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Abstract

We conjecture the factorized scattering descriptiond8P(m /2n)/OSP(m — 1/2n) supersphere
sigma models an®SP(m/2n) Gross—Neveu models. The non-unitarity of these field theories
translates into a lack of ‘physical unitarity’ of ttfematrices, which are instead unitary with respect
to the non-positive scalar product inherited from the orthosymplectic structure. Nevertheless, we
find that formal thermodynamic Bethe ansatz calculations appear meaningful, reproduce the correct
central charges, and agree with perturbative calculations. This paves the way to a more thorough
study of these and other models with supergroup symmetries usirfrirarix approacht 2002
Elsevier Science B.V. All rights reserved.

PACS 11.10.-z; 11.55.Ds

1. Introduction

The field theory approach to phase transitions in disordered systems has realized
major progress over the last few years, thanks to an ever deeper understanding of two-
dimensional field theories. Conformal invariance, combined with elegant reformulations
using supersymmetry [1-3], and a greater control of non-unitarity issues [4—6], now
severely constrains the possible fixed points [7,8]. In some simple cases, perturbed
conformal field theory, combined with the use of current algebra symmetries, has even
led to complete solutions [5,9]. Some of the models of interest in the context of disordered
systems have also appeared independently in string theory [10,11], and more progress can
only be expected from the cross fertilization between these two areas.
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Remarkably, the chief non-perturbative method, the integrable approach, has not been
pushed very far to study these models. This is a priori surprising. For instance, several
disordered problems involve variants of tlaSP(m/2n) Gross—Neveu model, which
formally appears just as integrable as its well kno@aN) counterpart. The standard
way of proceeding to study such a model would be to determing-itsatrix, and then
use the thermodynamic Bethe ansatz and form-factors to calculate physical properties.
This approach was pioneered in the elegant papers [12,13], and revived in [14], but so far
the subject was only touched upon in our opinion; for instance, althougi-thatrix of
the OSP(2/2) Gross—Neveu model has been conjectured [14], no calculation to justify this
conjecture has been possible. Super sigma models have also been tackled, this time in the
context of string theory [15], but there again results have only been very partial, and the
S-matrix approach even less developed than for super Gross—Neveu models.

The main reasons for this unsatisfactory situation seem technical. While there has
been tremendous progress in the understanding of the sine-Gordon model anBihe
sigma models—the archetypes of integrable field theories—models based on other Lie
algebras are only partially understood (see [16,17] for some recent progress), and the
situation becomes even more confusing when it comes to superalgebras. One of the main
difficulties in understanding these theories is physical, and related with a general lack of
unitarity—a feature that is natural from the disordered condensed matter point of view,
but confusing at best from a field theory stand point. Another difficulty is simply the
complexity of the Bethe ansatz for higher rank algebras, in particular, superalgebras. While
these equations can be written sometimes (see the recent tour de force [18]), finding the
pattern of solutions—the generalized string hypothesis—is a daunting task even for the
trained expert [19].

Integrable field theories and lattice models go hand in hand, and the foregoing confusion
seems to extend to spin chains based on superalgebras. Although the formalism is by
now well in place to write the integrable Hamiltonians, their continuum limit is not well
understood. In the case of ordinary algebras for instance, it is known that this continuum
limit is a Wess—Zumino model on the group: whether this is true or not for superalgebras
has been a matter of some debate [20]. Note that in some cases, the super spin chain is
better understood than the field theory: this is the case for instance sf(#/&) spin
chain of [21,22] in the spin quantum Hall effect, whose relation to the traditional (super)
Yang—Baxter formalism is also not understood at the present time.

Our purpose in this paper is to develop the integrable approach for the case of
OSP(m/2n) field theories. We will discuss two kinds of models, the supersphere sigma
models, and the Gross—Neveu models, mostly for algeb8%1/2n). In each case, we
will conjecture a scattering theory, whose striking feature will be the lack of unitarity
of the § matrices, as a result of the supergroup symmetry. We will argue that formal
thermodynamical calculations do make sense nevertheless, and illustrate this point for both
types of models.
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2. Algebraic generalities

There are two basic integrable models withiN) symmetry, the Gross—Neveu model
and the sphere sigma mod®~1 = O(N)/O(N — 1). Once their integrability is proven,
the scattering theory is determined by implementing the action of the symmetry on the
space of particles, and by requiring factorization. This is not always an obvious task,
because of issues of bound states and charge fractionalization. For instance, the scattering
theory for theO (2P + 1) Gross—Neveu model was completed only very recently [23].
However, the scattering of particles in the defining representation has been known for a
long time [24], and this is where we would like to start here.

Scattering matrices wittD (N) symmetry can generally be written in terms of three
independent tensors

2i2
Sljljl =01E 4+ 02P +o03l, (2)
where we have set
J2i2 2]2 J2i2 i2¢J2 J2i2 J2gi1
Elljl 8’1/18 Plljl - 8118J1 Ill]l - 811 812 )

corresponding to the graphical representation in Fig. 1.

We are interested here in models for which none of the amplitudes vanish. Specifically,
for N a positive integer, there are generically two known models whose scattering matrix
for the vector representation has the form (1), with none ofoffeevanishing. They are
given by

2im _ 2im
N—2G7-6°2> BT N=20
with two possible choices far,:

01=—

02 ©))
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The faCtOI’02+ does not have poles in the phyS|caI strip f0> 0, and the corresponding
S-matrix for N > 3 is believed to describe thé (N)/O(N — 1) sphere §V~1) sigma
model. The factor, does not have poles in the physical strip for< 4. For N > 4, it
describes the scattering of vector particlednV) Gross—Neveu model. Recall that for
N = 3, 4 the vector particles are unstable and disappear from the spectrum, that contains
only kinks. Some of these features are illustrated for convenience in Fig. 2.

Note that at vanishing rapidity, the scattering matrix reduce&#o= 0) = 1. This is
in agreement with the fundamental particles being bosons in the sigma model, and fermions
in the Gross—Neveu model [25].

il ’ U
= o +0 +0
1 ) < 2>< 3 /—\
j1 i2

Fig. 1. Graphical representation of the invariant tensors appearing rminatrix.
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region where G; has no poles

region where 0'2 has no poles

Fig. 2. Pole structure af, as a function ofV.

Our next step is to try to define models for whish< 1, in particularN = 0, or N
negative. A similar question has been tackled by Zamolodchikov [26] under the condition
that particles be “impenetrable”, that 4g = 0. The (standard) procedure he used was
to study the algebraic relations satisfied by the objétt$ for integer N, extend these
relations to arbitraryV, and find objects (not necessariy x N matrices) satisfying
them. In technical terms, the algebraic relations turned out to be the defining ones for
the Temperley-Lieb algebra [27], for which plenty of representations were known. The
most interestingV = 0 case (corresponding to polymers) could then be studied using the
6-vertex model representation. It could also be studied using alg€ls$Ra&n /2n), or
algebrascL(n/n).

In trying to address the same question for models whare: 0, it is natural to
set up the problem in algebraic terms again. The obj&Gt8, I can be understood as
providing a particular representation of the following Birman—Wenzl| [28] algebra, defined
by generator€;, P;,i =1, ... and relations

PiPit1P; = Pis1PiPix1,  PP=1,

[P, Pj1=0, [i—jl>2, )
together with

EiEi1Ei=E.  E}=NE;,

[Ei, Ej1=0, [|i—jl=2, (6)

and
PE;=E; P, =E;,
EiPit1P; =P PEi+1=E;E;i1]. (7)

These relations can be interpreted graphically as in Fig. 3; operatatsfine a sub-
Temperley—Lieb algebra [27].

The natural extension of what was done say for polymers would be to look for vertex
representations of the Birman—Wenzl| algebra. However, this does not seem possible. The
point is that the full Birman—Wenzl algebra has two parameters, and the representation
furnished say by the spin one vertex model will have, for instance, Rhat Pl._l. This
is a property natural from the knot theory framework where this algebra comes from, but
disastrous for the construction of physidamatrices, where particles cannot “go under”
another. Extending the definition of th&matrix to arbitrary values ofV thus seems
problematic.
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Fig. 3. Graphical representation for the defining relations of the BW algebra.

It is easy nevertheless to extend it to negative integer valuas bfdeed, the Birman—
Wenzl algebras arise from representation theorpoiV), and most of the properties of
these algebras generalize to the superalge®@&(m/2n) [29]. Instead of the vector
representation oD (N), take the vector representation of the orthosymplectic algebra,
of dimensions(m, 2n). For m # 2n, the tensor product with itself gives rise to three
representations. Takingas the identityE as(m — 2n) times the projector on the identity
representation, anfl as the graded permutation operator (the extension to theicasen
is easy), it can be checked indeed that the relations (5)—(7) are obeyedy withh — 2n.
More explicitly, in the usual case, the matrix elementstoére obtained by contracting
the ingoing and outgoing indices using the unit matrix. In@& case, they are obtained
similarly by contracting indices using the defining form of B8P algebras

I, 0 0
J= ( 0 0 —1n>. @®
o I, O
In formulas, we sel =i,i =1,...,m,i=n+ii=m+1,...,m+n,i=i We set
x@=Li=m+1....m+n, x@)=0otherwise, sp(i) = x(i) +x(). One has then
J2iz o _ gip, (iD) (i)
Eiljl - 8!'1,/'18[2 (=1 (=12 9)

while the graded permutation operator is of course given by
i 1 i1) oi2 o J

plfjlz — (_1)17(!1)17(11)3[5355. (10)
This realization of Birman—Wenzl algebras was first mentioned in the very interesting
paper [20]. It thus follows that the natural orthosymplectic generalization of tmatrix
of the O(N) Gross—Neveu model (or sphere sigma model) does provide a solution of the
Yang—Baxter equation, and realizes algebraically the continuation to valuégqtial to
zero or negative integers. Let us now discuss how meaningful this can be physically.

