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It is known that the set of defect values of a function meromorphic in the finite plane 
�9 is at most countable [1-3]. Arakelyan obtained the following result: for every countable 
set A c �9 and every p > i/2 there exists an entire function of order p whose set of defect values 
contains A [4-6]. This theorem of Arakelyan disproved a conjecture of R. Nevanlinna. One is 
naturally led to asking whether there is an entire function of finite order whose set of de- 
fect values coincides with an arbitrarily prescribed countable set. 

THEOREM. Let A c �9 be an at most countable set and let p > I/2. Then there exists an 
entire function f of order p such that 6(a, f) > 0 if and only if aE A or a = =. 

The constraint p > i/2 is essential since entire functions of order p < 1/2 cannot have 

finite defect values [3]. 

Proof. We assume that p < ~ and the set A is infinite. For p = = the theorem follows 
from a result of W. J. F. Fuchs and Hayman [2]. For a finite set A the result is well known. 

Choose a number ~<~(l--I/(2p)). Set Do={z:Izl<l} U {z:Izi < 23 , 0<argz<l~} U { z: Izi>26' 

- - ~  < a r g z  < 0 }  U {z-: z t >  2 t  0 ~< argz < t ~ }  �9 

Now fix an arbitrary sequence IX=0 i>0 I>02>0~>...>0 n>0~>...-+0and consider the 

domains m + = {z:2~<Izl< 2 s, 0~<argz<0k} and m~ = {z:2<[z]<25, --0~<argz<--8~}, k = i, 2, 

3, .... Set D k=D +UD[ and D= UDk" 
k=0 

We construct a subharmonic function w of order p which is positive in ~\D, equal to 
zero in Do, and negative in D k. To this end we first consider the domain V={z:Iz!<ll}U{z: 
largzI<~}. We map the domain �9 in conformal and univalent manner onto the right half-plane 
(so that = + ~) and we let v denote the real part of the mapping function. Then v is a posi- 

tive harmonic function in ~V, and vanishes on the boundary. It is readily seen that: 

B (r, v) = max v (z) = o ( - -  r) ~ const ,  r ~, r -+  oo, ( 1 ) 
[zl=r 

where ~ = a/(2(z--tt))<p. Let w denote the solution of the Dirichlet problem for the domain 
Iz:izI<29}XxD with boundary conditions w(z) = v(z) if Izl = 29 and w(z) = 0 if z68D. We 
extend w by 0 to D O and set w(z) = v(z) for Izl > 29. The resulting function w is positive 

and subharmonic in �9 and equals 0 on the boundary a(�9 It remains to define w in D k. 

S e t  6~ = (0 k - -  0~)/5, E ~  = {z: 2 4'1 ~ I z[ ~ 2 7"9, O' k -~Sk~ arg z <~ O h - -  ~k}, E~- = {z : 2 ' ' l  <~ t zl  ~< 2 4'9, - - 0  k -~- 6 k ~--< 

argz--_~_--0~--6k}. Ek=E~UE~, k = i, 2, 3 ..... Let w k be a function continuous in Dk, equal 
I 

to zero on 3Dk, equal to --x k < 0 on E k, and harmonic in D k \-' E k. Here E k is a neighborhood 

of the set Ek, with E~c-Dk. It is not hard to show that if the numbers Xk are sufficiently 
small and decrease fastly as k + co, then w k gives a subharmonic extension of the function w 
to the domain D k. The extended function is subharmonic in the entire plane and enjoys the 
following properties: 

w(z) > 0, zE r  (2) 

w(z) = 0, zEZ30, (3) 
w ( z ) < 0 ,  zEDh, k = l , 2  ... . .  ( 4 )  

w ( z ) = ' x ~ ,  zEEh, k = l ,  2 . . . . .  ( 5 )  

B(r,w)<~cr z, c>O,  ~,<p. ( 6 )  
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Properties (2)-(5) follow from construction, and (6) is a consequence of (i). The Riesz 

measure of the function w is supported on the set X o = ODU{z:Iz l  =-29} u(UoEk) �9 
k=! 

