
A.,= 1--~ .a(2~--l, m). 
k o ~tn+l 

6.9. From here there follows at once that 0 < A m < Am+ i. 

The computer calculations allow us to presuppose that in the considered case (p = 2) we 
have, asymptotically, 

A ~  ~ c o n s t . 2  * �9 m - v ;  B ~ c o n s t . 2  '~ �9 m - l - v ,  ? ~ 0 , 4 8 ,  
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A NEW PROOF OF DRASIN'S THEOREM ON MEROMORPHIC FUNCTIONS 

OF FINITE ORDER WITH MAXIMAL DEFICIENCY SUM. I 

A. E. Eremenko UDC 517.53 

I. Introduction. For a function f, meromorphic in the plane ~, we make use of the stand- 
ard notations of the R. Nevanlinna theory: T(r, f), N(r, a), m(t, ~, N(r, /), N1(r), 6(a). In ad- 
dition, we set D(z0, R)={zE~:Iz--z01<Rl �9 In this paper we investigate meromorphic functions 
of finite lower order with maximal deficiency sum: 

6 ( a )  = 2.  (i.i) 

For a function f of finite order, R. Nevanlinna's second fundamental theorem can be formulated 
in the following form: for each finite collection el, ..., aq we have 

q 

~. re(r, a : )+ N, ( r )~<2r(r ,  f ) + o ( T ( : ,  :)), r -+oo.  
i=I 

From here and from (i.i) there follows that 

Na(r ) = o(T(r ,  f)), r - - ~ .  (1.2) 

In order to elucidate what consequences can (i.i) imply, we assume first that a stronger con- 
dition than (1.2) is satisfied, namely, Nl(r) ~ O, i.e., f does not have multiple points. 
We consider the Schwarzian derivative 

e =/"/:' -- (3/2) (F/I') ~. ( 1.3 ) 

A simple computation shows that the Schwarzian derivative has poles only at the multiple points 
of the function f and, therefore, F is an entire function. Taking into account that f is of 

Translated from Teoriya Funktsii, Funktsional'nyi Analiz i Ikh Prilozheniya, No. 51, pp. 
107-116, 1989. Original article submitted September Ii, 1987. 
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finite order, with the aid of the lemma on the logarithmic derivative we obtain that m(r, F) = 
O(log r), r + ~, and, consequently, F is a polynomial. Now (1.3) can be considered as an 
algebraic differential equation with respect to f. The general solution of this equation rep- 
resents the ratio of two linearly independent solutions of the linear equation y" + �89 = 0. 
In 1932, making use of this circumstance, R. Nevanlinna has investigated in a detailed manner 
meromorphic functions of finite order, without multiple points. These functions have the fol- 
lowing properties: 

a) T(r, f) ~ cr n/2, where c > 0, n ~ 2 is a natural number; 

b) the plane is partitioned into n equal angular domains: O i = {z:~i_~ < argz<~i}, | ~ ] ~ n, 
~=~0 so that for some numbers bj e ~ we have 

! 
�9 

log ! i Ire ~) -- bii = ~cr"/2 sm ~ (~ -- ~i-~) § o (r.12), 

when r ~ ~, uniformly with respect to ~ in any angle that lies strictly inside Dj. If bj = ~, 
then the left-hand side has to be replaced by ;ogl[(re~)l" 

Thus, if the number aE ~ occurs among the numbers bj p(a) times, then ~(a) = 2p(a)/n. 
All the deficiency values are asymptotic. 

Another approach for obtaining the given result, due to L. Ahlfors, consists in the in- 
vestigation of the Riemann surface onto which the function f maps the plane. It can be shown 
that this Riemann surface has a finite number of logarithmic branching points and does not 
have algebraic branching points. Such Riemann surfaces admit a comprehensive description and 
the assertions a) and b) are obtained with the aid of an explicit construction of a mapping 
of the Riemann surface onto the plane, close to a conformal one. 

The presented arguments lead in a natural manner to a conjecture, stated for the first 
time in 1929 by F. Nevanlinna. Let f be a meromorphic function of finite order p, possessing 
property (i.i). Then the following statements hold: 

i) 2p is a natural number ~ 2. 

2) If ~(a) > 0, then ~(a) = p(a)/p, where p(a) is a natural number. 

3) All the deficiency values are asymptotic. 

From 2) there follows that the number of deficiency values does not exceed 2p. 

