

σ
(∞)
j ? ρ̃aj , a = 1, . . . , n,

(A.3)2πρaj = σ
(∞)
j ? ρa0 −

n∑
b=1

∞∑
l=1

A
(∞)
j l ?

(
K

(2n+1)
ab +K

(2n+1)
a,2n+1−b

)
? ρ̃bl .

For instance,

Y
(2n+1)
11 + Y

(2n+1)
1,2n = −e(−n+1/2)|ω| sinh|ω|

cosh(n+ 1/2)|ω| .

It is easy to check that the corresponding kernel coincides withσ+
3 − σ+

2 for N = 1− 2n,

and with the correspondingS-matrix element in thea(2)2n scattering theory [67]. The
couplings between pseudoparticles can also be checked to arise from the structure of
solutions of thea(2)2n Bethe equations, generalizing thea(2)2 case.

The ‘sigma model like’ equations forSU(P ) are based on a hypothetical scattering
theory with physical particles in the vector representation and its conjugate only. They
read

2πP10 =mcoshβ +Z
(P)
11 ? ρ10 +Z

(P)
1,P−1 ? ρP−1,0 −

∞∑
j=1

σ
(∞)
j ? ρ̃1j ,

2πPP−1,0 =mcoshβ +Z
(P)
1,P−1 ? ρ10 +Z

(P)
P−1,P−1 ? ρP−1,0 −

∞∑
j=1

σ
(∞)
j ? ρ̃P−1,j ,

(A.4)2πρaj = σ
(∞)
j (δa1 + δa,P−1) ? ρa0 −

P−1∑
b=1

∞∑
l=1

A
(∞)
j l K

(P )
ab ? ?ρ̃bl,

where

Ẑ
(P )
11 = Ẑ

(P )
P−1,P−1 = e−|ω| sinh((P − 1)ω)

sinh(Pω)

and

Ẑ
(P )
1,P−1 = Ẑ

(P )
P−1,1 = e−|ω| sinh(ω)

sinh(Pω)
.
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The kernelZ(P)
11 is the logarithmic derivative of what is calledFVV

min in [17], 1
i

d
dβ

lnFVV
min (β)

=Z
(P)
11 . Setting againP = 2n+ 1 and folding gives now

2πP10 =mcoshβ + (
Z
(P)
11 +Z

(P)
1,P−1

)
? ρ1,0 −

∞∑
j=1

σ
(∞)
j ? ρ̃1j ,

(A.5)2πρaj = σ
(∞)
j δa1 ? ρa0 −

n∑
b=1

∞∑
l=1

A
(∞)
j l ?

(
K

(2n+1)
ab +K

(2n+1)
a,2n+1−b

)
? ρ̃bl .

The kernel

Ẑ
(2n+1)
11 + Ẑ

(2n+1)
1,2n = sinh(2nω)+ sinhω

sinh(2n+ 1)ω
e−|ω|.

It differs from the previous kernel

Ŷ
(2n+1)

11 + Ŷ
(2n+1)

1,2n by − cosh2n−3
2 ω

cosh2n+1
2 ω

,

which coincides with the Fourier transform of the ratio
σ+

2
σ−

2
for N = 1− 2n.

Some integral representations to finish (used in the domainN � 0)

(A.6)lnσ−
2 =

∞∫
0

(
ei(2−N)βω/π + e−(2−N)ωe−(2−N)iωβ/π

) e−2ω − 1

e−(2−N)ω + 1

dω

ω

and

(A.7)ln
σ+

2

σ−
2

=
∞∫

−∞
ei(2−N)βω/π

coshN+2
2 ω

coshN−2
2 ω

dω

ω
,

where

σ+
2 = sinhθ − i sin 2π

N−2

sinhθ + i sin 2π
N−2

σ−
2 .
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