For this, let us recall some basic features about Yang—Baxter versus graded Yang—
Baxter. In all cases, the Yang—Baxter formalism deals with two related objects that are
usually calledr, Rina general contexf, S in the context of scattering theory, and differ
by some (graded) permutations.

In the ordinary case, we reserve the unchecked symbol to the matrix obeying

Ri2(u — v) R13(u) R23(v) = Ro3(v) R13(u) R1o(u — v),
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whereu, v are spectral parameters. The equivalent of this relation for the superalgebra case
is the graded Yang—Baxter equation, and it involves signs [30]:

klkz( _ v)leks( )R/2/3 (v)(_1)p(il)p(iz)+p(k1)p(k3)+p(k2)p(k3)

1112 kyi3 koks
kok: k 1 ] [ k: k k
— Rl;:(v)RkaJ;(”)Rﬁﬁ(” _ v)(_l)P(lz)[’(ls)+P(11)[7( 3)+p (k1) p( 2)7 (11)

where p(k) = 1,0 is the parity of thek coordinate. These signs occur because, in the
graded tensor product formalisn®i3 acts on the first and third components, hence
giving rise to potential minus signs when commuting through the elements of the second
component. An ordinary (supefj-matrix does not solve the graded (ordinary) Yang—
Baxter equation. However, iR does solve the graded Yang—Baxter equation, the object
R"l (— 1)P(f>P(f>R"’ solves then the ordinary Yang—Baxter equation, so it is easy to go
from one point of view to the other.

In the ordinary case, one can also consider the obfeet PR, P the permutation
operator: this is what we gave in formula (1) for the cAsa positive integer. It satisfies a
different relation,R12(u — v) Rog(u) R12(v) = Ro3(v) R12(u) Ro3(u — v). Observe that this
relation now involves only neighboring spaces in the tensor product, and thus is insensitive
to grading. If R were to solve the graded Yang—Baxter equations instead, the same
relation would be obeyed by the matik= PR, where nowP is the graded permutation
operator. Whether satisfies the ordinary or the graded Yang-Baxter equation, it follows
that matrlcesR do satisfy the same equation. Conversely, a solutioR pfRo3R12 =
Ro3R12R»3 can be interpreted as arising from a graded or a non-graded structure. The
graded Yang—Baxter equation appears more as an aesthetically appealing object than a
fundamental one. It is especially nice because it admits a classical limit, and fits in the
general formalism of quantum supergroups [31].

In the context of scattering theories, which are our main interest here, it is convenient
to define theS-matrix through the Fadeev—Zamolodchikov algebra [32]. Theories based
on supergroups will have a spectrum of particles containing both bosons and fermions.
Their creation and annihilation operators will be deno#®d, and obey for instance
A (91)2 (02) = (~1)POr(DsH (g, — 62)Z; (62)Z] (61). The consistency of these relations
requires thaS satisfies the graded Yang—Baxter equation, or, equwalentIyStbatlsfles
the ordinary Yang—Baxter equation. Amplitudes of physical processes are then derived
in the usual way. An important feature is that the monodromy matrix, which describes
scattering of a particle through others, is built outSofike in the non-graded case (the
same thing happens for integrable lattice models [31]).

Taking therefore ouOSP S-matrix, and theS-matrix that follows from it,S = o1 E +
o2l + 03P, itis natural to ask about the physical meaning of these amplitudes. This reveals
some surprises. Crossing and unitarity are well implemented in the cases when the particles
are bosons or fermions. Mixing the two kinds does not seem, a priori, to give rise to any
difficulty. For instance the relatiofi(9)S(—6) = 5(0)§(—9) = I holds in the graded case
with proper choice of normalization factors. It will turn out however that in the graded case,
the S-matrix is, as a matrixpot unitary.! It is thus difficult to interpret ous-matrices

1 This is a stronger violation of unitarity than in cases like the Lee—Yang singularity, wigre= 1 still
holds, but unphysical signs appearSirmatrix residues. For a thorough discussion of unitarity issues see [33].
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in terms of a ‘physical’ scattering. The most useful way to think of Sheatrices will
probably be as an object describing the monodromy of wave functions, like in imaginary
Todatheories [16,34]. Crossing follows then frélti —0) = 01(0)I +02(0) P +03(0)E,
with an obvious graphical interpretation, and charge conjugation being defined through the
defining form of theOSP algebra.

Leaving aside the unitary difficulty, the usual formal procedure thus selects once again
the 1‘actor372ﬂE as minimal prefactors, with the continued valwés= m — 2n. The question
is then to establish the relation what field theory, if any.

Obvious candidates are tf@SP(m/2n) Gross—Neveu model with action (in all this
paper, normal ordering is left implicit)

d?x | <. . o . . .
S=/§[Zlﬁialﬁi+l/f}eal/f}e+2ﬁiaﬁ+/91]e83’1je
i=1 j=1

oW+ By —ygﬂ;ﬂ, w2

where they are Majorana fermions of conformal weight2, and thegy are bosonic
ghosts of weight 12 as well. Perturbative calculations of the beta function [3,35] suggest
that this model behaves like the continuation of th@V) Gross—Neveu model to the value

N = m — 2n. Similarly, the natural generalization of the sphere sigma model is a super
sphere sigma model, which can be described as the @3&in /2n)/OSP(m — 1/2n).

There again, perturbative beta functions do match. It is therefore natural to expect that the
S-matrices built onOSP(m /2n) will describe, depending on the prefactt?j, these two
models in the appropriate physical regimes. This will be discussed in the next section.

3. The OSP(1/2) sigma modelS-matrix
3.1. The S-matrix

To make things more concrete, let us discuss the dase—1, and its realization using
0OSP(1/2). Instead of the Gross—Neveu model, it will turn out to be easier to study the
equivalent of the sigma model, because of its relation Withagzl)eToda theory and spin
chain.

The solution of the graded Yang—Baxter equation relevant here is the well known
0OSP(1/2) one, given by

R S A I > (13)
OFAB T 3 2in im—0 |

where we have chosen the normalization factor for later purpdsés,the identity.
Denote the basis vectors in the fundamental representatiosi®fl/2) asb, f1, f». The
operatorE is given by the matrix

1 -1 1
E= ( 1 -1 1 ) (14)
-1 1 -1
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in the subspace spanned &y b), (f1, f2), (f2, f1) in that order,E = 0 otherwise. In that
same subspace, the graded permutation operator reads

1 0 O

P= (0 0 —1) . (15)
0 -1 O

The operatorsE, P satisfy the defining relations of the Birman—-Wenzl algebra with

N=-1.
The non-graded matrix meanwhile reads

. 360 0
Rosp(1/2) = [1 +-——P+- E] (16)

1-3,42

Let us now discuss the issue of unitarity. Whité9) R(—6) = R(9)R(—6) = 1, R, R,
and R as matrices, are unitary only with respect to an indefinite metric induced by the
supergroup structure. Explicitly, one has for instance

RORSY? — R — REP RSP =1 (7
and in factR conserves a scalar product that allows for negative norm square states
(ff1ff) = —1, all others equal te+1. It is well-known indeed [36] that the structure
of OSP(1/2) is not compatible with a positive scalar product. The mere presence of
supergroup symmetry leads necessarily to the existence of negative norm-square states,
and therefore to unitarity problems.

The resulting scattering matrix is therefore non-unitary, in the usual sense. This is a
consequence of the orthosymplectic supergroup symmetry, and originates physically in the
non-unitarity of the field theory described by thematrix. This does not prevent one from
using theS-matrix at least to describe the monodromy of the wave functions, as we will
do in the section devoted to TBA. Similarly, thfsmatrix could also be used to describe
aspects of the finite size spectrum [33,34]. _

An intriguing remark is that, although the matiixis not unitary, its eigenvalues happen
to be complex numbers of modulus one (the same hol@ fandR),2 and there are reasons
to believe that this is true for the eigenvalues of the monodromy matrices involving an
arbitrary number of particles. This means that the non-unitarity situation is not as stringent
as say in thezél) case [16], and that, for instance, the spectrum of the theory in finite size
will be real.