For entire functions this conjecture has been proved in 1946 by A. Pfluger. In this case, 
statement i) can be refined: p is a natural number. The first substantial headway in F. 
Nevanlinna's conjecture for meromorphic functions was A. Weitsman's result in 1969: under the 
conditions of the conjecture, the number of deficiency values does not exceed 2pz, where Pz 
is the lower order, Pl 5 P. After a series of intermediate results, a complete proof of the 
statements i), 2), 3) has been obtained recently by D. Drasin.* It is one of the longest and 
most complex proof in function theory. D. Drasin's proof makes use of a series of miscel- 
laneous auxiliary means, like Ahlfors' theory of covering surfaces of quasiconformal mappings. 

In this paper we present a new proof, based on two fundamental theorems of the R. Nevan- 
linna theory and of classical potential theory. The author hopes that this proof makes D. 
Drasin's remarkable result more accessible and that the presented method will find further 
applications. Incidentally, we shall prove the above formulated theorem of A. Weitsman. 

THEOREM I. Let f be a meromorphic function of finite lower order and having property 
(i.i). Then statements i), 2), 3) hold. If, in addition, ~(~) = 0, then we have 

I 
log I I ' ~ ( r e  i~  I - -  z t  r o  l t (r) I cos p (O - -  l 2 (r))l + o (to l~ (r)), ( 1 . 4  ) 

uniformly with respect to e for r + ~, re i8 ~ C o . Here C o is the union of the circles D(Zk, 
r k) such that 

rk = o(R),  R - + o o ,  
{k:lz~l< ~} 

*D. Drasin, Proof of a conjecture of F. Nevanlinna concerning functions which have deficiency 
sum two, Acta Math., Vol. 158, No. 1-2, pp. 1-94 (1987). 
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while s are continuous functions with the properties 
uniformly with respect to c e [i, 2]. 

In addition, 

l, (ct) ... r~ (t), l~ (cO = G(O + o (U,  t ~  oo 

T(r ,  [),.~rOl~(r), r - + ~ .  (1.5) 

Conversely, each meromorphic function, having the properties (1.4), (1.5) (2p is a natural 
number), satisfies relation (i.i). 

The above given arguments on meromorphic functions of finite order with the property 
Nz(r) E 0 allow us to presuppose that Theorem 1 remains valid if in its assumptions we replace 
(i.i) by (1.2). Such a refinement of Theorem 1 remains unproved. 

1 . 
2. The Definition of the Functions u, uj. We denote by L- the space of functzons that 

loc 1 
are summable on each circle in ~. The subharmonic functions are contained in Llo c. Let vl, 

1 
v 2 be subharmonic functions. The element v = v z -- v 2 e Llo c is called a 6-subharmonic func- 

tion. The "function" v may be undefined at those points where v I = v 2 = --~. We say that a 
6-subharmonic function v is defined at the point z if there exists a finite or infinite limit 

r ~ O  ~r 0 0 

and we shall denote this limit by v(z). The definition is correct since for a subharmonic 
function v the indicated limit coincides with v(z). Obviously, if a 6-subharmonic function 
v _> 0 a.e., then v(z) -> 0 at all the points z where v is defined. In this case we write simply 
V_> 0. 

We proceed to the proof of Theorem i. The scheme of the proof is the following. In Secs. 
2-6 the theorem will be reduced to a statement in potential theory, which will be called Funda- 
mental Lemma (see Sec. 6). Accepting the fundamental lemma, we prove Theorem 1 in See. 7. The 
proof of the fundamental Lemma, independent of everything else, is contained in the second 
part of the papers (Secs. 8-11). 

Without loss of generality, we can assume that all the poles of the function f are simple 
and t h a t  we h a v e  N(r,  [)=N(r, f ) , - .~T(r ,[) ,r---~oo ( 2 . 1 ) .  From h e r e  m(r ,D-~o(T(r , [ ) ) , r - -+oo ( 2 . 2 ) .  
All this can be achieved by performing on f a linear fractional transformation. In this case 
the finiteness of the lower order and condition (I.i) are preserved. 

