Math/Phys Seminar

Who: Yu Li (University of Notre Dame)

Where: Tuesday Oct 28, 1:30-2:30 pm, SC G060

Title:

Cluster structures, integrable systems and symplectic groupoids.

Abstract:

We introduce two operations that can be applied to a compatible cluster structure \$\Phi\$ on a Poisson variety \$(Y, \pi)\$. (1) If there exists a point \$y \in Y\$ where the Poisson bivector \$\pi\$ vanishes, then taking the lowest degree terms of \$\Phi\$ gives rise to a set \$\Phi^{\rm low}\$ of pairwise Poisson commutative functions on the tangent space \$T_yY\$ equipped with the Poisson bivector \$\pi_0\$ which is the linearization of \$\pi\$. We present a sufficient condition, in terms of the degree of the log-volume form of \$\Phi\$, under which \$\Phi^{\rm} low}\$ is an integrable system on \$(T_yY, \pi_0)\$. When \$(Y, \pi)\$ is the Poisson dual group of the standard Poisson Lie group \${\rm GL}_n\$ and \$\Phi\$ is the generalized cluster structure of Gekhtman-Shapiro-Vainshtein, our operation produces an integrable system on $\frac{gl_n^*}{which}$ which is different than the celebrated Gelfand-Zeitlin integrable system. (2) If the Poisson variety \$(Y, \pi)\$ integrates into a symplectic groupoid \$s,t: (\mathcal G, \Omega) \implies (Y, \pi)\$, then \$s^* \Phi \cup t^* \Phi\$ is a set of logcanonical functions on \$(\mathcal G, \Omega)\$, which, in many examples of representation theoretical interest, can be completed to a compatible cluster structure \$\Psi\$. We explain how the mutable variables, frozen variables and cluster mutations of \$\Psi\$ are related to those of \$\Phi\$. When \$(Y, \pi)\$ is the standard Poisson Lie group \${\rm GL}_n\$, our operation produces a compatible cluster structure on the Heisenberg double of \${\rm GL}_n\$. Time permitting, we explain how to relate these two operations by taking the lowest degree terms of \$\Psi\$ along the identity section of \$\mathcal G\$.