Let us now consider the ‘scattering’ theory that is the continuation of the sphere sigma
model toN = —1: we take theOSP(1/2) realization, and as a prefact@j. It then turns
out that theS-matrix is identical to the one of the(zz) Toda theory for a particular value of
the coupling constant! This will allow us to explicitly perform the TBA, and identify the
scattering theory indeed. While we were carrying out these calculations, we found out two
papers where the idea has been carried out to some extent already: one by Martins [37],
and one by Sakai and Tsuboi [38]. Our approach has little overlap with these papers, and
stems from our earlier work on thél) theory instead.

2 We thank G. Takacs for suggesting this may be the case.
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To proceed, we now discuss thg) Toda theory in more details.

3.2. Adetour through a:(zz)
This theory has action
1 i .
S= 8—/dx dy [(axcp)z + 0,02+ A2 27 e’ﬁﬁ"’)]. (18)
T

The conformal weight of the first field is\1 = 2/4, while the one of the second is
2ho+4h
Az = B2. The dimension ofA is such thaf A]3L~2"2=%1 = =6 so[A] = L2L =2y

ie.,[A]l= Lﬁ2*2, and the “effective” dimension (i.e., twice the conformal weight) of the
perturbation is/ = 2.

The domain we shall be interested in primarily correspondg4o> 1. We will
parameterize

pZ=2—— (19)

SOh1 = ’372 = % [A]= L% The casg = 2 corresponds ta; = 1/4, and the limit
t—>ootoh;=1/2.

The massless or massive nature of the theory depends on the siganafon the value
of B2 [39]. For 82 < 1, the theory is massive fot < 0, but for the region we are interested
in, A > 0 is required, and we will restrict to this in the following.

In the r € [2,00] domain, the scattering matrix has been first conjectured by
Smirnov [40]. The spectrum does not contain any bound states, and is simply made

of solitons with topological charge&l, 0 (where the topological charge is defined as

q= —2\/%”/3 [ 9x¢). The relation between the mass of the solitons and the coupling constant
reads [39]
s__ 1 r*B2/4 71 (%) [ M T'(2/32-B?) ]3(2—/32)

(20)
Near g2 = 2, which will turn out to be the point wittDSP(1/2) symmetry, setting
p?=2—¢,one hasA® oce M. 5
The S-matrix is proportional to theR-matrix of the Izergin—Korepin model [41].

Although this may seem laborious, we will write it explicitly here. Introducing the
parameter

2 np?

f=35 g )

and the variables = ¢ =279/5% | p = ¢i7/2i7/3 \ye write
= R
)L5p5 _ k_lp_s + p—l —-p

SZEO
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with [41,42]

Riti=Rii=ap—2"p 4 p 7t —p.

R=r> =21 p 3+ p 2= pP g pt—pp°—p>,

RA=R10=2p°—p)+pt—p>

Iéaél = Iégfl = A(p4 - 1) +1- p4,

Ryg=Ro1=2"Y(p" = p ) +r°—p.

R =Roo' =2 (1-p ) +p -1,

Rit=wa(p®—p-rP+p H+p°-p°

Ry i=1"Yp = p P —p+p 3 +p°—p2 (22)
The normalization factor admits the representation

00
p[ [ om0 2 M @3

—00

Itis equal to the amplitude for the scattering processes-1111.
In the cas& — oo, one checks that

1
)»5p5 _ )»71]775 + pfl -p
(with b <> 0, f1,2 <> £1) up to an irrelevant gauge transformation. Moreover, it turns out
that

R — Rospi2) (24)

30

02T —s o (25)

2im

or Xo =04 — o, for N = —1, confirming the identification of theéz) S-matrix in the
limit # — oo with the OSP(1/2) “sphere sigma model§-matrix.

This coincidence has a simple algebraic origin. Indeed recall [43,44], thaffh'éoda
theory has symmetr¥y, (a (2)), g = ¢™/*_ The Dynkin diagram for the algebréz) turns
out to be almost identical to the one for the algebspa(1/2) [29], as represented in
Fig. 4, although in the latter case, one of the roots is fermionic, and therefore the basic
relations involve an anticommutator instead of a commutator.

It can be hoped that for some particular valug;othe g-deformation of one algebra
gives rise to the other, and this is what we shall now demonstrate—namely, that there is
a mapping betwee/, ( (2)) and U (osp(1]2)!D), for ¢ = i. This should not come as a

surprise, and has algebra|c roots going back as far as [45]. For recent related works, see
[46,47].
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2
a
2

O=0 O=@

Fig. 4. Dynkin diagrams foazéz) andosp(1/2)D.

1
osp (1/2)( )

Traditionally, the Cartan matrix o&f) is written as(ii4 ~3), and the commutation

relations are

[H;, H;] =0, [Hi, Ejl=ai;Ej,
[H;, Fj]=—a; Fj,

gt —q " )

— s a=g""% (26)
qgi — 4;

This means, in particular, that the generatBgs Fo, Ho satisfy al,4(a1) algebra

[E;, Fj]=4;;

[Ho, Eol = 8Eo, [Ho, Fol = —8Fp,

Ho _ ,—Ho
q q

[Eo, FOol = —F—— (27)

Prp—
while the generatorg1, F1, Hy satisfy al, (a1) algebra

[H1, E1] = 2E1, [H1, F1] = —2F1,
Hy _ —H

(Ey, P =1 —9 (28)
q—4q

The Cartan matrix 0bsp(1/2)P on the other hand reads usuan{l‘)‘[2 ’i) Commutation
relations are similar to (26), but involve anticommutators instead of commutators for the
fermionic generators. The generategs fo, ho satisfy thus ai;-algebra

[ho, eol = 4eo, [ho, fol =—4fo,
[eo, fol = ho, (29)

while for the generatorﬂ, Y1, h1 one has

(b, vi]=v,  [he, vl = -y,

[v] 1) = ha. (30)
Taking ¢ =i for U, (aéz)) makes the subalgebra generated By Fo, Ho and U (a1)
algebra. The valug =i for the other deformed; was already observed in [46] to

allow a simple relation with a fermionic algebra, a fact also used in maggitag ) onto
a supersymmetrid/’ = 1 algebra. Here, observe that by sett'mé: g~ M+D/2E, and
Y1 =qg"=D2F /(g +¢~1), one findsfor representations where Hj is even (the only
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ones of interest in our case), that, wher> i,

Hi

{va Wl} = 7

in agreement with the anticommutation relation toé¢osp(1|2)) if 41 = H1/2. The rest
of the relations then are in complete agreement, up to some straightforward changes of
normalization.

We conclude that, restricting to representations with even, the two algebras are
isomorphic. Since this constraint is satisfied in the case at handspti®/2)Y symmetry

of theaéz) Toda theory is thus explained.
3.3. Thermodynamic Bethe ansatz

Throughout this paper, we will use the thermodynamic Bethe ansatz to calculate
physical properties of our theory. It is a priori unclear whether the method—uwhich involves
maximizing a free energy—makes much sense in a theory whose Hamiltonian is not
Hermitian, but the results we obtain seem perfectly meaningful, like in other similar
examples. Two additional remarks about the TBA are relevant. First, the scattering matrix
appearing in the auxiliary monodromy problem (diagonalizing the matrix describing the
effect of passing a particle through the others) is $idiut S. This means that, although
the S-matrices of theosp® andaf) differ because of the grading, the objects used in the

TBA (like the S matrices) are identical, and known results atuéﬁ)[ Toda theories can be
used. Second, one may worry that mixing bosons and fermions could give rise to problems
in applying the TBA. This is not quite so however. Most TBAs known so far—and the
ones we will introduce here will be no exceptions—allow at most one particle in a state
of a given rapidity. As discussed in Zamolodchikov [48], this corresponds, in the diagonal
case, to having?;';' (0) = —(=1)F, whereF is the fermion number of particle In our

case, we havé!! (0) = P}/ For the supersphere sigma model, the particles with bosonic
internal labels = 1,...,m, will be bosons, s}/ = (—1)F". For the super Gross—Neveu
model, the particles with bosonic internal labels are now fermion®/se= —(—1)". In

both cases, the required result holds.

The TBA analysis can be performed using the well known strategies. The only difficulty
is the diagonalization of the monodromy matrix, which involves solving an auxiliary
problem based on th@f) vertex model. String solutions for this model were not known
before, but they can easily be obtained using our recent results cnélfhease. Setting

Y =, theaf) Bethe equations have the form

sinh3(y; — uq —iy) sinh3(y; — yj — 2iy) sinh3(yi — y; +iy)
l—[ il N hl N ainhl — (1)
o« SN (i —ug +iy)  °7sinh3(yi —yj +2iy) sinhz (yi — yj —iy)

where they; are Bethe roots, and the, are spectral parameter heterogeneities (corre-
sponding to the rapidities of particles already present in the system). The solutions of these
equations in the thermodynamic limit are as follows. Jfecanbe 12, ..., — 1, strings,
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or antistrings. In addition, it is possible to have string centered on an antistring, or to
have a complex of the form=y, + % +im.