Set u(z)= ~ 26~w(2-Snz). It follows from (3) that for Izl ~26~alI the terms of the series 

with n >- m vanish. Hence, u is subharmonic in ~. Let us estimate u from above. Let 26m~<. 
IzI<26<m+l). By (2) and (6) 

m 

u(z)<~ c ~ 2~.2-6"Xlzl~ <<.c.2~'~~ + 26<x-P' + 2'2cx-P' +.. .)  <~c,.26"c~ <<.c~lzlO. ( 7 )  
t i l l  

I n  w h a t  f o l l o w s  i t  w i l l  be  v e r y  i m p o r t a n t  t h a t  u p o s s e s s e s  t h e  f o l l o w i n g  p r o p e r t y :  

u (26"z) = 26"~u (z), I a r t  z [ ~< ~; ( 8 )  

u (26"z) >~ 26~u (z), z 6 �9 

which follows from (3), the definition of u, and the definition of the domain D. The Riesz 

measure of the function u is supported on the set X = 0 2~"Xo �9 
n=l 

By a theorem of Azarin [7], there exists an entire function g such that 

log I g (z) I = u (z) + o (~),  r -~ oo, ( 9 )  

outside a set of disks of radii r k centered at points z k which satisfy the condition 

r a = o ( r ) ,  r-+oo. (i0) 
Ik:lzkl<r~ 

We denote the union of this exceptional set of disks by Z. An analysis of the proof given in 
[7] shows that the function g can be selected so that the centers of the exceptional disks 
will belong to the set X (which supports the Riesz measure). 

L e t  E~,. = 26nf~, Dk,. 26"Dk, f +- 2~D~ = k., = 26"E~, and D~.,= . For any E > 0 we let B(E) denote 
the e-neighborhood of the set B. Choose numbers e k such that the sets Dk(e k) are pairwise 
disjoint, and consider the closed Jordan curves F~.n = 26nO(Dh(eh)). For fixed k we have, thanks 
to (8) and (2), that rnin{u(z):z6F'k.,}~ch26np, c~>0. Hence, one can find numbers ek,n satis- 
fying s + 0 as n + ~, 0 < ek, n < e k, such that for the curves F~,,----26nO(D~(ek,,)) 

min {u (z) : z E r f . }  >~ 2 ~"~, n > n  0 (k), ( 11 ) 

F~.fIZ= O, n>no(k). ( 1 2 )  

I t  f o l l o w s  f r o m  ( 1 1 ) ,  ( 1 2 ) ,  and  ( 9 )  t h a t  
§ 

min {I g (z) I : z E Fs > exp 2 "p = R. ,  n > n o (k). ( 13 ) 

I t  i s  r e a d i l y  s e e n  t h a t  E ~ , . f q Z = f ~  f o r  n > n 0 ( k ) ,  and  s o .  by  ( 5 ) ,  ( 8 ) ,  and  ( 9 ) ,  

log I g (z) I ~< ( - -  xh/2)" 2s"P, z 6 Ek,., n > no (k). ( 1 4 )  

LEMMA. Let a6�9 lal<R/4. Then there exists a univalent quasiconformal map a of the 

disk {z:Jzl<R } onto itself such that ~(z) = z for [zl = R and~z(z)=R2(z-}-a)/(R~-{-4~tz) for Izl = 
R/2. The characteristic of this map does not differ from 1 by more than 641a I/R throughout 
the disk {z: Izl < R}. 

Such a map can be constructed explicitly and its characteristic can be calculated (cf. 
[3, Chap. VII, Sec. 2]). 

Let A = {a~}k~_-, be the set given in the statement of the theorem. Using the lemma, we 
construct for sufficiently large n > n0(k) maps ~k,n of the disks {z:Izl<Rn} onto themselves 
such that ~k,n(Z) = z for Izl = Rn, 

=k,. (z) = R~. (z + a~)/( R~, + 4a~z), I zl < R~/2, (15) 

and the characteristic of ~k,n does not differ from 1 by more than 641akl/Rn$ Consider the 
components G -+ of the sets {z:I~(z) l<Rn}, which contain the respective sets E~, n. By (14), 

k,n 
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+ 

these components are not empty. It follows from (13) that the domains G~, n lie inside the 
+ 

curves F~,n.~ We assume that the numbers n0(k) are so large that for n > n0(k) the domains 
+ 

G~, k are pairwise disjoint, relations (13)-(15) hold, and 

Consider the function 

(16)  

I (a~.~ o g)  ( z ) ,  z 6 G~,~, n > no (k), 
| 

g' = / g(z), z U U u oz..). 
I ~ 1  n~rts 

It is continuous, since ~k,n(Z) = z for [z I -- Rn, and Ig(z)l = R n for z6OG~,,. The function 
g~ is locally a quasiconformal map everywhere, except for points z n ~ m, in the neighborhoods 

of which g, (z) = ~m ((z -- zm)Pm), where ~m is a quasiconformal map and Pm6N. It maps the plane �9 
quasiconformally onto a simply connected Riemann surface 9 r which does not cover the point ~. 
This surface is of parabolic type, and there exists an entire function f which maps �9 onto ~r 
in a conformal and univalent manner. The composition 

f-i og i (z) = ~D(z) (17) 

maps the plane quasiconformally onto itself, and in view of (16) its characteristic p(z) 
satisfies the condition 

(p ( z ) - -  1) ~ <  cr z = x + i y .  

