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Abstract

As a step to understand general patterns of integrability i 1 quantum field theories
with supergroup symmetry, we study in details the cas@®8R1/2). Our results include the
solutions of natural generalizations of models with ordinary group symmetrytJ8R1/2);
WZW model with a current—current perturbation, tH®SR1/2) principal chiral model, and the
UOSR1/2) ® UOSR1/2)/UOSR1/2) coset models perturbed by the adjoint. Graded parafermions
are also discussed. A pattern peculiar to supergroups is the emergence of another class of models,
whose simplest representative is tB&R1/2)/OSR0/2) sigma model, where the (non unitary)
orthosymplectic symmetry is realized non-linearly (and can be spontaneously broken). For most
models, we provide an integrable lattice realization. We show in particular that integsgiolg 2)
spin chains with integer spin flow tdOSR1/2) WZW models in the continuum limit, hence
providing what is to our knowledge the first physical realization of a super WZW model.
0 2003 Elsevier B.V. All rights reserved.

PACS:11.10.-z

1. Introduction

Two-dimensional quantum field theories with supergroup symmetries have played an
increasingly important role in our attempts to understand phase transitions in 2D disordered
systems—some recent works in this direction are [1-8].

These theories however prove quite difficult to tackle. Attempts at non-perturbative
approaches using conformal invariance [3,8] or exact S matrices [9—11] have been popular
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recently, but so far, very few complete results are available. This paper is the second
of a series (started with [9]) on models with orthosymplectic symmetry. Our goal is to
relate and identify the different pieces of the theoretical puzzle available—sigma models,
Wess—Zumino-Witten (WZW) models and Gross—Neveu (GN) models, integrable lattice
models, and exactly factorized S matrices—and to find out which physical systems they
describe, and which peculiarities arise from the existence of supergroup symmetries. In
our first paper [9], we studied among other things @®R1/2) Gross Neveu model and

the OSR1/2)/OSR0/2) supersphere sigma model. A physical realization for the latter
was identified in [12] in terms of a lattice loop model with self intersections, based on
an earlier work of [13]. Other such realizations for different models or supergroups have
yet to be made. In the case of ordinary algebras, integrable lattice models do provide such
realizations, and are closely related with WZW and GN models based on the corresponding
groups [14]. This relation is also important, for technical reasons, in the solution of the
Principal Chiral Models (PCM) [15].

The main result of this paper is an analysis of integrable lattice models based on the
osp(1/2) superalgebra, and the associated field theories. While the general pattern is not
unlike the case of ordinary groups, important differences are also encountered.

In Section 2, we show that the continuum limit of the model based on the fundamental
representation is not the GN (or WZW model) but the supersphere sigma model,
generalizing the observation of [12].

In Sections 3 and 4 we show that that, for integer spin, the continuum limit is
the UOSR1/2) WZW model at integer level—in particular, the spin-1 quantum spin
chain flows to theUOSP level one model. This provides, to our knowledge, the first
physical realization of a super WZW model. We also find that for odd spithe
continuum limit, like fors = 1, is not a WZW model. Attempts are made in Section 6
to identify the corresponding field theories, based on the expectation that in these cases,
the orthosymplectic symmetry is realized non linearly.

The UOSR1/2) PCM model is discussed in Section 5, and th®@SR1/2)/U (1)
models and associated parafermions in Section 7.

2. Integrablelattice models with osp(1/2) symmetry

Our conventions for th@sp1/2) algebra [16] are summarized in Appendix A. We
start with the integrable model based on the fundamental represengation The
highest weight vector is denoted B%/2,1/2), and we shall treat it as fermionic, so
the super dimension of this representation is equak1o' The product of two spin-

1/2 representations decomposes into a spin-0, sphahd spin-1 representation. Their
highest weights are, respectively, bosonic, fermionic, and bosonic. The graded permutation

1 Changing the grading—that is treating the highest weight as bosonic—does not make the model into a
*0 (1)’ model, and does not change any of the physical results. The grading we chose is simply more convenient,
as it is well adapted to the structure of the symmetry algebra.
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operator reads
P =—Py1+ Py + Po, (1)
and the Casimir
2C =3Py + P1p=3—2P12 — 3Po. 2
The Hamiltonian of the integrable model is defined on the sp@%as [17-19]

4
H=—c Z é(PO)i,i+l +2(P1y2)ii+1 3

(where (P;); ;41 denotes the projector onto spin in the tensor product of the
representations at sitei + 1, ¢ is a normalization constant related with the sound velocity)

is integrable, and corresponds to the anisotropic limit of the integiedpe/2) vertex
model one can deduce from the scattering matrix of [9]. The Bethe ansatz equations for
this model read schematically

A—i/2\" A—N =i A—N+i/2
= 4
<k+i/2> 6Hk—k’+ink—k/—i/2 @
(where the\’s are the roots) and the energy
1
E=- —- . 5
CZ,\2+1/4 ®)

The signe depends on the boundary conditions for the Hamiltonian, and has not, in
our opinion, always been correctly interpreted in the literature [18]. The point is that a
Hamiltonian withosp(1/2) symmetry will be obtained by having the last term in the sum
involve the projectorgP;)n y+1, and identifying the states in th@v 4 1)th space with
the ones in the first space. In the case of superalgebras, this is not exactly the same as
having the projector§P;) v, 1: the difference involves ‘passing generators’ throughthe
first states in the tensor product, and this can of course generate signs. The Hamiltonian
with osp(1/2) symmetry corresponds to the Bethe equations withl in (4). This agrees
with the original results in [17]. Antiperiodic boundary conditions for the fermions would
correspond t@ = —1 instead.

According to Martins [18], wher = 1, the ground state of th& = O coincides with
the one of thes? = 1/2 sector, leading to a degeneracy of 4 for the statei = 0. The
central charge read in that sectoris- —2. The total partition function (that is, the trace
of g(H+P)/25(H=P)/2 " p the momentum, and far= 1 again) reads from [18]

2

00
1 V2 /8 — (D)2
Z=46]1/121_[(1+6]n)2 = § : q(2¢,+m) /8q(2¢, m) /8. (6)
57,

This is in agreement with the interpretation of the low energy limit of this lattice model with
a symplectic fermion theory, as was proposed in [12]. In the latter paper, this identification
was made by using the fact that the hamiltonian is the anisotropic limit of a vertex model
which can be reinterpreted as a loop model, and thus as a model of cldBSBdl/2)
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spins in two dimensions, similar to the one used in the analysis of the Ggualmodel.