After the usual manipulations, one ends up with equations for the pseudoenergies, that
can be represented using a TBA diagram. The ‘left part’ of the diagram corresponds to the
following equations

€;(0)
T

=¢3(0 —0") xIn(1+ gfj(G’)/T)

t—3
=Y it 800930 — ) xIn(L4 eNT), (32)
=0

where we denotep(0) = W},e/z) fxg® = [ 9 f©6—6"g(6"). We use in the

following the Fourier transform

N do .
f@) = / ST F ) (33)
2
S0 (fxg) = 27 /8, and ¢p = y—. We introduce the other kernat defined by
2 _ coshw/2
W — coshw * . ) o )
In addition, there is a set of equations providing a closure on the right part.
— 9 / !’
i ;( ) — a0~ 0« IN(1+ e-3ET) — g3(6 — 0') xIn(1+ e~ -4/ T)
3
=Y 3@ —0) *In(1+e OV TY — g0 —0') xIn(1+ /T,
= (34)
Together with
a; 9 / _ ’ ’ ’
EITL =—¢30 —0) % In(L+ e 30T) 4 p3(0 — 0) xIn(1+ ¢ @)
+ Z¢3(9 — ) *In(1+e" (9/)/T) F YO —0) xIn(L4 e @)/T)
7 (35)
and
€ (©) / —€,3(0")/T ’ er(©))T
T =—VE -0 xIn(l+e )+ 2630 —6) xIn(1+e )

+ Z VACES 9/) *In(1+e*€a,- (9/)/T) +9O— 9/) *ln(l_}_eéa:g(@/)/T).
i=1,2 (36)

Finally, the asymptotic conditiong (9 — oo) — m coshd must be imposed. This system
can be conveniently encoded in the diagram of Fig. 5. The free energy per unit length reads
as usual

o
do
F=-T / > cosh9|n(1+e*€°/T). (37)
T

—00
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0 1 2

Fig. 5. Incidence diagram for the TBA of the (anisotrop'uréz) theory. Nodes are associated with the
pseudoenergies, and the cross indicates the presence of a massive asymptotic behavigr for

We will consider the more general case of twisted boundary conditions, by adding a
phase factor in the tracé = Tr[e #H ¢i*4/(t=1D7 4 the topological charge. The kinks have
therefore a fugacitye®®/?~1, 1). We concentrate on the central charge, which is expressed
in terms of the quantities = ¢~</7 in the limits of large and small temperature. At large
temperature (UV), the; go to constants, which solve the following system (here we set
A = ¢/, which appears in the equations due to a renormalization of the spin [49]):

1\ ~1/2
xo=(1+X1)1/2<1+%> :

1\ 12
Xp = (1+xn1>1/2<1+xn+1>1/2(1+ —) ,

n

xi-a= (14 5 Y2(1+ 1) Y2+ ) V214 27 Lxg) V2

1 \~12
X <1+ > A+ xp),
Xt—3

1\ 12 _
Xg = (1+X;—3)1/2<1+ x—) L+ ax) " Y2(1421x) 2@+ )7L
a

1\1! _
xp=(14x_3) (1+ x—) L4 2x) 214+ 27 ) A+ (38)

a
and recall that there are three (like the dimension of the fundamental representation) nodes
with a common value af,. The solution of this system is

(4D

in U)o o
SIN~—~—— SINn
= 2 2 j=0,...,1—3,

Xj—

H o H o
sing sin%

o (t—Da 2 (t—Da
_ sint5pe B sin? {52

Xp (39)

Xa

- sin%’ ~ sin%sina

What we will in general call the UV contribution to the central chargecis=
% ZL(lfr’xj_). At small temperature (IR), the; go similarly to constants solving the

same system but with one less node on the left, becajse 0. We first consider the case
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a =0, i.e., periodic boundary conditions for the bosons, antiperiodic boundary conditions
for the fermions. In that case, the UV sum of dilogarithms gives a contribitienl),
while one gets a similar contribution from the IR sum after t — 1,co =t — 2. The
central charge is thus= ¢1 — ¢c2 = 1, as expected.

(Here we include two specialized remarks:

A point of some interest iy = /2, corresponding téd1 = 1/4. In that case, the(z)

Bethe equations do coincide (after a shift> y + ’”) with thea(l) Bethe equations that

appear in solving the sine-Gordon model w%f—f = 1/4. This point is in the attractive
regime, with one soliton and one antisoliton of massnd one breather of the same mass.

It is easy to check that in that case, thz@ TBA is in fact identical with the well known
SG TBA indeed. The equivalence between the two theories is not so obvious when one
looks at the actions.
Also, aSaéz) is related tczz , SO does the(z) theory bear some resemblance to&élé
Toda theory with the foIIowmg action

_ f dxdy [Z(aqu)z + (9y¢0)°

i=1

i b .
_A/(Ezﬁ<¢1+«/§¢z>+ iZ561- V3dD) gz\fzﬁ¢l)i|. (40)

Here the perturbation has a single dimengica /32 and the dimension of the coupling is
[A] = L2*~2, Parameterizing in (40) by 82 = =1, it turns out that the free energy of the
a:(zz) theory is exactly half the free energy of thg) theory, once the fundamental masses

have been matched. This fact does not appear obvious in the least when one compares
perturbative expansions!)
(2)

Twistings and truncations of the,” model are of the highest interest and have been
widely discussed in the literature [40,42,44]. Twisting (that is, putting a charge at infinity)
in such a way that’#? becomes a screening operator of weight 1, gives the central

chargec =1 — 3(f 12); . RSOS restriction is then possible foreven, giving rise to

the minimal moéeIM, 1,¢/2. The perturbation in the minimal model has then weight
Axp=1-— i (its coupling is real, and the sign does not matter because it has only even
non- vamshmg correlators). Meanwhile, the lowest weight = <= =y 1) becomes negative

fort > 4, after which the effective central charge reagls=c — 24h1o=1— t(t 1) One

can also twist in such a way that?%/2 becomes a screening operator, giving the central
chargee =1— 3((tlj12))t2' RSOS restriction is then possible fondd, giving rise taV; ;1,2
perturbed by the operator of weights =1 — %.3

3 Notice that the combination 2 x = 3/¢, respectively, ¢ for + even (respectively, odd). In fact, the
perturbative series for the free energy always has the same structure, and does not exhibit parity effects as
is changed. But the physical interpretation does, and rightly so, singefoonly even correlation functions do
not vanish, while for1s, all correlation functions are a priori non-vanishing.
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0 1 t—6 t-5

Fig. 6. Incidence diagram of the truncatetf) TBA. This TBA also describes perturbations of the
OSP(1/2) (4-—1)/SJ (2) (1 —4y /2 models for even, see later.

The twisting can also be studied with the TBA using naw# 0. The UV sum

of dilogarithms gives then a contributiopm — 1) — 3ﬂ“—§, while one gets a similar

contribution from the IR sum after— ¢ — 1. The central charge is thus=1 — W "‘2.

In general, twisting terms affecting nodes ‘far to the right’ of the TBA dlagram do not
affect the central charge in the isotropic limit. Indeedy ifvere to remain finite here as
t — oo, the central charge of the twisted theory would be st 1. We shall however be
interested in giving antiperiodic boundary conditions to the kinks of charget-1, which
translates into a phase that blows up lkike: rr ast — oco. As a result, the central charge
of interest isc — —2, in agreement with the sigma model interpretation to be discussed
next.

Finally, we notice that choosing = 27 leads tox;_4 = 0, and a truncation of the
diagram to the one represented in Fig. 6 This is the same as folding the TBA tmgl)(he
RSOS model with central charge= 2 — =i 1 e The first model in the series hag = 2/5,
the next onesf = 3/5 (the latter TBA has some fascinating properties, due to the fact that
2/5+ 3/5=1). This was first observed in [50]. We will comment about the relation of
these models t®OSP(1/2) in the conclusion. For TBAs related Wiﬂf) in other regimes,
see [51,52].

3.4. The OSP(1/2) limit, and the relation with the sigma model

As explained previously, th©SP(1/2) scattering theory can be studied by taking
thet — oo limit of the aéz) model. The identification could in fact be seen directly by
identifying Bethe equations. This seems a bit strange at first, becauséz)ttm]uations
do not have a structure that is reminiscent of t4sp(1/2) Dynkin diagram. One has
to remember however that thesp(1/2) Bethe ansatz equations are peculiar, and their
structure is not related with the Cartan matrix in the usual way. They read in fact [18]

Ai— g — Al —Aj+i
—_— = 41
nki—ua+l HA—N%—ZZ“A,’—)\J’—I' (“41)

and match theéz) equations in the — oo limit, with y =yA, u =yu, y — 0.
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The Toda theory (18) can then be rewritten in terms of a Dirac fermion as

d%x
5= [ S [whove+vlove + AWhve +veover]iv])] (42

the perturbation is the sum of a term of dimensign= 1/2, and a term of dimension
hp = 2 (the relative normallzat|on between the two fermionic terms is irrelevant, since it
can be adjusted by g — AR, wR —> A~ 1wR, or similarly for left fermions). It is likely
that this model could be directly diagonalized using the coordinate Bethe ansatz, like the
ordinary massive Thirring model, but we have not carried out such a calculation. Conserved
quantities can be found in terms of the fermions; the first oneﬁrérqb;a(aw;wm e

The twisted theory meanwhile has= —2, ceff = 1, and the perturbations both acquire
dimensiong1, 1). This can be identified with a symplectic fermion theory with action [53]

d?x
= / g[aumaunz + A'9,n10,m2 + A"n1n20,m10,m2]. (43)
Heren1 ands; are two fermionic fields with propagator, in the free theory,

(n1(z, 2n2(0)) = —Inzz.

