SET OF DEFECT VALUES OF AN ENTIRE FUNCTION OF FINITE ORDER

A. E. Eremenko UpC 517.53

It is known that the set of defect values of a function meromorphic in the finite plane
C is at most countable [1-3]. Arakelyan obtained the following result: for every countable
set A = € and every p > 1/2 there exists an entire function of order pwhose set of defect values
contains A [4-61. This theorem of Arakelyan disproved a conjecture of R. Nevanlinna. One is
naturally led to asking whether there is an entire function of finite order whose set of de-
fect values coincides with an arbitrarily prescribed countable set.

THEOREM. Let A4 < C be an at most countable set and let p > 1/2. Then there exists an
entire function f of order p such that &8(a, f) > 0 if and only ifa€ A4 or a = =,

The constraint p > 1/2 is essential since entire functions of order p<1/2 cannot have
finite defect values [3].

Proof. We assume that p < = and the set A is infinite. For p = = the theorem follows
from a result of W. J. F. Fuchs and Hayman [2]. For a finite set A the result is well known.

Choose a number p <u (I—1/12p)). Set Dy={z:lz| <1} U {e:|z] <2% O <<arge<<p} U fz: 12;>2
—p<argz <O} U {z:z|>2 0<<argz<<p} .

Now fix an arbitrary sequence p=6,>6>6,>6,>..>8,>6,>...—0and consider the
domains Dif ={z: 2 < |z]< %, 0, <argz<<§,} and Dy ={2:2<|2| <2, —O,<argz<—6}, k=1, 2,

3,.... Set D,=DijD; and D= |JDx

k=0

We construct a subharmonic function w of order p which is positive in C\\if, equal to
zero in Dy, and negative in Dy. To this end we first consider the domain V ={z:[z|<C1}U{z:
jargz|<<p}. We map the domain C\V in conformal and univalent manner onto the right half-plane
(so that = » =) and we let v denote the real part of the mapping function. Then v is a posi-
tive harmonic function in C\V, and vanishes on the boundary. It is readily seen that

B(r, v) = maxv (2) = v(—r) ~const-r*, r— oo, (1)

lzt=r

where A =n/2(m —u))<<p. Let w denote the solution of the Dirichlet problem for the domain
{z:12] <2\ D with boundary conditions w(z) = v(z) if |{z| = 2° and w(z) = 0 if 2¢9D. We
extend w by 0 to D, and set w(z) = v(z) for |[z| > 2%. The resulting function w is positive
and subharmonic in C\D and equals 0 on the boundary d(C\ D). It remains to define w in Dy.
Set 8, = (8, —0))/5, Ei ={z: 2‘“<|z[<2’-9, 9;+6k<argz<6h——6h} Er ={z: 2" <21< 2", —8, + 8 <
arg 2 <L — 0,—8,}, E,=EFfUEr> k=1, 2, 3 . Let wy be a functlon contlnuous in By, equal
to zero on 8Dk, equal to —xi < 0 on Ek, and harmonic in Dy \Ek Here Ek is a neighbcrhood
of the set Ey, with E,= Dy It is not hard to show that if the numbers Xy are sufficiently
small and decrease fastly as k > =, then wy gives a subharmonic extension of the function w
to the domain Dy. The extended function is subharmonic in the entire plane and enjoys the
following properties:

w(2)>0, zeC\D, (2)
w(@) =0, z€D,, (3)
w(@) <0, 26D, k=1,2,.., (4)
W) =-—ux, z€E, k=12.., (5)
Bryo)y<Ler*, ¢>0, A<p. (6)
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Properties (2)-(5) follow from construction, and (6) is a consequence of (1). The Riesz

measure of the function w is supported on the set X,=dDU{z:|z|= 2"}U(UOE)
k=1

Set u@@ = %9 (2~*2). It follows from (3) that for |z| < 2°"all the terms of the series

n=1i
with n 2’ m vanish. Hence, u is subharmonic in €. Let us estimate u from above. Let 26"'<
lz]<c 28D, By (2) and (6)

m
B S PPoH 2P Lo BmOTH g (1 4 PR L QP Ly g 98O b <P, (7
n=1
In what follows it will be very important that u possesses the following property:

u (@) =2°%u(z), largz|<p

(8)
u @2 >2%"u(z), ze€cC,
which follows from (3), the definition of u, and the definition of the domain D. The Riesz

measure of the function u is supported on the set X = U 26"X0.