It was then argued that the integrable hamiltonian lies in the broken symmetry Goldstone
phase, and that the low energy limit is the weak coupling limit of the supersphere sigma
model, whose target spaceS§€2 = OSR1/2)/[OSR0/2) = SR2)] (the equivalent of
O(N)/O(N —1) for N = —1). Recall one can easily parametrize this target space using
x =1 — n1n2 such thate? 4+ 2n1n2 = 1. The sigma model action (Boltzmann weight’)

is

1
== f d2x (8 + 20m19yu2] v

with the beta functior8 o« —3g2. At small coupling, the action reduces to the symplectic
fermions theory, and the partition function (6) coincides with the determinant of the
Laplacian with periodic boundary conditions in the space direction and antiperiodic
boundary conditions in the “time” direction (along which the trace is taken)g P@gative,

the model flows to weak coupling in the UV, and is massive in the IR, where symmetry
is restored. The action reads then, in terms of the fermion variables, and after trivial
rescalings,

1
S= el d?x [8,m19un2 — 11020,118,m2). (8)

Notice that the relative normalization of the two terms can be changed at will by changing
the normalization of the fermions. The relative sign can also be changed by switching the
fermion labels - 2. However, the sign of the four fermion term cannot be changed, and
determines whether the model is massive or massless in the IR. fasitive, the model
flows (perturbatively) to weak coupling in the IR. This is the case of the lattice model
introduced in [13,18].

It is possible to generalize the integrable model by introducing heterogeneities in a
way well understood for ordinary algebras [20]. In doing so, the source term in Eq. (4) is
replaced by

A—A—i/2\N2 (4 A—ij2\N? ©)
A—A+i/2 A+A+i/2 ’
whereA is a parameter measuring heterogeneities, and the energy becomes
c 1 1
E=—— . 10
ZZ(/\—A)2+1/4+(/\+A)2+1/4 (10)

We will not discuss complete calculations here, but simply derive some essential features
of the associated thermodynamics Bethe ansatz (TBA). The ground state is made of real
particles, and excitations are holes in the ground state. After introducing the Fourier
transforms

~ . 1 . N
fx)= / dre™ (), Fo =5 f dxe "™ f(x) (11)

the physical equations read

A A COSAx _ sinh(x/2) .
b+ h __ _ |x|/4 h( /) h

~ 2coshix/2) - 1 ¢ cosr(3x/4)’0’ (12)
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and the energy, up to a constant

COSAx
/ *x )Zcosh[x/Z) dx. (13)

The interesting way to proceed then is to take the liMit> oo, a — 0 (a the lattice
spacing), such thaVa — L finite. We then take the limitt — oo with e=247/3 /4 finite.

In that limit, excitations at finite rapidity acquire a relativistic dispersion relation, with
rapidity = ZZ 1. The scattering of these excitations with themselves corresponds$o the
matrix element:

o
O (P L e P L L
S=Xp= eXp|:l / ki e COSI’(Sw/Z):| (24)
—0o0
and the latter coincides Witbl?jL — aZ?L, the scattering matrix element of particle 1 with
itself in the sigma model (7), as discussed in [9] (this matrix element is caljetiere)?

In fact, one can check that the thermodynamics of the spin chain, in this limit, coincides
with the thermodynamics of the field theory for the supersphere sigma model discussed in
[9]: the introduction of heterogeneities provides thus a regularization of this field theory.

As always—and this can be related [21] to the Nielsen—Ninomiya theorem [22]—the
massive degrees of freedom near vanishing bare rapidity in the model with heterogeneities
are completed by massless degrees of freedom at large bare rapidities (edges of the
Brillouin zone). These are the same massless modes that would be present in the
homogeneous chain obtained by letting= 0. The dynamics of these massless modes
decouples entirely from the dynamics of the massive ones, and one can identify the
associated CFT with the weak coupling limit of the supersphere sigma model, that is, the
symplectic fermion theory.

It is tempting to carry out the same procedure for the case of higher spin. Unfortunately,
not much is known about the higher spin integratydp spin chains in explicit form. It
is fair to expect, based on analogies with other cases—in particulaspthecase—that
such chains do exist, and are described by changing the source terms and energy terms as

A—i/2  A—si 1 2s
— s —
A+i/2  A4si A24+1/4 0 A2452

(15)

where s is the higher spin. The thermodynamics of the massive field theory limit is
described by the equations

. 9 /
—61; ) _ 60— 6 % In(1+ €<1@/T)
o0
= i1+ 8-08@ — ) % In(14 e~ 9T (16)
=1

2 Misprints have, unfortunately, cropped up in the equation whose denominator should read
sinhw coshw (3¢ — ) /27r) instead.
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Fig. 1. Incidence diagram of the general TBA obtained after quantum group deformation and truncation of the
spins chain.

whereg (0) = Weﬁm/z andf * g(0) = = [ f(6 —0")g(6")d¢’. The boundary condition
€2, — m coshp must be imposed. The free energy reads then

d
F:—T/z—gmcosmln(l+e_62s/T). (17)
JT

The thermodynamics of the lattice model is described by similar equations, but different
source terms. It allows one in particular to determine the entropy per site of the chain
in the largeT limit. One finds that this entropy corresponds, fohalf integer, to a
mix of representationy,2, p3/2, ..., ps, and fors integer, a mix of representations
00, P1, - - -, Ps- The integrable models must therefore involve these mix of representations
on every site, and presumably must be considered as haspguper-Yangian symmetry,
in analogy with theso(n) case [23]. In particular, the extension of the adjoint by a scalar
representation to form an irreducible representation of the Yangian is typical. Calculations
with a twist angle giving antiperiodic boundary conditions to the kinkisows that the
representations with half-integer spin have superdimensibnwhile those with integer
spin have superdimensiarl. Some of these results have been obtained independently and
using a different approach in [19].

It is easy to check that the central charge of these models is

8

2543
As in the usualsu2) case, one can deform the models by considefngatrices

with U,0sp(1/2) symmetry, and one can truncate them in the easeroot of unity. The

resulting TBA's have the form shown in Fig. 1 (with a total number of nodes equé)to
and central charge

8 24s
2543 (N+HN+4-25)

Most of the following is devoted to understanding the field theories associated with (18)
and (19).