Notice how non-unitarity is manifest in (42) as well as (43).

From the point of view of the twisted theory, the perturbation involves two fields of
weights (1, 1) which should be identified witlp21 and ¢15, respectively, using fusion
relations. That both fields appear is not unexpected, since the-2 point is a limit,
and should have the characteristics of hv#ven and-odd.

The identification ofd, n1d,n2 with ¢21 can actually be completed accurately, by
comparing the four point functions as calculated in the fermion theory and the minimal
model using the Dotsenko—Fateev general results [54]. An interesting sign subtlety appears
in that case. Indeed,, n19,12 = dn1dn2 + dn1912, and if we call this operatod,

(0WoR)=-5—

212212
because of anticommutation relations. Herdgey1 0,2 should actually be identified with
i¢21. In fact, when one compares the amplitude of the perturbation iné?ﬁ&oda theory
and the twisted version [39], one finds that, with the usual normalizatiangositive
gives rise to the amplitude @k being purely imaginary, that is the coefficieatin (43)
real. The sign ofA’ is irrelevant, as only terms even v will appear in the perturbative
expansions of physical quantities.

It would be very interesting to complete the identificationge$ with 11129,,1719,.12,

but we have not finished this calculation. Note, however, that there is little doubt this
identification is correct, as there is no other object with the right dimension and statistics
in the symplectic fermion theory. Definin@ = n1120,,719,.12, one finds

1+ (In|z121%)?

lz12/2

The massive perturbation withys is obtained with a coefficient that is real and positive
nears? = 2 [39]. Therefore, we expeet” in (43) to be positive. Note that the apparition of

(omo©)=
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logarithms in the two point function of the perturbing operator makes the field theory (43)
a bit problematic. Issues of renormalizability arise, in particular, and it is probably better
to think of (43) as a sector of (42) rather than the defining theory. This is reflected in
the structure of the TBA: although= —2 can formally be obtained as the UV value of
the central charge in the untwisted model, this value appears only after proper analytic
continuation of the dilogarithms. Indeed, the fugacity given to end nodes of the TBA
diagram ise!®, and ast — oo, a ~ txr, it winds an infinite number of times around the
origin: in practice, following the free energy would presumably require following analytic
continuations on an infinity of different branches, a difficult task at best.

The fermions can always be rescaled to bring the action into the form

d?x
S = / g[aﬂnlamz + An1n20,m19,m2], (44)
where again the coupling is positive. We will now see how this related to the supersigma
model.

In general, the coset spa@SP(m /2n) /OSP(m — 1/2n) has dimensiongn — 1, 2n) and
can be interpreted as the supersph#te-2" [6]. The case of interest hereis=n = 1,
and corresponds to th#? supersphere, parameterized by the coordinates

1
v=1-cmump.  f=mn. L= (45)
such thatxf + &1 = 1. The action of the sigma model will generally be of the form

1 m n
. (Z(aumz +> aﬂgz,»lauszjj>
i=1

j=1

(our convention is that the Boltzmann weightis®). The beta function will be to first order
B o (m — 2n — 2)g2, so for the regiom: — 21 < 2 in which we are interested, the model
will be free in the UV and massive in the IR fonagative coupling constantg = —|g|. In
the S%2 case, this action therefore reads

1 2 1
§S= el d®x | Bumdyunz — 5mn20umdunz |- (46)
Note that a rescaling combined with a relabeling can always bring this action into the form
18]
§= / d’x [%m%nz + %771”28#7}18#7}2] (47)

matching the — oo limit of the af) theory, withA oc |g].

4. Supersphere sigma models and integrable superspin chains

The relation we uncovered betweeﬁ) andOSP(1/2) extends immediately to the case
of aéi) andOSP(1/2n): one can establish, for general valuea pthe relation between the

quantum affine algebras, the Bethe ansatz equations, the scattering matrices etc. We thus
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propose that th6-matrix with OSP(1/2n) symmetry, represented in (1), (3), (4) with=
1— 2n, and the prefactoat;, provides an analytic continuation of thi&N)/O(N — 1)
“sphere” sigma model to this value of.

Of course, the analytic continuation of the sigma model should be interpreted as the
cosetOSP(1/2n)/OSP(0/2n). The effective central charge of the UV limit ig¢ = n,
while its true central charge will be = —2n. For the ordinary sigma models, the UV
central charge i% — 1, so the UV value in the analytic continuation just matches.

Theagi) Toda theory has an interaction term of the form
evaPO1=0D | 5Bt | aP@ueam) | iv/2pen

The dimension of vertex operators €kp_8;¢;) is h = %Sf — 80y _8;, wheredop
measures the twist, and the central charge is n(1 — 1285). The operators in the

interaction term all havé = 1 whendp = 1/2, andB = +/2. In that case¢ = —2n, while

all the operators™ V2~ ande?94; have dimensiongl, 1).

The manifold relevant forOSP(1, 2n) on the other hand iss%2", i.e., a purely
“fermionic sphere”. For instancé®4 can be parameterized by

1 1
x1=1- E(mnz +n3na) — 221304,

&1 =11, &2 =12, £3 =13, &4 = 4. (48)

The action of the sigma model is not particularly illuminating; it involves four and six
fermions couplings, and reduces te & mplectic fermions in the UV limit. Like in the
n =1 case, it can be matched onto the appropriate limit oﬁ@etheory.

On the other hand, it is also possible to extend the analysis ozféfhé’BA to arbitrary
value ofn, so we also know the TBA for this scattering theory, which is simply given by a
Z, folding of theagi) TBA. The TBA is represented in Fig. 7.

Notice that there are massive particles: while foV integer positive theO(N)/

O (N —1) S-matrix has no bound states, with simplyfundamental particles (in the vector
representation), poles do enter the physical strip\fot 2. For the valueV =1 — 2n we

are interested in, the masses of the particles@are sin #’il i=1,...,n.The UV central
charge is easily checked to bg: = n. We do not know how to obtain the central charge
of the untwisted theory, as this would require a knowledge of the ‘closure’ of the TBA
diagram for twisted theories, an unsolved problem whenl.

Our results have an immediate application to the study of quantum spin chains. Indeed,
the Bethe equations which appear in the solution of @8(1/2n) sigma models are
similar to the ones appearing in the solution of the integr@ld¥(1/2n) chains studied, in
particular, by Martins and Nienhuis [20]. More detailed calculations show that these chains
are critical, and that they coincide at large distance with the weakly coupled supersphere
sigma models, that is, a system of #ee symplectic fermions. This is in disagreement
with the conjecture in [20,37] that this continuum limit should be a WZW model on the
supergroup: although the central charge agrees with both proposals, detailed calculations
of the thermodynamics or finite size spectra show that the WZW proposal is not correct,
and confirm the sigma model proposal instead. A similar conclusion hold3em /2n)
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Fig. 7. Incidence diagram for the TBA @SP(1/2n) sigma models (the diagram hagows).

whenm —2n < 2. That the spin chain flows to the weakly coupled sigma model is certainly
related with the change of sign of the beta function wien2n crosses the value 2, but we

lack a detailed understanding, similar to the ones proposed in [55,56], of the mechanisms
involved.

5. The super Gross—Neveu models
5.1. Generalities

If we consider a scattering matrix defined again by (1), (3), but now with the prefactor
o, instead, itis natural to expect that it descril@@SP(m /2n) Gross—Neveu models, the
analytic continuation of theé (N) GN models toO (m — 2rn). Having a control on the
diagonalization ofOSP(1/2n) scattering matrices will allow us to study this scattering
theory easily, and confirm the identification for these algebras. Notice that sincg e
scattering matrix has no poles in the regin< 2, the roles of the GN and sigma models
are completely exchanged in the domain of valued afie are considering.

TheOSP(m/2n) Gross—Neveu models read

x| <. . noo. o
S=/§|:Zlﬁi31/fi+l/f}eal/f§+2ﬁiahf+ﬂ'1/e83’1je
i=1 j=1

+g<wzwx+ﬂzwf;—yzmz>2} @9)

This theory has central charge= m/2 — n, effective central chargesss = m/2 + 2n.
The beta function for this model is of the forfy oc (m — 2n — 2)g2, the same as the
one for theO (m — 2n) GN model. Form — 2n > 2, it is thus positive, so a positive
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couplingg is marginally relevant—this is the usual massive GN model—while a negative
one is marginally irrelevant. If instead we consider the ease 2n < 2, these results are
switched: it is a negative coupling that is marginally relevant, and makes the theory massive
in the IR? The casen = 1 should be described by the foregoing scattering theory.

