
Lesson 6 MA 16020 Nick Egbert

Overview

In this lesson we start our study of differential equations. We start by considering only
exponential growth and decay, and in the next lesson we will extend this idea to the general
method of separation of variables. An important application in this lesson is Newton’s Law
of Cooling.

Lesson

In order to talk about differential equations, we need to know what such a thing is. It turns
out to be only slightly more complicated than what we are already familiar with.

Definition 1. A differential equation is an equation that relates a function with its
derivatives.

If y is a function of t, an example of a differential equation would be

5y′ + 3yt = 7t2.

Notice that we can have factors of the independent variable t floating around here. Today
and the next two lessons we are only concerned with separable equations.

Definition 2. A separable equation is a differential equation where we can get all the
y’s on one side and all the x’s (or t’s, whatever the independent variable is) on the
other. The method of solving separable equations is called separation of variables.

To see that Definition 2 is only a minor extension of what we have learned thus far,
consider something like

y =

∫
1

t
dt.

Differentiating both sides, we get

d

dt
y =

d

dt

∫
1

t
dt

dy

dt
=

1

t
. (1)

So (1) is a differential equation. To solve this, we work backward to get a solution of
y = ln |t|+C. The extension in this lesson is that we will have something more complicated
than y = something, so we will have to solve for y.

Example 1. Find the general solution for the differential equation

dy

dx
= 14

x7 + 3

y2
.
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Solution.

y2
dy

dx
= 14(x7 + 3)

y2 dy = 14(x7 + 3) dx∫
y2 dy =

∫
14(x7 + 3) dx

1

3
y3 =

14

8
x8 + 42x+ C

y3 =
42

8
x8 + 126x+ C1

y = (
42

8
x8 + 126x+ C1)1/3

where C1 = 3C.

Remark. For purposes of Loncapa, any time we modify C to get a new C1, we will
use the convention of relabeling C1 as C. This may be confusing at first, but C is
just a constant, and we don’t care what it’s actual value is.

Before moving on to the next example we need to recall what it means to be directly
proportional.

Definition 3. If a, b, c are variables, then a is directly proportional to b means that
there is a constant k such that a = kb. Similarly, a is jointly proportional to b and c
if there is a constant k such that a = kbc.

Now we can apply what we have learned to exponential growth and decay. A reasonable
model for growth of populations or decay of radioactive material is that the rate of growth
(decay) is directly proportional to the amount at the given time. Say we have a radioactive
material whose amount is given by the function A(t). Then using the definition above, we
have that

dA

dt
= kA. (2)

Example 2. Americium-241 is a ubiquitous isotope of Am, and is probably found in your
household smoke detector. The half-life of 241Am is 432.2 years. If your smoke detector has
4 micrograms of 241Am when you move into your house, how much will remain when you
pay off your 30-year mortgage?
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Solution. Using (2) and the method of separation of variables,

dA

dt
= kA

dA = kAdt

dA

A
= k dt∫

dA

A
=

∫
k dt

ln |A| = kt+ C

Since we can’t have a negative amount of 241Am, we can ignore the absolute values. Now
solving for C, we have

lnA(0) = ln 4 = k · 0 + C

ln 4 = C.

Next we want to solve for A to find the function A(t).

lnA = kt+ ln 4

A = ekt+ln 4

A = ekteln 4

A = 4ekt.

And using the fact that A(432.2) = 2 = 1
2A(0),

1

2
= ek(432.2)

ln
1

2
= k(432.2)

ln 1
2

432.2
= k

−0.0016038 ≈ k.

Putting this together, we find that A(t) = 4e−0.0016038t. Then we’re asked to find A(30) =
4e−0.0016038·30 ≈ 3.8 µg.

Examples 1 and 2 illustrate two types of solutions. In Example 1, we found a general
solution, and in Example 2 we found a particular solution.

Definition 4. A general solution to a differential equation is an infinite number
solutions accounting for the addition of an arbitrary constant C. A particular solution
to a differential equation is a single solution, where we have determined C using the
given conditions. An initial value problem is a differential equation where we find a
particular solution given y(t0) (and perhaps y′(t0), y′′(t0), etc.).

Example 3. Find a particular solution to the given differential equation.

dy

dx
= 6x2e5y−x

3
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Solution. Notice that

dy

dx
= 6x2e5y−x

3

= 6x2e5ye−x
2

, y(1) = 2.