Ceff (18)

Ceff (19)

3. Coset models

The basic field theory we have introduced so far is @®R1/2)/SR2) non-linear
sigma model (7). Another type of sigma model plays a major role in the analysis: the

3 This is analogous to the study of excited states carried out in [19].



H. Saleur, B. Wehefritz-Kaufmann / Nuclear Physics B 663 [FS] (2003) 443-466 449

UOSR1/2); Wess—Zumino-Witten model. Details abddSPand UOSPare furnished
in Appendix A: the bosonic part dfOSR1/2) is SU(2), and the group is compact. The
level k is quantized (for the normalization &f we use the level of the suBb(2), like,
for instance, in the works [24]). The same model would be calle®®B1/2)_,;, model
following the conventions used in the literature on disordered systems (see, e.g., [25], as
well as in our previous paper). The model is not expected to be a unitary conformal field
theory: this is clear at the level of the action, where for instance the purely fermionic part
is closely related to thgé system, a non-unitary theory. This is also expected on general
grounds, since, for instance, there is no way to define a metric without negative norm
(square) states in some representations.

It turns out, however, that tHdOSR1/2), WZW theories are relatively simple, at least
atfirst sight. The best way to understand them is to use a remarkable embedding discovered
by Fan and Yu [26].

3.1. The UOSHL/2)/SU(2) coset models

These authors made the crucial observation that

N UOSR1, 2)
UOSR1, 2); ~ SU(2); x SU2); (20)
where the branching functions of the latter part define a Virasoro minimal model, with
2%k 3k (k +1)2

Cuosp= 2k—+3’ Csu2= m, Cvirasoro=1— m (21)

Only for k an integer does the action of the Wess—Zumino model make sense, and we
will restrict ourselves to this case in the following. The Virasoro models which appear
there havey = 2k + 3, ¢ = k + 2; they are non-unitary, and their effective central charge is
ceff=1— W. These models can thus be considered@SP/ SU coset models!

The perturbation of these models by the operatgr (here, the labels refer to the
description as a Virasoro minimal model) with dimensioa 1 — ﬁ is well known to
be integrable (the 1 comes from tB&P, the 3/4(k + 2) from theSU(2)). The TBA has the
form shown in Fig. 2 [27]. As observed in [9], it can be obtained afigrdeformation and
a truncation of the basic supersphere sigma model TBA. The corresponding S matrices can
thus easily be deduced, and follow RSOS restrictions ofqﬂdeformedaéz) S matrices,
or, equivalentlyg-deformedosp(1/2)Y S matrices. The simplest and most interesting
case corresponds to the model of Virasoro minimal sgriesb, ¢ = 3. Its central charge
is ¢ = —3/5 while ceff = 3/5. The TBA for a perturbation by the operatpr; of weight
h = 3/4 is described by the diagram in the figure in the particular case where the number
of nodes is two. The S matrix has been worked out in details in [28].

An amusing consequence of this observation is that the supersphere sigma model
appears as the limit — oo of a series of coset models. This is quite similar to the way the
ordinary sphere sigma model appears as the limit of a series of parafermion theories [29],
this time of typeSU(2),/ U (1).

An important difference between the two cases is that, since the three point function
of ¢21 vanishes, the perturbation of the coset models is independent of the sign of the
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| |

)
3 4 2%
UOSP(1/2), /SU(2),

Fig. 2. Incidence diagram of the TBA describitPSR1/2); /SU(2); coset models perturbed by the operator
withh =1-— 4(1512) . The total number of nodes i% 2

coupling, and thus always massive. The situation was different in the case of parafermionic
theoriesSU(2)/ U (1), where one sign was massive (and corresponded, in thedimito,
to the cas® = 0), but the other was massless [29] (and corresponded in theklimito,
to the cas® = x). For the supersphere, there is no theta term, so it is natural that we get
only one flow?

An interesting consequence of the embedding is that we can deduce the effective central
charge of theUOSR1/2) WZW model at levelk. Using that for the Virasoro model,

Ceff = 1- W(ZZIH—S)' one finds
8k
=——, UOSR1/2). 22
Ceff 2%+ 3 R1/2)k (22)

This result will be compatible with all the subsequent analysis, but it is in slight
disagreement with [24,26]. In the latter papers, conjectures are made that the spectrum
closes on primary fields of spih=0, % cee, % with dimensiom: = % If this turned

out to be true, the models we identify would not exactly be the WZW models, but maybe
some “extensions” of these—at the present time, this issue is not settled, but it seems

simpler to assume the value (22) is indeed the effective central charge of the WZW model.
3.2. The UOSHL/2) x SU(2)/SU(2) coset models

We consider now TBAs with a total number of nodés= 2k + 2. If the massive node

is the(2k)th one, the UV central charge is
8k 24k 8k 3 3( +k)
T %+3 ktA+MH@A+d %+3 112 I+k+2
suggesting that the model can be understood as a coset d@#R1/2); ® SU2);/

SU(2). (see Fig. 3). Assuming the TBA correspondsto a theory perturbed by an operator
whose odd point functions vanish, we find the dimension of the perturbing operator to be

(23)

Ceff

h=1- W%JFZ). This is compatible with taking the spin/ field in the denominator of
the coset.
If the massive node is th@k + 1)th one meanwhile, the central charge is
8k +4 12(2k + 1) 3k 8l 3k +1)
Ceff (24)

T kt4 %+ A+H@A13 k+2 2A+3 k+it2

4 Recall thatfTo (5"~ 1/2") = [1,(s"~1) = 0 form #£ 3, = Z for m = 3.
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I

2k+2|
UOSP(I 12),® SU(2), 1SUQ),.,

Fig. 3. Incidence diagram of the TBA describitPSR1/2); ® SU(2);/SU(2)x; coset models perturbed by

the operator witth =1 — m The total number of nodes i 2- 2/.

I

2k+1 2k+2|
SUQ), ® UOSP(1/2),1SUQ2),.,

Fig. 4. Incidence diagram of the TBA describiy)(2); ® UOSR1/2);/SU(2)x+; coset models perturbed by
the operator witth = 1 — ﬁz. The total number of nodes i% 2- 2/.

I

2k+21-1
UOSP(1/2), ® UOSP(1/2), /UOSP(L/2),,,

Fig. 5. Incidence diagram of the TBA describit¢OSR1/2); ® UOSR1/2);/UOSR1/2);; coset models
perturbed by the operator with=1 — WEWS The total number of nodes i&2- 2/ — 1.

suggesting similarly that the model can be understood as a 8bkel; ® UOSR1/2),/
SU(2),; perturbed by the operator of dimensiba= 1 — 4(k+1+2 (see Fig. 4). Of course,

the two cases are actually equivalent by taking mirror images, but it is convenient to keep
them separate to study the larglémit later.