Note that the GN model is equivalent to the appropriate WZW model with a current—
current perturbation. Indeed, the systenmoMajorana fermions and symplectic bosons
constitutes in fact a certain representation of @8 (m/2n) current algebra. The level
depends on the choice of normalization; it would be called1/2 in [57],k = —1/2 in
[58], k = 1 elsewhere. We adopt the latter convention here, and thus thekla&w
model based o@SP(m/2n) has central charge

_ (m—=2n)(m —2n — 1)k

T 2m—=2n—=2+%k)
Particular cases at®SP(0/2n), which coincides with the&sP(2n) WZW model at level
—k/2, andOSP(m/0), which coincides with theD (m) WZW model at levelk. Super-

symmetric space theorems give rise to free fields representations ak levé| where
¢ =" atlevelk =m — 2n — 2, where

(50)

o (m —2n)(m —2n—1)  sdimOSP(m/2n)
B 4 B 2 '

Notice that the representation at leveP for OSP(2/2) described recently in [59] is a
particular case of the supersymmetric space theorem discussed in Goddard et al. [57] (for
k = —1 in their notations).

The OSP(m/2n) Gross—Neveu models present additional non-unitarity problems not
encountered in the sigma models discussed above. To tackle these problems, we first
discuss the simplest case of all.

5.2. The OSP(0/2) case
We consider the case of the GN model for = —2, corresponding formally to

0OSP(0/2), i.e., aBy system. TheS-matrix should act on a doublet of particles, and reads,
from the general formulas

L . . -1 0 0 0
i OV Grar) Tam) | 0 7 —5m O 51
=tan 7+ 5 1_ 06\ (0 0o __# 1 0 (51)
r(z -2 I'(zz) o TwmoTE C

It turns out thatS = i tanh(§ — ) Ssa(B3; = 87) whereSsg is the solitons-matrix of
the sine-Gordon model. At couplirﬁéG = 8, it coincides with the§-matrix of theSU (2)
invariant Thirring model, or the level 1 WZW model with a current—current perturbation.

4 In [14], the four fermion coupling is defined through combinatignsy +v_ 4 = 2i (1//,{ 1//11e + wgw,%),
so what is calleg; there is the opposite of our convention.
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t=1

Fig. 8. Incidence diagram for the TBA describing the current—current perturbation of the (anisofipEgdtem
(or OSP(0/2)) model.

The scattering matrix is thus the same as the one fat thd SU(2) WZW model up to
a CDD factor. This CDD factor does not introduce any additional physical pole, but affects
the TBA in an essential way.

Note that theV = —2 Gross—Neveu model can also be considered as a current—current
perturbation of the&sU(2) WZW model at levek = —1/2, or theSU (1, 1) model at level
k=1/2.

To study the TBA, it is useful as in the sigma model case to consider the anisotropic

2
deformation, with the sine-Gordon part now correspondin%%: % The diagram is

represented in Fig. 8. The UV solutions have to obey the usual SG equations plus the fact
that

xo=(1+x)Y2(1 + x0) Y2 (52)

The solution is obtained by setting = (j + a)?—1, j=0,..,t =3, x4 2=x_1=

t — 3+ a, and lettinge — oco. The contribution to the central charge in the UV is then
c1 = t, the number of nodes. The solution in the IR is obtained by discarding the first
node, and then coincides with the usual IR solution of the SG equationsywith. The
contribution to the central charge is equakto= ¢ — 2, the number of nodasinus one.

The final central charge is thus= 2, as expected for the effective central charge ofthe
system.

The same calculation with a fugaciéﬁ'/tr%l givesc =2 — This is because in

( 1) 2
the UV, all thex’s are still infinite, giving rise this time te; =7 — ?, while in the IR, the

x's are the same as the ones for the ordinary sine-Gordon modekawith — 2 — 6§ 5“2
This result requires explanations; in particular, setting (r — 1) and lettingr — oo as
in the sigma model case gives= —oo!
5.3. Therole of zero modes
We want to consider in more details thg system with action
/ S Buiy + Brive). (53)

The propagators are

1
YrR(2)Br(W) = —Br(D)YR(W) = ——.
Z—w
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We can ‘bosonize’ the ghosts by introducing a scalar figld= ¢ + ¢, such
that ¢r(2)pr(w) = —In(z — w). We also introduce fermionic ghostg (z)ér(w) =
£r(2)nr(w) = -1, and thus

yr=¢"nr,  yr=e ",

Br=e PRokR, Br = e3¢ (54)

The corresponding action is then

1 2 2 1 2 =
= — D) = — DoD. 55
S Sn/dx(aﬂ) Zn/dxaa (55)

The 8y Hamiltonian is
1
H = E/‘dx (BLOxYL + BROxVR) (56)

with commutatorsi 8L (x), y.(»)] = 7z8(x — ), [Br(x), yr())] = —zz8(x — y). The
U (1) currentis given byr = yrBr = d¢r, JL = yLBL = —9¢L. The topological charge
is

Q:i/dx(JR—JL)=i/dxax¢~ (57)
2n 21

The topological charge of, andyy is 1, while the charge g8; andBg is —1.

A key feature of this system is the existence of zero modes. With periodic boundary
conditions, it is indeed easy to see thak, [dx B, r] = [H, [dxyr,r] = 0. It follows
from this that, if we add to the Hamiltonian a term of the forhQ, the system will fill up
with an infinity of zero mode particles @ or y type depending on the sign bf sending
the ground state energy teco. The theory is thus unstable without a mass term. In the
current algebra language, the infinite-dimensional space associated with the zero mode
decomposes into lowest weight representation§éf€1, 1);,> of ‘angular momentum’
j=-1/4 andj = —3/4. The conformal weight of these statesds= —1/8, giving the
effective central charges; = 2 for ac = —1 theory indeed.

The mass term (which is actually a current—current perturbation) i©O8R€0/2) GN
model does stabilize the theory. To see how, let us add to the action a term

h
08 =—o— / d2x (yrBr — yLAL) + / d®x (yrBL — vL.BR)*. (58)
T 8
The classical minima of + S occur foryg = yr = c andg = —Br = b, and, turning to
the Hamiltonian formalism, the minimum energy becomes then

1 1 K2
TEy=———. 59
7 Ees 7 g (59)

We now recall the RG equation for the coupling consgaint (58):

g2 (60)
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From this, the coupling constant at scajerlgoes likeg = 2|nm/m The constantterm is
a UV cut-off, provided here by the field It follows that
1

__ 1.
T = nh In(h/m) (61)

at leading order. lin — 0 (¢ — 0), we recover the resuli,; — —oo anticipated before.

We will comment more on the behavior of tSP(0/2) and other GN models later.
For the moment, our goal is to explain the behavior of the central charge in the anisotropic
case obtained in the previous section. So, we now consider the case where an anisotropy is
imposed on the system by adding a coupling of the fdfniz. More explicitly, consider

h
bA=—o d?x (yrBr — vLBL) — —/dzx 2yRBRYLBL. (62)
It is easy to calculate the ground state energy at leading ordera®, which turns out
to be finite now, even though the theory is still masslésg;/L = ——2 . Anisotropy has

stabilized the UV theory.

We can now calculate this ground state energy usingstheatrix approach. To do so,
we perturb the action by a term of the fom?ﬁyL + ,32;/2 In the bosonized version, this
reads

672¢571L77L82€R8§R + ez"’aanRészégL.

The anisotropic term changes the kinetic terr%l;ml — g/2)(aﬂd>)2. We can renormalize
the field so the kinetic term looks as before, and then the exponentials in the perturbation

become*25? with B2 = 1+ 7 Non-local conserved currents are then obtained using

) 2
exp( E¢>32€R3§R7 eXp(g)azﬁRnR

of dimensionA,. = 3 — 2/82. They lead to a quantum deformation of tt@) algebra with

quantum parametefr = e~74<, Settingg = ei”%, this corresponds to a thermodynamic
Bethe ansatz diagram withnodes (including the source one), i.e., the TBA studied in the

previous section and represented in Fig. 8. The point is, we now have the correspondence

between the coupling in the anisotropic action and the parameatén the anisotropic

TBA, with, at smallg or larger, g ~ 1/t. To use this TBA, we finally need to establish

the correspondence between the magnetic field and the kinks fugacity: settirfg=
e'*e/1=1 whereT is the temperature, gives = 4. Using this, the TBA result =

2— gl"‘ 7 does match the ground state enetfgy; = —7’1’—2 at leading order ag — 0.
We thus have explained the TBA results of the previous section in the light of the ground
state instability of the8y system.

For theBy system itself, we of course obtain= —oo for any non-trivial fugacity of the
kinks. This can also be understood as follows: the partition function oftheonformal
field theory with periodic boundary conditions is infinite because of the presence of a
bosonic zero mode [60]. On the other hand, in the periodic sector, the TBA gives a finite
result, with the central charge= 1/2 + 2. Therefore, the TBA approach must describe
a renormalized partition function, divided by the infinite contribution of the bosonic zero
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mode. In the antiperiodic sector where there is no such zero mode, the result of this division
is to give zero, or, formally, a central charge equattso. Nevertheless, the dependence of
the ground state energy encan be predicted and checked using the TBA, which provides
another non-trivial check of th&-matrix.