So this equation is separable, and

e−5y dy = 6x2e−x
3

dx∫
e−5y dy =

∫
6x2e−x

3

dx

−1

5
e−5y =

6

−3

∫
eu du

u = −x3

du = −3x2 dx

−1

5
e−5y = −2eu + C

−1

5
e−5y = −2e−x

3

+ C

−1

5
e−5·2 = −2e−1

3

+ C

−1

5
e−10 = −2e−1 + C

C = 2e−1 − 1

5
e−10.

Now solving for y,

−1

5
e−5y = −2e−x

3

+ 2e−1 − 1

5
e−10

e−5y = 10e−x
3

− 10e−1 + e−10

−5y = ln
(

10e−x
3

− 10e−1 + e−10
)

y = −1

5
ln
(

10e−x
3

− 10e−1 + e−10
)
.

In the next example, we will revisit the spirit of Example 5 of Lesson 1 where we wanted
to determine the time of death. With our new knowledge we can actually derive a formula
like the one that was given in Lesson 1 using Newton’s Law of Cooling.

Theorem (Newton’s Law of Cooling). Given an object whose temperature is a
function of time, T (t) whose surroundings are a constant temperature, the change in
temperature of the object is directly proportional to the difference of the temperature
at time t of the object and the ambient temperature.

Ambient temperature just means the temperature of the surroundings. If we represent
this (constant) number with TA, then Newton’s Law of Cooling says

dT

dt
= k(T − TA). (3)
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Example 4. You arrive at a crime scene at 6:00 am and discover a body. Crime scene
investigators measure the body’s temperature to be 27◦C upon arrival, and an hour later
the body’s temperature is 25◦C. During this time, the temperature of the room was 22◦C.
Assuming that the person a temperature of 37◦C when living, what was the time of death?

Solution. In this example, TA = 22. By Newton’s Law of Cooling (3), we have

dT

dt
= k(T − 22)

dT

T − 22
= k dt∫

dT

T − 22
=

∫
k dt

ln |T − 22| = kt+ C (4)

Since the temperature of the body can’t drop below the temperature of the room (because
science), we can remove the absolute value bars. Letting 6:00 am be t = 0, we know that
T (0) = 27 and T (1) = 25. We use the former to solve for C:

ln(27− 22) = 0 + C ⇒ C = ln 5.

Now we can use T (1) = 25 to solve for k.

ln(T − 22) = kt+ ln 5

T − 22 = ekt+ln 5

T = 22 + 5 ln ekt

T (1) = 25 = 22 + 5 ln ek

3 = 5ek

ln
3

5
= k.

Putting this together,
T (t) = 22 + 5et ln

3
5 (5)

At the time of death we know that T = 37, so we need to solve for t. To do this, we could
use (5):

37 = 22 + 5et ln
3
5

15 = 5et ln
3
5

3 = et ln
3
5

ln 3 = t ln
3

5
(6)

ln 3

ln 3
5

= t

t ≈ −2.15 h

= −2 h9 m.

5



Lesson 6 MA 16020 Nick Egbert

Alternatively, we could use (4). This gives us

ln(37− 22) = t ln
3

5
+ ln 5

ln 15− ln 5 = t ln
3

5

ln 3 = t ln
3

5
.

Now we’re back at the same point as (6). So the algebra in the second method was just a
little bit easier/quicker. In either case, we find thatn the time of death was 2 hours and 9
minutes ago, 3:51 am.

Remark. It turns out that the solution to any Newton’s law of cooling problem has
the form

T (t) = TA + Cekt.

Note that the C here is actually eC1 , where C1 is the integration constant we found
in the previous example.

Example 5. Find a particular solution to the differential equation (n is a constant)

y′ = 6xn, y(1) = 3.

Solution. We need to separate this problem into two cases: n = −1 and n 6= −1. If n 6= −1,
then

dy

dx
= 6xn

dy = 6xn dx∫
dy =

∫
6xn dx (∗)

y =
6

n+ 1
xn+1 + C.

Solving for C is straightforward, y(1) = 3 should give C = 1
2 . So a particular solution in

this case is

y =
6

n+ 1
xn+1 + C.

If n = −1, however, we can’t use the power rule. Our work up to (∗) above remains the
same. Now ∫

dy =

∫
6x−1 dx

y = 6 ln |x|+ C.

And y(1) = 3 gives us C = 3. So a particular solution in this case is

y = 6 ln |x|+ 3.
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