3.3. The UOSPL/2) ® UOSR1/2)/UOSR1/2) models

We now consider instead TBA's with a total number of nodes- 2k + 2/ — 1. If the
massive node is th@k)th one, the UV central charge is found to be

8k 24k . N 8l 8(k + 1)
2k+3 (2A+3)2k+2+3) 2k+3 21+3 2k+2+3

suggesting that the models can be interpreted as dd€8R1/2); ® UOSR1/2),/
UOSR1/2),4; (see Fig. 5). Assuming the TBA corresponds to a theory perturbed by an
operator whose odd point functions do not vanish, we find the dimension of the perturbing
operator to bér =1 — 2k+21+3 This is compatible with taking the spin/a field in the
denominator of the coset.

(25)

Ceff =
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1 2 2%
UOSP(1/2),

Fig. 6. Incidence diagram of the TBA describing thEOSR1/2); WZW model with a current—current
perturbation.

Note that, since we have assumed the three point function of the perturbing operator
does not vanish, switching the sign of the perturbation should lead to a different result. It is
natural to expect that one has then a massless flow, whose TBA and S matrices are readily
built by analogy with theSsU(2) case [30]: we leave this to the reader as an exercise.

Finally, we notice that th&/OSR1/2) coset model withk =/ = 1 was first identified
in the paper [31].

3.4. The other models

The last possible case we can obtain out of this construction corresponds to a TBA with
an odd number of nodes (say, 2 1), and the mass on an odd node, too.

The effective central charge isf =1 — Wm. The models can be considered
as Virasoro models witlpp = 2k + 5, ¢ = k + 2, and the TBA corresponds to perturbation
by the ¢15 field now, of dimensioriis =1 — 2,%5 We have not found any convincing
way to interpret this in terms ddSR1/2) cosets; maybe it is not possible. Notice that the
3/(2k 4+ 5) is a weight forOSR, 1, which, since it appears with a minus sigriinshould
be in the denominator of the sought after coset. Notice also that, by using the remark at the
end of the previous paragraph, we expect flows between the models we have interpreted in
terms ofOSR1/2) andSU(2) cosets and these unidentified models. This could be a useful
hint.

4. Sigmamodels
4.1. The UOSP WZW models

Taking! — oo for the class of models where the massive node is an even one, we obtain
theories with central charge = %. This value coincides with the result obtained in
Section 1 fors = k. We therefore suggest that the continuum limit of the lattice models
with integer spins are theUOSR1/2),—; models. Introducing heterogeneities then gives
rise to the current—current perturbation of these models (see Fig. 6).

The S matrix is the tensor product of the RSOS S matrix for the Virasoro model
Moy43 k42 perturbed bypo1 (which we saw can be reinterpreted as -EDSPRSOS matrix)
and the supersphere sigma model S matrix.

These results apply to the NS sector of the model, where the fermionic currents have
integer modes, and are periodic. The Ramond sector can be obtained by spectral flow; one
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1 2 2k-1
SU2), ® UOSP(1/2)/ SU(2)

Fig. 7. Incidence diagram of the TBA describing tBe(2);, ® UOSR1/2)/SU(2) sigma model.

has in particular [26]

k
LE =155 13+ 7. (26)

While the true central charge seems inaccessible from the TBA, one can follow the spectral
flow by giving a fugacity to the solitons, as was discussed in our first paper, i.e., calculating
7 = Trle PHi®a/t=D] whereq is the topological charge of the solitons, normalized as
q = 0, 1. Antiperiodic boundary conditions correspondie= (+ — 1), and are found
to give, using the system of equations (38), (39) of our previous paper [9]
8k

" 2%+3
in agreement with (26).

Finally, it is easy to check from the TBA that the dimension of the perturbing operator
has to bg1, 1). This gives strong support to our conjecture.

We stress that, as far as we know, none of the pertudi@8R1,/2), WZW models can
be interpreted as a Gross—Neveu model. DIis#?GN models correspond to models with,

formally, levelk = —%, and have a different physics, and different scattering matrices, as
discussed in [9]. We will get back to this issue in the conclusion.

4.2. The “SU2); ® UOSR1/2)/SU(2)” models

If we take the limit/ — oo for models which have the mass on an odd node, the central
charge as well as the interpretation of the coset models are consistent with a theory of the
form SU(2); ® UOSR1/2)/SU(2), of which the supersphere sigma model was just the
simplest ¢ = 0) version (see Fig. 7).

It would be most interesting to find out the action describing these models, but we have
not done so for now—we will comment about the problem below.

5. The UOSP(1/2) PCM model

In the SU(2) case for instance, the limit — oo of the WZW model with a current—
current perturbation coincides with the scattering theory for the PCM (principal chiral
model) model [15]. It is natural to expect that the same thing will hold fol SR 1/2)
case. The TBA looks as in Fig. 8, and the scattering matrix has obviously the form
Spcm x S ® S, whereS is the S matrix for the supersphere sigma model, up to CDD
factors we will discuss below.
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L0

A\ -/

Fig. 8. Incidence diagram of the TBA describing B8R 1/2) PCM model.

Let us study this PCM model more explicitly. It is convenient to write an element of
UOSR1/2) as

1+ 3nn° —3n n°
g=-3@n®—b°n) a@-im> —b°A - Fmm°) (28)
—3(bn° +a®n) bA- i) a®(L- mm°)

with the constrainta® + bb°® = 1. In a similar way, the conjugate of the matri¥, reads

1+ 3m° 3bn°+a®n)  —3(an®—b°n
31° a®@—gm°  b°A—gm°) |. (29)
3 —b—gm®)  al—3zm°)
The action of the PCM model reads, after a rescaling of the fermjens2y

1
— Str(8,,0,8") o< 8,n3,n° + (duadua® + 8,b3,b°) (L — nn®) + EnnOaﬂna#w.
(30)

We note that theJOSR1/2) group manifold can be identified with the supersphere
§32 [32], that is, the spac®SR4/2)/0SR3/2). The PCM model, however, cannot be
expected to coincide with the sigma model$¥?: the symmetry groups are different, and
so are the invariant actions. For instance, in the PCM model, the @@%R1/2) acts by
conjugation, leaving the identity invariant. In the vicinity of the identity, undeSRQ) =
SU(2), the fermionic coordinates transform as a doublet, and the bosonic coordinates
transform as a triplet. In the sigma model, the coordinates near the origin transform as
the fundamental 0©OSR3/2). Under theSQ3) = SA2) = SU(2) of the OSR3/2), the
bosonic coordinates transform as a trifdetthe fermionic coordinates now transform as a
singlet (they form a doublet under a differef(2), which leaves the sphes invariant).