(D 

Hence, by a theorem of O. Teichm~ller and Belinskii [8], 

gA(z)~az,  z--+oo, a 6 � 9  (18) 

Let us show that the function f constructed above enjoys all the desired properties. 
By (7), (9), (17), and (19) 

log M (r, f) = O (rP), r--+ oo. (19) 

I t  f o l l o w s  f rom (14 )  and ( 1 5 )  t h a t  

Xk r26np l ~  ah[ -1 ~ - - 3 - ' -  , z6Ek,n. 

Consequently, 

log [gi  (z) - -  oh ] - 1 / >  xk. 2 -129 [ z [o, z 6 Ek,~, ( 2 0 )  

and so Izl <~2s+6n whenever zC Ek,n. 

C o n s i d e r  t h e  s e t s  

T + = {z : 24,s ~ [z I <~ 2 z's, 0~ + 26h ~< arg z ~ 04 --- 26k}, 

T~- = {z : 2 I's ~ ]z[ <~ 2 ~'s, - -  0~ + 26~ ~ arg z <~ - -  0'k .--- 26k}, 

where O k and ~k are the numbers intervening in the definition of E k. Set T~=T+IJT~ and 
oo 

T'k---- U Tk,,. By (17), (18), and (20), |oglf(z)--a~l-1>/>cklz[ ~ on the set T~. Since T~ inter- 
n=no(k) 

sects every sufficiently large circle {z:Iz I=r} along arcs whose angular measure is not less 

than 6k, we have m(r,a~,~(2~)-~ch6h~ o. Using (19) this implies that 6(a~,0>0, and the order 
of the function f equals p. Moreover, 

T (2r, D <~ CoT (r, 0 (21) 

with some C o > 0. 

Let us show that there are no other defect values. To this end we use the following 
theorem of A. Edrei and W. H. J. Fuchs (see, for example, [3]): for every subset U of the 
unit circle whose measure does not exceed ~ and every a 6 C 

227 



; log[/(re i~ -- a I -I dO <<. C (e) T (2r, ~ + 0 (I), r - - ~ ,  

where C(E) ~ 0 as e + 0. 

Suppose 6(a, f) > 0 but a~A. Choose a number g > 0 so small that(2~)-ICoC~)<6(a,h/2 , 
where C o is the constant appearing in (21). Let U be a set of measure E consisting of a fi- 
nite number of open intervals and containing all the points 0,~@h, ~0~, k6 ~. The comple- 
ment of U in [0, 2z] consists of finitely many segments. On each of these the function 
f(25.s+~"e~ 5 tends uniformly as n § ~ to either one of the numbers aREA, or to =. Hence, if we 

denote r~ = ~.5+e,, then m (r,, a, h = (2~) -l ~ log + [~ (rne ~~ -- a [-'dO + O(I)~.~(2~)-' CoC (~) T (rn, ~ < (6 (a, ~/2) x 

T(r n, f); contradiction. The theorem is proved. 

i, 

2. 
3. 

4. 

5. 
6. 

7. 

8. 
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A PERIODIC BOUNDARY-VALUE PROBLEM FOR A CLASS OF 

DIFFERENTIAL-OPERATOR EQUATIONS 

G. D. Zavalykut and O. D. Nurzhanov UDC 517.95 

In [i-3] periodic boundary-value problems for autonomous systems of differential equa- 
tions were studied by the numerical-analytic method of Samoilenko [4]. 

In this paper we consider the question of the applicability of this method to the inves- 
tigation of a periodic boundary-value problem for a differential-operator equation with right- 
hand side that does not depend explicitly on the time 

dx/dt = f (x, A~,  ( 1 ) 

x(0) = x(/~, (2) 

where A is an operator specified on the space of continuous functions. 

The similar question for a nonautonomous differential-operator equation, namely for an 
equation of the form (i) with right-hand side f(t, x, Ax), that depends explicitly on the 
time t and is periodic in t with period T, 
ing periodic solutions of such equations 
solutions of them were given. 

The boundary-value problem (i), (2) 
in advance, since the right-hand side of 
On the other hand, if x(t) is a periodic 
tion x(t + h) is also a periodic solution 
the periodic boundary-value problem (i), 

was considered in [5]. There an algorithm for find- 
was justified and existence theorems for periodic 

can have a periodic solution with a period not known 
the equation does not contain the time t explicitly. 
solution of (i), and h is a constant, then the func- 
of this equation. Because of these peculiarities 
(2) requires separate study. 
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