We recall that a sequence r m + ~ is called a sequence of Polya peaks of order I of the 
increasing function T(r) if for some sequence e m + 0 we have 

T(r)  ~< (1 -{-em)[r]~T(rm), e~rm~<r~< r_m. ( 2 . 3 )  
\rm ' Em 

We set 

p*= sup{p~l imsup  T(Ax) } 
~. A~ ~ ~--~176 ; 

p~ = inf p~l imin[  ~ = 0  
x. A~co APT (x) "" 

It is known% that Polya peaks of order I exist if and only if Pz* <- i <_ p*. In addition, 
[Pz, P] c [Pz*, P*], where Pl, P are the order and the lower order, respectively, of the func- 
tion T(r). We fix a number %619],.o*], %<oo, and a sequence of Polya peaks r m for the func- 
tion T(r) = T(r, f). In the course of the proof we shall select several times a subsequence 
from the sequence rm, preserving for it the previous notation. According to R. Nevanlinna's 
second fundamental theorem, for each finite collection {az ..... aq} c C we have 

(2 .4)  m (r, ai) + N 1 (r) -.< 2T (r) + o(T (2r)), m--+ oo 
i=1 

%D. Drasin and D. F. Shea, Polya peaks and the oscillation of positive functions, Prec. Am. 
Math. Soc., Vol. 34, No. 2, pp. 403-411 (1972). 
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(we write the remainder in this form since the finiteness of the order of the function f is 
not assumed a priori and we need a relation without the exceptional set). From (I.I), (2.4), 
(2.3) there follows that for each t > 0 we have 

N 1 (tr,.) = o (T (fro)), n l (tr.O = o (T (r,.)), m ~ oo. (2 .5 )  

Let aj, j = i, 2 .... , be all the deficiency values of the function f (we do not assume 
that their set is finite). We conisder the ~-subharmonic functions: 

U,,, (z) = ( log If' (grin) I-X)/T (rm), 
Urn,: (z) = (log I f ( zr~)  - -  a i F t ) / T  (rm). (2 .6 )  

We make use of the following result, due to J. M. Anderson -- A. Baernstein II* and 
V. S. Azarin*: from condition (2.3) there follows that the families {~m} and {Umj } are rela- 
tively compact in the following sense~ One can select a sequence of Polya peaks so that we 
have U~--->u, U~,i-+uj,. m---~oo (2.7).i Here u and uj are some ~-subharmonic functions. The con- 
vergence in (2.7) takes place in Lio c and also in L I on each circumference. The Riesz charges 
of the functions Um and Um3- converge weakly to the Riesz charges of the functions u and uj, 
respectively. By the 1-measure of some set E c C we mean the greatest lower bound of the sums 
of the radii of the circles that cover E. For each circle and for each e > 0 the subsequence 
of Polya peaks can be chosen so that the convergence in (2.7) be uniform in this circle, out- 
side some set whose 1-measure is less than g. Regarding these results, see also [i, 2]. 

From 6(aj, f) > 0 there follows that uj ~ 0, j = i, 2, .... 

The functions u and uj play a fundamental role in the proof. In Secs. 3-6 the assumptions 
of the theorem will be reformulated in terms of u and uj and we obtain the fundamental lemma 
from Sec. 6, which is the "subharmonic analogue" of Theorem 1. From the fundamental Lemma it 
will follow that 

~uj = u = a P ' t  cos L (O - -0o ) I ,  f 

where e 0 e [-~, ~] and 2% is a natural number. Reformulating this statement in terms of the 
function f, we obtain (1.4) and then all the remaining assertions of Theorem 1 (Sec. 7). 

From (2.1), (2.5) there follows that 

for any t > 0. Taking into account (2.3) and taking the limit as m ~ ~, we obtain 

2~ 

2z[ 
0 

u + (re m) dO ~< 2r ~, 0 < r < co, ( 2 . 8 )  

moreover, for r = i we have equality in (2.8). 

3. The Simplest Properties of the Functions u and uj. 
logarithmic derivative in the following form: 

We make use of the lemma on the 

re(r, f ' / f ) =  o(T(2r)) ,  r -+oo .  ( 3 . 1 )  

From (2.2), (3.1) there follows that m(r, f') = o(T(2r)), r + ~. Taking into account (2.3) 
and taking the limit in L I on circumferences, we obtain u ~ 0, u i ~ 0, j = i, 2 .... (3.2). 

Further, from (2.5) there follows that u is a subharmonic function, in particular, u is defined 
everywhere in r From the lemma on the logarithmic derivative, applied to the functions 

*J. M. Anderson and A. Baernstein II. The size of the set on which a meromorphic function is 
large, Proc. London Math. Soc. 36, 518-539 (1978). 
%V. S. Azarin, On the asymptotic behavior of subharmonic functions of finite order, Mat. Sb., 
Vol. 108 (150), No. 2, pp. 147-167 (1979). 
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f -- a~, there follows that u ~ uj, j = i, 2, ... (3.3) in the domain of definition of the 
funct iln uj. 