The groups acting differently, the invariant actions can be expected to be different. This is
confirmed by explicit calculation. The supersphéfe can be parametrized in terms of
coordinates;,i =0, ..., 3 andny, n2. The constrainESxi2 + 2n1n2 = 1 gives rise to

3
xi=yi(l—mm2, > y?=1 (31)
0

The sigma model action

3
S =20,mdunz+ Y (@uxi)? (32)
i=0
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becomes then

3
S = 20,mdunz + <Z<auyi>2> (1= 27172) — 271020, M9 m2- (33)
i=0
The two equations (30), (32) are similar, but exhibit a major difference in the sign of the
four-fermion term.

The physics of the two models is considerably different. For the supersphere sigma
model, theg function is exactly zero to all orders, and the theory is exactly conformal
invariant for any value of the coupling constant (like in th&2)/0 (1) case). For the
PCM, theg function follows from Wegner’s calculations in the ca@¢—1) [33]

9 81
=32 - 234 8 34
B 3+ (34)
to be compared, e.g., with tf81J(2) case
B=—222—2° -3 +.... (35)

The conventions here are that the Boltzmann weight ig-eXp, and

1 _
S=— 2X/Tr(Str)[ 80u8'] = 2X/Tr[ 19,8]%

In the SU(2) case, the massive theory corresponds t00. By contrast, for th€©SR1/2)
case, the massive direction correspondsite 0. However, since one takes then a
supertrace instead of a trace, tBE(2) part of the PCM action has treamesign as in
the SU(2) pure case, with Boltzmann weight éxglcst| [ (3,ad,a’ +9,b3,b")], and the
functional integral is well defined. Note that the symplectic fermion part of the Boltzmann
weight is of the form exp-|cst| [ (8,13,n° + nn°d,ndun°)], and also exhibits the same
sign as the action of the supersphere sigma model in the massive phase (where the
symmetry is restored).

The exact S matrix can be deduced from the TBA by noticing that, for the nfaiX,
the presence of the self coupling for the first node in the sigma model TBA would lead to
adoubleself coupling. This has to be removed, and the usual calculation gives

SpcmM="Y S5 ® S5, (36)
where the CDD factor
s sinhw + sinh 2» __sinho + i sin(r /3)
- sinh3» "~ sinhd — i sin(xr/3)

cancels the double poles and double zererjr(M). Let us recall for completeness the
sigma model S matrix.

S/fj’f =01E + 02P + 03l (37)
where we have set

E12’2 S, =2 12( 1)X(11)( 1)X(lz) (38)

111 1, Jl
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while P is the graded permutation operator
J2i2 _ ¢ a\p(D)p(j1) si2 5 J2
P2 = (1P, (39)
The indicesi take values in the fundamental representation of dbg1/2) algebra,
i=1,23. Wesetl=1,2=3,3=2,x(1) =x(3) =0,x(2) = 1. The factorss in (37)
read
2im 2im
————F—F— O 03=——7—-—
(N—2Grn—0) % 3T TN =20
for the valueN =1 — 2= —1 characteristic of th®SR1/2) case.

o1 =

02 (40)

6. Realizationsof the UOSP(1/2) symmetry

In Section 4, we have found two families of models whose S matrixXU@SR1/2)
symmetry. The models based on the lattice TBAsforteger correspond tdOSR1/2);—
WZW models perturbed by a current—current interaction. The UV theory is a current
algebra, in which the symmetry is locally realized by two sets of curreftd, j* and
JEO jE,

What happens in the other family of models is less clear. An exception to this is the
cases = 1/2, i.e., theUOSR1/2)/SU(2) = OSR1/2)/SR2) sigma model. In this case,
the symmetry is realized non-linearly, and it is worthwhile seeing more explicitly how this
works.

6.1. Symplectic fermions and non-linearly realized symmetries

Consider thus the supersphere sigma model. This model for positive coupling describes
the Goldstone phase fdDSR1/2) symmetry broken down spontaneously $H2)
(possible since the group is not unitary compact). For negative coupling, it is massive,
and theOSR1/2) symmetry is restored at large distance. In either case, the action is
proportional to (we have slightly changed the normalizations compared with the previous

paper)

S o 20,m19um2 + (9,:%)° (41)
with 25172 + x2 = 1. We can find the Noether currents with the usual procedure. An
infinitesimalOSR1/2) transformation reads

dx = —8&1m1 + 8&am2,

dn1 = —d8&2x + dan1+ Scng,

802 = —8&1x 4+ 8bny — San (42)

where §&1,8&> are ‘small’ fermionic deformation parameterdq, ¢ small bosonic
parameters. By definition, this change leaves;2 + x2 invariant. In terms of the fermion
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variables, the symmetry is realized non-linearly:

dn1 = —882(1 — n1n2) + Sany + dcne,
82 = —8&1(1 — n1n2) + San1 — Sany. (43)

Performing the change in the action, and identifying the coefficients of linear derivatives
d.ni, dux With the currents gives five conserved currents. Three of them generate the sub-

sSu?2):

J+=—}7713n1 J_=}n23n2
2 ’ 2 ’

1
J3= Z(nlanz — dn1n2). (44)
The two fermionic currents meanwhile are

Jt=0uxn1 —x9,um1 = 9un1 (1 — 2n1n2),
J7 = 03uxm2 —xd,m2 = dun2(1— 2n1n2). (45)

These five currents should be present in the UV limit of the sigma model, which
coincides with symplectic fermions. The latter theory has been studied a great deal. Of
particular interest is the operator content, which is conveniently encoded in the generating
function (6). Recall that the “ground state” (that is, fields of wei@h)) is degenerate
four times, while there are eight fields of weigfit 0) (and eight fields of weight0, 1)).
It has sixteen fields of weightl, 1). We can understand these multiplicities easily by
using the sigma model interpretation. From 8R1/2) symmetry, we expect to have,
by taking the weak coupling limit of the foregoing currents, five figlti€) and five fields
(0, 1) (these fields are not chiral currents, because of some logarithmic features: more about
this below). Meanwhile, the broke@SR1/2) symmetry implies the existence of three
non-trivial fields with weight0, 0), whose derivatives are also necessarily ‘currents’. We
therefore expectight fields (8= fundamentak adjoint) (1, 0) and (0, 1), in agreement
with the known resuilt.