n=|]

By a theorem of Azarin [7], there exists an entire function g such that

loglg@)|=u@+o(), r—eo, (9)
outside a set of disks of radii ry centered at points zy which satisfy the condition
E ry=o0(r), r—oco, (10)
tkilzpl<r}

We denote the union of this exceptional set of disks by Z. An analysis of the proof given in
{7] shows that the function g can be selected so that the centers of the exceptional disks
will belong to the set X (which supports the Riesz measure).

Let Epp=2Ey, Din =2%D,, Ein= 2*E{, and Df,= 2*Df. For any € > 0 we let B(g) denote
the e-neighborhood of the set B. Choose numbers €k such that the sets Dy(ey) are pairwise
disjoint, and consider the closed Jordan curves T, =29 (D, (g,)). For fixed k we have, thanks
to (8) and (2), that min{u(2):2€Tha} > cu2%, ¢,>0. Hence, one can find numbers ek,n satis-
fying eg,n > 0 as n > =, 0 < eg < ek, such that for the curves Ti,=2%0(D¥ (sk,,))

min{u (2):2€Tan} =27, n>n,(k), (11)
TENZ =0, n>n,k). (12)
It follows from (11), (12), and (9) that
min{| g @ |:2€Tk>exp 2™ =R,, n> n, (k). (13)
It is readily seen that E,,NZ= @ for n > n,(k), and so, by (5), (8), and (9),
log|g @) | < (— x,/2)-2°™, 2€Era, n>n, (k). , (14)

LEMMA. Let a€C, |a|<R/4. Then there exists a univalent quasiconformal map o of the
disk {z |z] < R} onto itself such that a(z) = z for |[z| = R and a(2) = R*(z + a)/(R® + 4a2) for |z| =
R/2. The characteristic of this map does not differ from 1 by more than 64|a|/R throughout
the disk {z:|z|<<R}.

Such a map can be constructed explicitly and its characteristic can be calculated (cf.
{3, Chap. VII, Sec. 2]).

Let A ={ay}im1 be the set given in the statement of the theorem. Using the lemma, we
construct for sufficiently large n > ny(k) maps ag,n of the disks {z: jz|<R,} onto themselves
such that oy n(z) = z for [z| = Ry,

O (@) = Ra(z + a)/(R + 4a,2), |2] < R,/2, (15)
and the characterlstu: of ak,n does not differ from 1 by more than 64 |ag!|/R,. Consider the
components Gl_c n of the sets {z |g @) | < R,}, which contain the respective sets EE n By (14),
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+
these components are not empty. It follows from (13) that the domains Gy , lie inside the
curves r; n+ We assume that the numbers n,(k) are so large that for n > n,(k) the domains
Gn k are pairwise disjoint, relations (13)-(15) hold, and
2 2 la, /R, < oo. (16)
k=] n=nyk
Consider the function

(nn0g) (@) 2€GE, n>n,(k),
@ = g, z&¢J U G.uGen.

kel n=n,

It is continuous, since ay, a(z) = z for |z| = Ry, and |g(z)| = R, for 2€0Gi. The function
g is locally a qu351conformal map everywhere, except for points z, + =, in the neighborhoods

of which g:@)—-@m«z——zm) ™), where ¢, is a quasiconformal map and p,€N. It maps the plane C
guasiconformally onto a simply connected Riemann surface # which does not cover the point o,
This surface is of parabolic type, and there exists an entire function f which maps ¢ onto #
in a conformal and univalent manner. The composition

Tog (@ =0 (17)

maps the plane quasiconformally onto itself, and in view of (16) its characteristic p(z)
satisfies the condition

yg(p(z) 12 <co, z=x-+iy

Hence, by a theorem of O. Teichmiiller and Belinskii [8],
D) ~az, z—>o0, a€C\{0}. (18)

Let us show that the function f constructed above enjoys all the desired properties.

logM(r, ) =0(), r— oo, (19)
It follows from (14) and (15) that

log| g, (&) — a l_l = ‘%h— T Ex.n.