We fix j and we consider all possible closed Jordan polygons F, on which the function 
�9 is defined and inf{uj(z): z e F} > 0. We denote by D~ the union of the interior domains 

3 
:~ all such polygons. 05viously, the set Dj is open and all its connected components are sim- 
ply connected. 

We show that if uj(z 0) > 0, then z 0 e Di. Let uj = v i -- v 2, v i are subharmonic func- 
tions, uj(z 0) = d > 0.- By virtue of upper semicontinuity, we have v2(z) < v2(z 0) + d/3 in 
some neighborhood V of the point z 0. From the well-known properties of potentials [3, Chap. 
VII, Sec. 5, Corollary] there follows that there exists a square contour F c V, surrounding the 
p o i n t  z0 such t h a t  vi(~>vl(Zo)--d/3, zEF.  Therefore~ ui(z )~ui(zo)-2d/3>d[3>O, z6F, and 
z 0 e Dj. 

4. Proof of the Fact that the Sets Dj are Pairwise Disjoint. Assume, for example, that 

Din D2~. Then there exist simple closed polygons rl, r2, whose interior domains inter- 
sect and, moreover, ul(z)>d, z6 FI; u~(~>d, z6 F2; d>0. Since ai ~ a2 and the convergence 
in (2.7) is uniform on F i U F 2 outside a set of small linear measure, we have r i ~ F2. Then 
one of the polygons (F i, say) contains a point z0, lying in the domain bounded by the polygon F2o 
:From (3.3) there follows that u(z 0) > d. From themaximumprinciple, applied to the subharmonic 
function u, and from the upper semicontinuity of this function there follows that there exists a 
continuumE such that u(z)~d, z6E; z06E, E n F2~-~. Now we make use of the following lemma. 

LEMMA i. Let v be a subharmonic function, v(0) = d > 0. Then there exists a natural 
number N such that for any n ~ N the set of the values of r from the interval (2 -n-i, 2 -n) 

d 
such that v(rei~ 1Oi~, has length ~ 2 -n-2. 

Proof. Let K = {z:v(z)<~21. The set K is thin at zero by the definition of thinness 
[3, 4]. Consequently, the circular projection of the set K onto the positive ray is thin at 
zero [4, Proposition IX.2] and the !emma follows from N. Wiener's thinness criterion [4, Theorem 
IX.10]. 

Let R > 0 be so large that E c D(0, R/2). For each z e E we select a number N(z) so 
that the assertion of Lemma 1 should hold with the point z instead of the point 0 and with the 
function u for v. In addition, we assume that 

2--N(~)<min{diam F I, diam F2}. (4 .1 )  

There exists a set X(z) with 1-measure not exceeding 2 -N(z)-2 and such that the convergence 
in (2.7) with j = i, 2 is uniform on the set D(0, R)\X(z). If necessary, we select a sub- 
sequence in (2.7). Making use of Lemma i, we find a circumference C(z) with center at the 
point z such that u(~)>d/2, ~6C(z), and the convergence in (2.7) with j = I, 2 is uniform on 
C(z). We select the-radius of this circumference C(z) so that it should not exceed 2 -N(z). 
Let D(z), z e E, be the circles bounded by the circumferences C(z). One can select a finite 
covering of the set E by these circles so that no circle of the covering be contained entirely 
in another circle of the covering. From the arcs of the circumferences of the selected circles 
one can form a rectifiable curve F, possessing the following properties: u(z) > d/2, z e F 
(4.2), the endpoints z i and z 2 of the curve r belong to r i and F2, respectively (this can be 
achieved by virtue of (4.1)); the limits in (2~ for j = i, 2 are uniform on F. 

Let rmF = Iz:z/rmEF}. From (4.2) and from the uniform convergence in (2.7) there fol- 
lows that If'(z)! ~ exp(--cT(rm)), zfr,nF with some constant c > 0. Taking into account that the 
length of the curve rmF is O(r), m + ~, we integrate along the curve rmF and we obtain that 
if(rmzl) --f(r,nz2) l=O(rmexp(-cT(rm)))=o(1), m-+~. This contradicts the fact that f(rmZl)-+a], 
m-+oo, j~ I, 2. We have proved that Di~Di= ~ i=/=]. 