Note that fields with weightg&l, 0) and(0, 1) can have some common components due
to the presence of fields with vanishing weights. It follows that many of their products
do actually vanish, leading to a multiplicity of sixteen for fields 1), and not 8, as one
could have naively assumed.

An interesting question is now what remains of tA8R1/2) symmetryright at the
weak coupling fixed pointthat is, in the symplectic fermions theory itself. There, it
turns out that only the suBR2) can be observed, as the bosonic currehts /2 are
still conserved in the symplectic fermion theory. This conservation boils down to the
equations of motiord,9"n; = 0. If one naively tries to check the conservation of the
fermionic currents, it seems one ne€g$* (n1n2) = 0, which is manifestly wrong! So
these currents, which are conserved in the sigma model at any non-zero coupling, are not
strictly speaking conserved right at the weak coupling fixed point.

The explanation of this apparent paradox lies in the role of the coupling constant and
how exactly one can obtain the conformal limit. The best is to take the Boltzmann weight as
e~S with S as aboves§ = 23,113,172 + (3,x)? and put the coupling constant in the radius
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of the supersphere? + 25112 = g2, which now leads ta = g — %771272. The equations of
motion are

9,0"x = Ax, 8,0" N1 = An1, 9,0 02 = Ang, (46)
where
1
A= ?[xauaﬂx +119,.0%n2 + Buaunlnz], 47

leading, as usual, to the conservation;éf. The conformal symplectic fermion theory is
then obtained in the (singular) lingt— oo, where the field: formally becomes a constant,
anda, 0*x = 0 a triviality. Within this limit, theOSR1/2) symmetry is lost, but one gets
as its remnant the two fermionic “currents),n1 andd, n».
It is interesting finally to discuss the algebra satisfied by $i%2) currents right at
the conformal point (a related calculation has been presented in [34], but we do not think
its interpretation—based on rescaling the currents—is appropriate). The OPEs are rather
complicatedn1n2) = 3D — In|z — w|%:

11+2Injz—w|+ngny 1302 + =73 (na2)
4 (z —w)? 8 Z—w
3,3 1i-w 73
1 3/ 557
— S|z — w|dniong + E—2E0
2 Z—w

JT (@I~ (w) =

3yt 4 1i-w j+

PBogtw)y =+ —4z=w’
Z—Ww

11+2Injz —wl+nam 1 3002 + =53 (na2)

3,730\ _ L
@7 w) = 8 (z — w)? 16 Z—w

1
~ 1 In|z — w|dn19n2, (48)

and we see that the notatiol(z) is abusive: the field has weight4, 0) but the OPEs
involve z terms. The commutators of charges are only affected byz—ﬂgueterm, and the

su(2) relations are recovered not through a rescaling but because of the presence of other
non-trivial OPEs between the ‘left’ and ‘right’ components. For instance, writing only the
relevant term, one has

Ty — T 73 1 s
T ) = 5= PP s,
JT (I (w) = 1 I3+ J
2(z—w) 2z—w)"’
o 3j3
TH @)~ (w) = 22—, (49)

ensuring 0*, 0~ =203, whereQ = 5 [(J dz — J d3).

Amusingly, the ¥(z — w)? part of the OPEs corresponds to the normalizatien1/2,
so the UV limit of the sigma model does contain a “logarithiie 1/2” su2) current
algebra.



H. Saleur, B. Wehefritz-Kaufmann / Nuclear Physics B 663 [FS] (2003) 443-466 459

6.2. Speculations on the $2); ® UOSR1/2)/SU(2)

It is tempting to speculate then that the modelssfoalf integer correspond to “higher
level” generalizations of the symplectic fermions, with a non-linear realization of the
UOSR1/2) symmetry, and a “logarithmisu(2) current algebra”. We do not know what
the action of these models might be, except that in the UV they should reduce to the tensor
product of aSU(2), WZW model and symplectic fermions. Notice of course that the PCM
model—the limitk — oo, does obey this scenario. Indeed, the PCM model also provides
a realization of thdJOSR1/2) symmetry which is non-linear once the constraints have
been explicitly solved. Solving the constraints in terms of the fermions gives

1 b2 (a<>)2 ba®
Jt = E[baao—aoab— Z;ﬁano 7 non — T(Uaﬁo""?oa’?)]a
2 o2 b°
J = [aab<> b°da + %n°3n° + ( 4) non — aT(nan<> + n°8n)},

2
> 1 > <> 1.0 aao <& <
ada®+b 3b~|—4(abn an® —a®b 77377)+—8 (87777 —nan )

2 8 (77377 — dnn )} (50)
The fermionic currents meanwhile réad
1 b
it =—Z(bdn® +a®dn) — —nn°an® — —nn°an,
j 2( n® +a®dn) UK 16nn n
1 1 be
i~ =—=(b°3n —adn®) + —ann®dn°® — —nn°d 51
j 2( n—adn®) + g on® — 5" 9. (51)

One can as well solve for the bosonic constraint + b6 = 1. If one does so, and
rescales the fields with the coupling constant as in the supersphere case, the UV expression
of the currents becomes simply the sum of the currents for a system of 3 bosons (the
small coupling limit of theSU(2) PCM model) and the currents for the symplectic fermion
theory.

The evidence from the TBA is that the PCM model can give rise to two kinds of models
(more on this in the conclusion): either thkEOSR1/2);, WZW models like in the usual
case, but also th8U(2); ® UOSR1/2)/SU(2) model, which presumably involves some
sort of term changing th8U(2) part of the action into the WZW one with a current—current
perturbation, but leaving the symplectic fermionic part essentially unaffected. We do not
know how to concretely realize this though.

Another interesting aspect stems from the fact that the central charge obtained by giving
antiperiodic boundary conditions to the kinks reads, after elementary algebra,

_6(k+l)2
k+2)°

(52)

5 Itis useful to recall that factoring out ttf&U(2), i.e., taking as actiofi™ j—, leads (after some rescalings and
relabellings) to the action of the supersphere sigma md@$R1/2)/SU(2) written earlier in terms ofi1, n2.
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This is precisely the central charge of the mod#g, 2 1, of which the first two have
¢=—1andc = —7. We are thus led to speculate that Mg, » 1 models—or rather, their
proper ‘non minimal’ versions (studied in [35], although we do not necessarily agree with
the conclusions there), as the minimal models are entirely empty in this case, are models
with spontaneously broketdOSR1/2) symmetry. It would be very interesting to look
further for signs of aJOSPstructure in these models, and to study their ‘logarithmic’
SU(2) algebra.