5.4. The OSP(1/2n) case

We now get back to th@SP(1/2n) case. The TBA turns outto have a simple description
in terms ofa(z) again. Consider therefore, not tie)(2n + 1) GN model, but a related
scattering theory with only two multiplets of particles, corresponding, respectively, to the
defining representation and its conjugate. Considering more generally the caseryf
models, the relation between ti8&J(P) GN scattering theory and this new theory is
similar to the relation between th@(P) GN model and the& (P)/ O (P — 1) sigma model
[61]. We will thus call this scattering theory ‘sigma model like’, but we are not aware of
any physical interpretation for it. The TBA equations can be written following the usual
procedure. They read

P-1 00
% = 1 pp (14 e/ T) =3 1 p xIn(1+ e~/ T), j>2,
b=1 =1
% Zl( Yop xIn(1+e/T) — pp xIn(1+ e/ T)
— (Ba1+8a,p—1)¢p *IN(L+ e <0/ T) (63)
for the pseudoparticles, and
P—1
€10 mcoshy /T
= + ) praxIn(1 /T,
a=1
P-1
€p—_10 mcoshy T
o=t X;¢P,1,u*|n(1+ef uTy, (64)
a=

P _ In _ sinhP—a)w
Zoosn’Z” ¢pP-1a =01 P—a, ANAP1,(0) = Z5pp

This TBA is in fact quite similar to the one of th& = 2 supersymmetriQU(P)
Toda theory [62] (the generalization of the supersymmetric sine-Gordon modJ {gy):
the difference affects only which nodes correspond to massive particles, and which ones
to pseudo-particles. As a result, the central charge is easily determire@pP — 1.
Getting back to the particular cage= 2n + 1, we can then fold this system to obtain
(see Appendix A for the proof) the TBA for th@SP(1/2rn) Gross—Neveu model, whose
effective central charge reads therefogg=1/2(2(2n + 1) — 1) =2n + 1/2.

As an example, we can discuss in more details the case d@#71/2) GN model
whose TBA is represented in Fig. 9. We will even consider an anisotropic generalization
of this TBA, where the diagram is truncated to the right in a way that is equivalent to what
happened in the sigma model case.

In these equations agaipp (0) =
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Fig. 9. Incidence diagram for the TBA describing the anisotropic version dd#1/2) GN model.

There is now a single color index, and we relabg} = ¢;. Introducingx; = e=<//T,

the equations in the UV are the same as fordﬁé Toda theory, except for the first one
that reads now simply

xo=14 x1. (65)

The closure equations in particular are the same as foxgﬁanisotropic model.
The solution in the case of a vanishing twist first is

_Gtwytaty

J 2 ’
in the limit « — oo, for j =0,...,t — 3. In addition one has, = =2+ gnd xp =

t+o
2 C . .
f((t’_zjf;). As o« — oo, all the x’s go to infinity butx, which goes to one. As a result,

the UV contribution to the central chargeds=r — 1+ 3 x 1/2=1¢ + 1/2. In the IR,
the modification due to the, factor is not seen any longer, and this obey the same
equations as for tm,(zz) case, with a contribution— 2 to the central charge. It follows that
¢ =5/2, as expected.

The twisted TBA follows from similar principles as in the sigma model case. This
time however, because af= oo, the UV valuesy; are unaffected by the twisting. The
contribution to the central charge is

2

1 1 3o«
czt_1+§+(LA+LA*1)(X(4=1)=I+§_?.

The IR values do depend an with formulas identical to the sigma model case, and a
contribution

t—2a?
c=1-2-3—=<2
t—1m2
The resulting central charge is
5 o?
=-—-3——-.
T2 Dn2

The dependence am is similar to what we observed in tHeSP(0, 2) case, for similar
reasons. The factor 3 in this formula, as opposed to the factor 6 @IRED, 2) case, has
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its origin in the different relations between the physical anisotropy and the parameter
the TBA: in theOSP(1/2) caseg ~ 3-.

6. Finite field calculations

To give further evidence for ouS matrices, we now present some finite field
calculations. The idea, which has been worked out in great details in other cases [63], is to
compareS-matrix and perturbative calculations for the ground state energy of the theory
in the presence of an external field. THenatrix calculations are considerably simpler
than the TBA ones because, for a proper choice of charge coupling to the external field
the ground state fills up with only one type of particles, with diagonal scattering, and the
Wiener—Hopf method can be used to solve the integral equations analytically.

The S-matrix calculations are very close to the ones already performed fa {ihe
sigma model and th&@ (N) Gross—Neveu models. In fact, in the regian— 2n > 2,
the calculations are identical, since tlenatrix elements are obtained by continuation
N =m — 2n, and, in the domaim — 2n > 2, the integral representations are obtained
by the same continuation as well. For these cases, one thus immediately checks that the
continuation of theS-matrix to N = m — 2n matches the beta functions of the sigma or
Gross—Neveu models, which are, too, obtained by this continuation.

Things are more interesting in the case- 2n < 0, in particular, to which we turn now.

We consider first th€©SP sigma model, withS matrices determined by ™. If we couple
the external field to a charge of the form

0 x /(xlalxz — x20;x1)dx (66)

the ground state fills up with bosonic particles of the fofth + i|2), with diagonal
scatterings = 02+ + o;(e). If meanwhile we couple the external field to a charge of the
form

0o / (E10hE2 + E20,E1) dx (67)

the ground state fills up with fermionic particles of the fort + |2), with diagonal
scatterings = o,” — o5

Let us consider this latter case. Using formulas given in the first section, one finds
n y TTA+x)r1/2-x)r/2+A+x) A+ A—x)

_ — 68
%2 T B T A0 TAR+0TA24A—0) TA+ A+x) (68)
wherex = 42 andA = 1. This turns out to coincide with
_ _ I'A+x)r@1/)2—-x)r1)2—-A+x)rd—A—-x)
o, +o53 = (69)
FrA—x0)T@2+x0) T 12—A—x)T(1—A+x)
after a continuatiomt — — A. Similarly,
L 40 TQ2-x)TA2—A+x) T(—A—x)
o, —03 = (70)

BT A0 TQ240 T 12— A—0)T(—A+x)
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does coincide with

L . T4 T(1/2—x) I'(1/2+4 A+x) ['(A—x)
%2 1% = FA o TA240 T2+ 4—x) T(A+x

after the same continuation.

This means that, in a TBA calculation, the ground state energy @#®¢m /2n) sigma
model coupled to a fermionic charge follows from known calculations aboutOttié)
Gross—Neveu model after formally settid= m — 2n and performing a continuation
N —2— 2— N. From expressions in [63] we find therefore, for— 2n < 0

(71)

2 2
E(h)—E(0)=—h—[1+ L1 ( 1 )Inlnm/m)

27 N=2In(h/m) \N—=2) In2(h/m)
1 Cwn Inln(h/m))]
0] 72
TN 2 In?(h/m) * ( In3(h/m) 72

with

Cy=InI"{1+ 1 1 ! In2+1
N= N_2 N_2 ’

andN = m — 2n. From this we deduce [64] the ratio of the first two coefficients of the beta
function asp/p2 = v1.

Similarly, from TBA calculations, the ground state energy of @®&P(m/2n) Gross—
Neveu model follows from known calculations about théN) sphere sigma model after
formally settingN = m — 2rn and performing a continuatiolv. — 2 — 2 — N. From
expressions in [63] we find therefore far— 2n < 2

E(h) — E(0)
h? InIn(h/m)
where
3 1 1 1
DN=—N_2In2— <§+—N—2) —InF(l— —N—2>'
From this we deduce the rati@z/ﬁf = —ﬁ. Observe that the leading term follows

from the calculations for the8y system described in the previous section; all that
has to be changed is the beta function for the coupfing (59), resulting inEz, =
—ﬂ—;zhzln(h/m) indeed. Remarkably, it is the ground state of the Gross—Neveu model
that has a leading?In(h/m) dependence, while the ground state of the sigma model has
a leading purei? dependence: the roles of Gross—Neveu and sigma model are therefore
switched compared to the usual N) situation.

The calculation with a coupling to the first kind of charge (66)#or 2n < 2 or the
second type of charge (67) far— 2n > 2 poses difficulties, as the kernel does not factorize
in the usual way then, so the Wiener—Hopf method does not seem applicable.
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Now recall that for the usuad (N) sphere sigma modeﬁz/ﬁf = ﬁ and for the

usualO (N) Gross—Neveu modeﬁ,z/ﬁf = N;EZ The ratios we found are thus the analytic

continuations taV — m — 2n, as desired.

7. Conclusions and speculations

To conclude, although more verifications ought to be carried out to complete our
identifications, we believe we have determined the scattering matrices for the massive
regimes of theOSP(m /2n) GN and theOSP(m /2n)/OSP(m — 1/2n) sigma models in
the simple case: = 1, based on algebraic considerations as well as thermodynamic Bethe
ansatz calculations.

It is tempting to expect that at least some of our results generalize to other cases
OSP(m/2n) for m > 1 andm — 2n < 2. In all these cases, we expect that thenatrix
of the sphere sigma model will be obtained from the conjecture at the beginning of this
paper, withN = m — 2n, for N < 2. The S-matrix of the GN model is probably more
complicated. Recall that in the case> 2, it is given by the general conjecture only for
N > 4. WhenN < 2, we think it is probably given by the conjecture only fér< 0.