Consequently,

logig(2) —ay|™ = - 27 (2, 2€Epn (20)

28+6n

and so |zi<< whenever z€Ex,.

Consider the sets
TV ={z:2"° < (2] <2, B + 26, < argz<C 8, — 25,},
Tr ={2:27°< 2| < 2", —0, + 25, <argz << — 0, — 25,),

where 6y and 8y are the numbers intervening in the definition of Ex. Set Th==T§WJT; and

o0

U Tsn. By (17), (18), and (20), log|f(2)—a,| ' >c4|z|° on the set Ti. Since T} inter-

n==n,(k)
sects every sufficiently large c1rcle {z:12] =r} along arcs whose angular measure is not less
than &y, we have m(r, ay, f) = (2m) ™ ¢48,7°. Using (19) this implies that §(ay, /)=>0, and the order
of the function f equals p. Moreover,
T@r, N<CT(r ) 2D
with some C, > 0.
Let us show that there are no other defect values. To this end we use the following

theorem of A. Edrei and W. H. J. Fuchs (see, for example, [3]): for every subset U of the
unit circle whose measure does not exceed € and every a€C
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[loglfre® —a d0<COT @, )+ 0(1), rovo,
where C(c) > 0 as € + 0.
Suppose &(a, f) > 0 but agA. Choose a number € > 0 so small that (2.rt)_1 CCey<<bia /2,
where Cy is the constant appearing in (21). Let U be a set of measure e consisting of a fi-
nite number of open intervals and containing all the points 0, =6, +6,, 2EN. The comple-

ment of U in [0, 27] consists of finitely many segments. On each of these the function
F(2551%%!% tends uniformly as n + « to either one of the numbers g €4,0r to ». Hence, if we

denote rp = 2**¥%, then m(r,, a, f) = (2m)~" g log™ | f(r.e”®)—al™'d0 + 0()<<@n) ' CL ©) T (s ) < (6 (a, f)/2) *
i
T(rn, f); contradiction. The theorem is proved.
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A PERIODIC BOUNDARY-VALUE PROBLEM FOR A CLASS OF
DIFFERENTTIAL-OPERATOR EQUATIONS

G. D. Zavalykut and O. D. Nurzhanov UDC 517.95

In [1-3] periodic boundary-value problems for autonomous systems of differential equa-
tions were studied by the numerical-analytic method of Samoilenko [4].

In this paper we consider the question of the applicability of this method to the inves-
tigation of a periodic boundary-value problem for a differential-operator equation with right-
hand side that does not depend explicitly on the time

dxldt = [ (x, Ax), ¢
x(0)=x(T), ' (2)
where A is an operator specified on the space of continuous functions.

The similar question for a nonautonomous differential-operator equation, namely for an
equation of the form (1) with right-hand side f(t, x, Ax), that depends explicitly on the
time t and is periodic in t with period T, was considered in [5]. There an algorithm for find-
ing periodic solutions of such equations was justified and existence theorems for periodic
solutions of them were given,

The boundary-value problem (1), (2) can have a periodic solution with a period not known
in advance, since the right-hand side of the equation does not contain the time t explicitly.
On the other hand, if x(t) is a periodic solution of (1), and h is a constant, then the func-
tion x(t + h) is also a periodic solution of this equation. Because of these peculiarities
the periodic boundary-value problem (1), (2) requires separate study.
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