Note that these models are obtained by hamiltonian reduction @), model. In
this reduction [36], an auxiliaryé system is introduced to play the role of Faddeev—Popov
ghosts, so these models are indeed naturally related to the prodsidt®f, andU (1) as
we observed earlier.

7. The UOSP(1/2)/ U (1) sigma model(s)

Instead of factoring out th8U(2), one can of course also factor out #i€l) and get an
UOSR1/2)/U (1) sigma model. This is especially interesting since the standard argument
to derive the continuum limit of thesp(1/2) spin chains would lead to a sigma model
on the manifold parametrizing the coherent states, and this is preti€HR1/2)/U (1)
[37,38].

Note however that the manifoldOSR1/2)/ U (1) is not a symmetric (super) space (this
can easily be seen since the (anti) commutator of two fermionic generators does not always
belong to the Lie algebra df (1)). As a consequence, sigma models on this manifold will
have more than one coupling constant.

To proceed, a possible strategy is to follow [29] and consider for a while models
UOSR1/2),/U (1), thatis graded parafermionic theories.

Graded parafermions [39] theories are constructed in a way similar to the original
construction of Fateev and Zamolodchikov, with the additional ingredien#Zefgrading.

They obey the OPE rules
_ Opd) A
Vi (@) (w) = (=177 exp(zmﬂm/(wm(z). (53)

Theirdimensions ark; = ’(kk—”) + % wheree = 1,1 half an odd integeg, = 0 otherwise.
Of particular interest is the OPE

Y12 12w) = (2 — W) T 2[1+ (z — w202 4 .. ],

2
Y1@Y-1(w) = (2 —w)i ?[1+ c —w)?0P +.- ]. (54)
Here, the operator® have dimension 2, and must ob&}? — 0@ = Z37, T the
stress energy tensor. The simplest parafermionic theoryk ferl hasc = —%, and

seems to coincide with the modM5,3.6 For k an integer,/ runs over the set =

6 SinceSU(2), can be represented in terms of a free boson, the c@s&f®&l/2)/SU(2) andOSR1/2)/ U (1)
are equivalent there.
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. W

Fig. 9. Conjectured incidence diagram of the TBA describingdt@SR1/2), /U (1) parafermions.

—k + %Ok — % 2l € Z. Parafermions with integdr are bosonic, the others
are fermionic. Fork = 1, ¥r; = I, and there is only a pair of parafermionic fields, of
weighth = %. It can be shown that the parafermionic theories just defined coincide with

UOSR1/2),/U (1) coset theories.

Like in the SU(2), case, thdJOSR1/2); model with a current—current perturbation
can be written in terms of the graded parafermions and a free basibiis then easy to
find an integrable anisotropic deformation

_ 2 _ R
Y1y1e” Vo Y120 1j0e VB, (55)

(In the casek = 1, the perturbation reads V2% + v o0 zeﬁﬂqb.) The non-local
/2Y1/

conserved currents [40] arﬁ,le_i\/g% and wl/ze/_ﬂ% (where ¢ denotes the right
component ofp = ¢ + ¢). The TBA and S matrices are rather obvious: we take the same
left part of the diagram as for tHeSR'1/2), case, but replace the infinite right tail by the
ubiquitous, finite and anisotropic part discussed in our first paper. In the isotropic limit [40]
B2 — 1, the RG generates the other terms necessary to make (55) into a whole current—
current perturbation.

Taking the limit3 — 0 would then lead to the TBA for the parafermionic theory. This
would require an understanding of the scattering in the attractive regime where bound
states exist, but we have not performed the related analysis. It is possible however to make
a simple conjecture based on numerology, and analogies witBti2) case. Consider
indeed the TBA in Fig. 9 where the box represents the set of couplings discussed in our
first paper [9]. In the UV, the diagram is identical to the one arising in the study @n‘éﬁﬁe
Toda theory. The central chargeds= 2k — 1 as discussed in [9]. In the IR, the diagram

is identical to the ones arising in théOSP/SU coset models, anch = 2k — 4 + 2k1—i3

The final central charge is thugg = 3 — % and coincides with the effective central

charge fortUOSR1/2)/U (1) parafermions of levet. We conjecture this TBA describes
the perturbation of these parafermionic theories by the combination of graded parafermions

Y1y +Yo1/29-172. (56)



462 H. Saleur, B. Wehefritz-Kaufmann / Nuclear Physics B 663 [FS] (2003) 443-466

The effective dimension of the perturbation deduced from the TBAE%, and this

coincides with the combinatioh = Z’”T*"Z Note that we have not studied what kind
of scattering theory would give rise to the TBA in Fig. 9, and whether it is actually
meaningful. Still, taking the limitt — oo, we should obtain the TBA for something
that looks like anUOSR1/2)/U (1) sigma model. Notice that the bosonic part of this
model is identical with th&sU(2)/ U (1) sigma model, and thus there is the possibility of
a topological term. It is not clear what the low energy limit of the model with topological
angled =  would be.

8. Conclusions

The results presented here presumably have rather simple generalization to the
OSR1/2n) case, even though details might not be absolutely straightforward to work
out—for instance, we do not know of embeddings generalizing the one discussed in the
first sections.

The supersphere sigma model fppositive in the conventions of Section 2, flows in
the IR to weak coupling, at least perturbatively. It is expected that the phase diagram will
exhibit a critical point at some valug® and that for larger coupling, the theory will be
massive. The critical point presumably coincides with the dild{&V = —1) theory first
solved by Nienhuis [41]. This theory is described by a free boson with a charge at infinity,
and is closely related with the minimal mod#k 3. In fact the partition function of the
dilute O (N = —1) model provided one restricts &vennumbers of non-contractible loops
can be written in the Coulomb gas language of Di Francesco et al. [42] as

Zs3=5[Zc(3/5,5) — Z(3/5, 1], (57)

NI =

and coincides with the partition function of the minimal model. Earlier in this paper,
we have identified this model with tHéOSR1/2)1/ U (1) parafermionic theory. The full
O (N = —1) theory, however defined, has a considerably more complex operator content
[43].