5. Proof of A. Weitsman's Theorem. We show that u(z) = 0 for z60D i, j6~. Assume, for 
example u(z0)=d>0, z06 OD,. Making use of Lemma i, we find a sufficiently small circumfer- 
ence C(z 0) such that u(z)>d/2, z6C(zo), and the convergence in (2.7) is uniform on C(z0). From 

the definition of D1 there follows that there exists a point zi e C(z0) such that Ul(Z i) > 0. 
Reasoning as above in Sec. 4, we obtain that ui(z) > 0 for z e C(z0) ; contradiction. 

Now we note that u is a subharmonic function of finite order (5l). This follows from 
(2.8). Each connected component Djk of the set Dj contains at least one connected component 
of the set [z~u(z) ~ ef~>0}. From here it follows that the set of such components Djk is finite 
(5 max{l, 21}) [5, Theorem 4.16]. 
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We note that so far we have used only (1.2) and not the stronger condition (I.i). Thus, we 
have proved a certain generalization of A. Weitsman's theorem: functions of finite lower order, 
having property (1.2), have a finite set of deficiency values. We denote the number of de- 
ficiency values by q. 

6. A Subharmonic Analogue of Theorem i. By the support of a 6-subharmonic function we 
mean the set where it is defined and different from 0. From the results of Secs. 3, 4 there 
follows that the supports of the functions uj are pairwise disjoint. Therefore, 

q 

u i = max u i a. e. 
i=l  1 .,~ ] < q  

and from (3.3) we obtain 

q 

u(z) >t ~, ui(z) ( 6 . 1 )  
i : l  

where the right-hand side is defined. Now we make use of condition (i.i). Taking into ac- 
count (2.1) and (3.1), for each r > 0 we have 

m(rrm, ai)~2T(rrm, [ ) ~ T  (rrm, f ' )~m(rr ,~ , / -r ) ,  m-+oo. 
i=l 

From here and from (2.7) there follows that 

2~ q 2~ 

0 1=I  0 

Together with (6.1) this yields 

q 

ul(z) = u(z), zC C. ( 6 . 2 )  
]=1 

We show t h a t  t h e  f u n c t i o n s  u i a r e  s u b h a r m o n i c .  I n d e e d ,  uj  i s  s u b h a r m o n i c  in  Dj s i n c e  
f rom ( 6 . 2 )  and t h e  f a c t  t h a t  u k =~0 in  Dj f o r  k ~ j t h e r e  f o l l o w s  t h a t  u j  = u in  Dj .  F u r t h e r ,  
u j  = 0 on 8Dj b e c a u s e  0 < uj  <_ u e v e r y w h e r e  and u = 0 on 8Dj.  I n  a d d i t i o n ,  uj  = 0 o u t s i d e  Dj .  
T h e r e f o r e ,  u j  a r e  s u b h a r m o n l c  f u n c t i o n s .  

We d e n o t e  by ~ (by  ~ i )  t h e  m e a s u r e  a s s o c i a t e d  a c c o r d i n g  t o  R i e s z  w i t h  t h e  f u n c t i o n  u 
(with the function uj). ~rom (6.2) there follows the relation 

q ( 6 . 3 )  v 
~ =  ~ ~i" 

We denote by v the measure counting the poles of the function f. (This means that v(E) is the 
number of poles in the Borel set E.) By vj we denote the measure counting the aj-points. For 
any measure ~ we denote by (T) t the measure defined in the following manner: (~)t(E) = ~(tE), 
t > 0, E is any Borel set. From (2.7) there follows the weak convergence of the corresponding 
Riesz charges: 

l (V)rm/T (rm) --~ ~ ~, 

((~)~m - -  (~ i )~ ) /T  (r ~) -+ ~i, 

from where we obtain that ~ _> ~j, i <_ j <_ q (6.4). From (6.3), (6.4) we obtain that 

q 

~, uj>2tzk,  l ~ k ~ q .  
i = 1  

(6.5) 
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Fundamental Lemma: Let Dj be pairwise disjoint open sets, consisting of a finite number 
of simply connected domains, and let uj ~ 0 be nonnegative subharmonic functions, whose sup- 
ports are contained in Dj, respectively. Assume that the Riesz measures ~i of these functions 
satisfy condition (6.5) and, in addition, we have 

1 
where 0~<8< 4-' r~ > 1 
such that 

ui (re ~~ dO 
~<2r ~'+s, r o~< r < oo, 
= 2 ,  r - - - - l ,  
~<2r~-L 0~<r~<r~ 1, 

are some numbers. Then there exists an integer 

( 6 . 7 )  

n >~ 2, l n/2 - -  X ] < i /2 

q 

u (re ~~ = 2 ll~ (re ~~ 
i = l  

(6 ,8 )  

for some e 0, 0 ! 8 o < 2~. 