Observe now that for the usu@l(N) case, the factors,” ando, do not exhibit poles
and are equal foN = 3, 4. For these values, the (uniqu&matrix based on the general
conjecture (1) describes correctly the sigma model. As for the Gross—Neveu model, its
description is more subtle: it turns out that the vector particles are actually unstable, and
that the spectrum is made of kinks only.

In the caseV < 2 of interest here, the factongr ando, similarly do not exhibit poles
and are equal foN =1, 0. These cases would correspond for instanc®38(3/2) and
0OSP(2/2), respectively. Itis very likely that there again, thenatrices describe the sigma
model, and not the Gross—Neveu model, for which the proper particle content has still to
be identified.

TheOSP(2/2) case is particularly intriguing. The-? sphere can be parameterized by

1 . 1
x1 =COS¢<1— §n1n2>, xz=Slﬂ¢<1— 5771?72),
&1=m, &2 = n2. (74)
The action of the sigma model now reads

S= dx [(3,P)*(1 — n1n2) + 8,18,m2 — Mn2d,19.72], (75)

gl
where® is compactified® = ®mod2r. A rescaling and a relabeling brings it into the
form

S= / d?x [~ 0, 2)2(L+ IgInn2) + 0,182 + 1g111120,m18,m2] (76)

5 The existence of different sectors in t¥SP(m/2n) models does not spoil this conclusion, as the beta
functions are only trivially affected by the twists.
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with now @ = dmod-Z-. We see, in particular, that in the limit — 0, the action is
simply the one of a free uncompactified boson and a free fermion, of total central charge
¢ = —1, and that the boson hasegative coupling: this system therefore coincides with
the standard “bosonization” of thiey system in the limitg| — 0!

Notice that as soon ag > 1, the negative sign of the bosons coupling@8P (i /2n)
sigma models will have to be handled carefully; presumablyQBe(2/2), 8y example
will provide a good example of how to do this.

Finally, we discuss the boundary valué = 2, which exhibits some exceptional
features. Indeed, from the integrable point of view, the solution of the Yang—Baxter
equation (combined with crossing and unitarity) based on the gefem@trix is not
unique for N = 2 (in contrast with the other values &f) but admits one continuous
parametef . This solution is close to the sine-Gordon solution, and is related to it by

S =02+ 03, St =01+ 02, Sg =01+ 03, (77)

whereS, S7, Sg are the usual sine-Gordon amplitudes

.Sinh(8r6/y) S— sinh8r(ix —6)/y)

sin872/y) ’ N sin(8r2/y)

Sg = %Sin(Snz/y)U(Q) (78)

andU (9) is given, e.g., in [65].

In the case ofO(2), the existence of this parameter corresponds to the fact that the
0(2)/0(1) sigma model, or the& (2) GN model are actually massless critical theories,
the couplingg being exactly marginal. Th&-matrices then provide a massless description
of these theories. Sinaf-2+ =0, ,the0(2)/0(1) sigma model and the (2) GN model
coincide; their identity follows from bosonization of the massless Thirring model into the
Gaussian model. The free parameter in§hmatrices is related with the coupling constant
in either version of the model. (Note that tSematrices can also be used to describe some
massive perturbations. These, however, give rise to different type of models than the ones
we are interested in, like the massive Thirring model.)

It seems very likely that similar things occur fOSP(2n + 2/21n) models as well. The
identity of the sigma model and the GN model in that case is not obvious, but one can at
least check using our general formulas that the central charge and the effective central
charge do matcheef = 3n + 1, ¢ = 1. There are on the other hand strong arguments
showing that the beta function is exactly zero [35], so these models should have a line
of fixed points indeed [10], in agreement with thiematrix prediction.

Besides completing the identifications we have sketched here, the most pressing
guestions that come to mind are: what are Shmatrices of the Gross—Neveu models for
non-generic values aV, what are theS-matrices for the multiflavour GN models, what
are theS-matrices for the orthosymplectic Principal Chiral Models? We hope to report
some answers to these questions soon. As a final related remark, recall [66] that there is an
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embeddin§
N OSP(1/2)

OSP(1/2) o ~ U (2)x x U, (79)

and that the branching functions of the latter part define a Virasoro minimal model, with
2k 3k
Cosp=m, 511(2):?,
o (k+1)2
Cvirasoro= 1 - GM (80)

For k an integer, the situation is especially interesting. The Virasoro models which appear
there havep = 2k + 3, ¢ = k + 2; they are non-unitary, and their effective central charge
iSceff =1— WSZI<+3)‘ These models can thus be considereU@§P/SU coset models.

Their perturbation by the operatgp; with dimensionz =1 — 4(k+2) coincides with the

RSOS models defined in Section 3 as truncations otzﬁfaheorles withy = 2k + 4. We

thus see that the supersphere sigma model appears as the-imib of a series of coset
models [61], just like the ordinary sphere sigma model say appears as the limit of a series
of parafermion theories, this time &J(2)/U (1) type. There are many other interesting
aspects ofOSP coset models in relation with the present paper which we also plan to
discuss elsewhere.
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Appendix A. Folding the SU(P) TBAs

The quantization equations for tt&J(P) GN model have been written for instance
in [17]:

P-1

ZnPao—muCOShB—i—ZY()*pbo—Za *paj, a=1...,P—1,
b=1 j=1
P-1 oo

21 paj = a; * a0 — Z Z A(Oo) b ) % Obl- (A.1)
b=11=1

6 The level—2% in this formula stems from our conventions; it would bé it were defined with respect to
the subSU (2).
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Using Fourier transformf (w) = [°°_ 42¢PiP/ £ (), one then has

oo 27 €
TP _ ool sinh((P — a)w) sinh(bw)
Yap " =2 =b A2
> - sinh(Pw) sinh(w) a (A2)

with Yy, = Ype. The Y®) kernels are logarithmic derivatives of the scattering matrix
between top components in each of the fundamental representations. The group structure
is encoded in the densitigsof (massless) pseudoparticles, which appear in the solution of
the auxiliary Bethe system diagonalizing the monodromy matrix.

We now setP = 2n + 1. The folded equations then read

n
241 241
277 P,o = m, cOShB + Z(Y;b'” ) 4+ Ya( 2”,,11) b) * PbO

b=1
oo
_ZU‘/(OO)*ﬁajv a=15"'5n5
j=1
_ (00 (oo) (2n+1) (2n+1) -
27'[,()“.,' - Uj * a0 — Z Z Aj K + Ka 2n+1— b) * Ppl - (A3)
b=1i=1
For instance,
@4D) | p@ntD) _ _ (—nt1/2)lel___ SiNhle]
Y +7Y —e S
1 L.2n coshin + 1/2)|w|

It is easy to check that the corresponding kernel coincidesathIor 02+ for N =1— 2n,
and with the corresponding-matrix element in th&zZn scattering theory [67]. The
couplings between pseudoparticles can also be checked to arise from the structure of

solutions of theméi) Bethe equations, generalizing m@ case.

The ‘sigma model like’ equations fd8J(P) are based on a hypothetical scattering
theory with physical particles in the vector representation and its conjugate only. They
read

27 P1o=m coshg + Z}7’ *,010+le 1* PP 10—20;00)*51./,

o0
P -
2w Pp_ 1o—m005f13-|-21p 1* P10+ Z;:,)]_’p,]_*pP—l,O_ E 0;00)*,013—1,./,

j=1
P—-1 o©
27paj =0 a1+ 8a.p-1) % a0 — Y O ATTKY x %, (A4)
b=1I=1
where
Z\8 =7 — 2 T o)
11 p-1p-1=¢€ Sinh(Pa)
and
ZP) =FD =l sinh(w)

LP-17 1= sinh(Pw)’
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The kernelzy; is the logarithmic derivative of whatis callggliy in [17], £ 4 In £V (B)
= Z(P) Setting again? = 2n + 1 and folding gives now
o
P P ~
27 Pro=mcoshg + (Z; z{" 4 Z; ,3_1) * 01,0 — ZU;OO) * P15,
j=1
2n+1 2n+1 ~
21 pqj = a )8{11 * 0q0 — Z ZA(OO) K( +D + K;,zz;:i—b) * Opl- (A.5)
b=11=1
The kernel
/Z\ﬁn_,_l) n Z:Ez;_,_l) _ sinf.\(Zna)) + sinhw —lo]
. sinh(2n + Dw
It differs from the previous kernel
S+l | T (2n+1) cosh=7=
Yip Yo, by - coshZdy,’
which coincides with the Fourier transform of the raf% forN =1-2n.
Some integral representations to finish (used in the doainO)
i 1 d
INos = i(2—N)Bw/xm —(2— N)a) —(2—-N)iwB/n « A.6
o5 /(e e )76 TR (A.6)
0
and
+ (0.¢]
In Ui — / ei(sz)ﬁw/rr COSh w dw’ (A?)
o, cosh—a) ®
—00
where
; 2
. sinhg —isingZ;
%2 = —271‘72 :
sinhg + i sin+75
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