Note that antiperiodic boundary conditions for the fermions, which give an effective
central charge equal g = 1 in the supersphere sigma model give, in the critical theory,
a highly irrational valuecesf = 1 — i—g(arccosl(\3/2))2. There are no indications that an
integrable flow from the critical theory to the low temperature generic theory exists. An
integrable flow is known to exist in the special case where the symmetry is enhanced to
SU(1/2). In that case, the IR theory is the so-called de@$&/ = —1) model, which has
¢ = —7, and is closely related with the minimal modé 1. Note that this model is the
second model of the unidentified series in Section 4, and bears some formal resemblance
to the modelUOSR1/2)3,,. What this means remains one of the many open questions in
this still baffling area.
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Appendix A. Some resultson osp(1/2)

We collect in this appendix some formulas abas(1/2), the associated current
algebra and groups.

The supergrouf®SR1/2) is the group of ‘real’ matriceg obeying (basic references
are [44—46])

g'ig=1J (A1)
where
1 0 O
J=<O 0 1). (A.2)
0 -1 0

Elements of the group preserve the quadratic form, i (b, 01, 62), X. X" = bb’ 4 616, —
6201. They can be parametrized gy= e? with

0 -m -n2
A= n a c |. (A.3)
-nm b —a

Here no complex conjugation is ever neededs, ¢ are real numbers, angd, n, are ‘real’
Grassman numbers.
The groupJOSR1/2) in contrast is made of complex supertransformations satisfying

g'g=1J, ggt=1. (A.4)

To define the adjoinM*, we first need to introduce a complex conjugation denoted.by
Itis, technically, a graded involution, which coincides with complex conjugation for pure
complex numbers;® = ¢, ¢ € C, and obeys in genefl

(xy)o — x<>y<>’ (x<>)<> — (_)p(x)x’ (Cx)o — E.xo. (AS)

One then setg* = (g*)°,% s0 g in UOSR1/2) preserves in addition the foraf®x’ =
bb' + 056} — 0505

llt Ct

717)‘ dt )

8 Recall that it is not possible to define a unitary versio®&Pwith the usual conjugation.

9 Recall that the 1 operation obeys the usual properﬁblaﬁ)* = (h’)*h*. It can be considered as the

combination of the T operation in the Lie algebra (see Appendix A), and tperation on ‘scalars’.

7 For g a bosonic matrixg = (‘: 2) recall thatg*’ = (
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One has now = ¢# with

0 -n —°
A= < n°® ia ib ) (A.6)
—n ib® —ia
with a real,a® = a. The fermionic content of the supergroup is essentially unchanged, with
n = n1, n° = n2. But the bosonic content is different: the non compact bosonic subgroup
SR2) has been replaced by the compact 8g2).
The algebrapsp1/2) is generated by operators which we dendteJ* (bosonic) and

j* (fermionic). Their commutation relations can be obtained from the current algebra
given below by restricting to the zero modes. The casimir reads

1 1
C:(J3)2+§(J+J_+J_J+)+Z(j_j+—j+j_). (A7)

The representations of the super Lie algebra are labelled by an integer or half ipteger
and are of dimension/4+ 1. The fundamental representation is three-dimensional, and has
spinj = 1/2. It does contain a sutl(2) fundamental representation, following the pattern
of J3 =diag(0, —1/2, 1/2). The generatorg®, J3 are bosonic. The fermionic generators
are given by

0 -1 0 00 -1
j+=<o 0 o), j—=<1 0 o). (A.8)
-1 0 0 00 O

The only metric compatible witltosp(1/2) requires the definition of a generalized
adjoint satisfying (her@ = 0, 1 denotes the parity) [45]

(ATa|B) = (~)PNDP@ (| AB) (A.9)
and thus
(AB)T = (=1)PMrB) gT AT, (A.10)

It follows that (J5)T = JF, (J3)T = J3, while there remains some freedom for the
fermionic generators;j )T =+, (G HHT=—,*. Itis in the nature of the algebra

that negative norm square states will appear whatever the choice. Indeed, let us choose, for
instance,

GH'=i".  GOH'=-j" (A.11)
It then follows that the norm square of the staten) is

(jomlj, m)y = (=)2PDG=m), (A12)

Here, p(j) = 0 if the highest weight statgy, j) is bosonic,p(j) = 1 if it is fermionic.

Even if we start with the fundamental representatjoa 1/2 with |1/2,1/2) bosonic,

in the tensor product of this representation with itself, representations where the highest
weight is fermionic will necessary appear. These do contain negative norm square states.
In this paper, we will always choose the gradation for whitf2, 1/2) is fermionic, and

thus the fundamental representation has superdimension equal to
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The current algebra is defined by

k
(V3,05 =05,  [1370]= S1bntm, (7.5, Ty ] = kndpam + 202,
: 1. : . :
2 i) =% 50w i dn] =0 5 id]=—Jdm:
UE iEY==x205,. il in) =2knsuim + 272, (A.13)

Normalizations are such that the algebra contains ssk@pbcurrent algebra at levél.

The Wess—Zumino-Witten model on the supergr@lPSR1/2) corresponds tck
positive integer, and the sugi(2) current algebra to the WZW mod8U(2),.

As commented in the text, the supersph&t€ is the supermanifold of the supergroup
UOSR1/2). Itis also the total space of a principal fibration with structure groyp) and
the quotient of this action is just the supersph&fé ~ UOSR1/2)/U (1). The explicit
realization is as follows [32]. Setting

D= (aao—bb°)<1— %‘rrmo),
X _( b<> < _} < —_ o <& _} <
1= (ab® + ba ) 1 47)77 , xz_z(ab ba ) 1 47)77 ,

1 1
n = —E(cnf> +nb°%),  m2= 5(na° — bn°) (A.14)

(these obey? = x;, andn$ = —n2) we obtain points in§?2, sinced"(x;)? + 2n112 = 1.
Conversely, for a given poinf, x1, x2, 1, 72 of $%2 one gets

1 .
S =112,

1 1 1 1
aa°=§[1—l—xo<1+ Emnz)}, bbozé[l_x0(1+ 5771772)],

abo—}(x —ix?) 1~|—}
—2 1 2 2771772 s

r)a<> =—(x1+ix2)n1+ (14 x0)n2, Ubo = (x1—ix2)n2 — (L —x0)n1. (A-15)

Define finally U (1) = {w, w bosonic, ww® = 1}. Since the parametrization of (A.14) is
invariant undexa, b, n) — (wa, wb, wn), this proves the statement.

Of course, the two spac&OSR1/2)/U (1) and S22 are not topologically equivalent:
the fibration just discussed is in fact a ‘superextension’ of the Dirac monopole [32].
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