The proof of the Fundamental Lemma is contained in the second part of this work. 

7. The Conclusion of the Proof of Theroem i. We verify that the conditions of the Funda- 
mental Lemma hold. The fact that the sets D~ are pairwise disjoint is proved in Sec. 4; the 
fact that they consist of a finite number of domains is proved in Sec. 5; relation (6.5) has 
been proved in Sec. 6. Finally, from (2.8), (6.2) there follows (6.7) with s = 0. 

Applying the Fundamental Le~ma, we obtain (6.8). We have proved the following 

Statement i. Assume that the meromorphic function satisfies condition (i.I) and that for 
some sequence r m + ~ the condition (2.3) holds. We define U m, Umj by the formulas (2.6). 
Then for some subsequence of the indices m we have Um § u, Umj § uj, where u and uj have the 
form (6.8). 

From the comparison of (6.8) and (2.8) there follows that % = n/2. Thus, all the possible 
orders % of the Polya peaks are semiintegers. On the other hand, as indicated in Sec. 2, the 
possible orders of the Polya peaks fill out the segment [Pz*, P*], containing the segment 
[Pz, P]. Consequently, Pz* = P* = Pz = P = n/2 and, in particular, we have proved that the 
function f has a finite order and we have established the validity of statement i) of Sec. i. 
Since PI* = P*, from the formulas for Pl*, P*, given in Sec. 2, there follows that for each 
E > 0 there exist r0 > i, x 0 > 1 such that 

(7 .1 )  
T (Ix) ~ tO+~T (x), t > to, x > Xo; 

T (Ix) ~< to-~T (x), t < r~ t, lx  > Xo. ( 7.2 ) 

These relations are sufficient in order to replace (2.3) in Statement i; i.e., we have 

Statement 2. Assume that the meromorphic function f satisfies the conditions (i.I), (7.1), 
(7.2) with p = n/2, n being a natural number, n ~ 2. For an arbitrary sequence r m + ~ we de- 
fine Um, Umj by the formulas (2.6). Then for some subsequence of the indices m we have 
Um + u, Umj § uj, where u and uj are functions of the form (6.8). 

Indeed, the conditions (7.1), (7.2) with x = r m ensure the applicability of the theorems 
of J. M. Anderson and A. Baernstein ii and of V. S. Azarin on the compactness of the sequences 
Um, Um4. Selecting subsequences, we obtain (2.7). Instead of (2.8), by a limiting process, 
from (# i), (7.2) with x = r m we obtain the relation 

2J~ 

l S 2~t 
o 

12r~ r >~ re. 
u* (re i~ dO ~< \ 2r,O_e, r ~< ro I 

(7.3) 

with equality for r = i. In the sequel, Statement 2 is proved in the same way as Statement 
i, but with the following modifications. For the estimations of the remainders in (2.4), (3.1), 
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instead of (2.3) we make use of (7.1). In order to prove that the sets Dj consist of a finite 
number of domains, in Sec. 5 instead of (2.8) we make use of (7.3). Finally, for the verifica- 
tion of the condition (6.7), instead of (2.8) we make use of (7.3). 

From Statement 2 and from (2.5) there follows that T(cr)/T(r) + cP, r § ~ uniformly with 
respect to c e [i, 2]. Setting T(r) = rPs we obtain s ~ s r § ~ uniformly with 
respect to c e [i, 2], i.e., (1.5) holds. 

We prove (1.4). We denote by X the set consisting of the subharmonic functions of the 
form 

u (rel~ 0o) = =to I cos p (0 - -  Oo) I, Oo E i - - a ,  =). 
1 1 

Obviously, the set X is compact in Llo c. We note that Llo c is a metric space. We consider the 
family of functions 

[ ~ )/(tot~(t)). vt (z) = ~log 

We show that dist(vt, X) § 0, t § ~ (7.4). Assume that (7.4) does not hold. Then there exists 
a sequence t m § = such that dist(Vtm, X) _> r > 0, m + ~. Taking this sequence for rm, we apply 
Statement 2. We obtain that for some subsequence Vtm § u, where u e X; contradiction. Rela- 
tion (7.4) is proved. 

Let u t e X be the nearest element of v t. We show that dist(u t, u ct) § 0, t § ~ (7.5) 
uniformly with respect to c e [i, 2]. Assume that this is not so. Then dist(utm, uCmtm) _> 
s > 0 (7.6) for some sequences c m e [i, 2], t m + ~. We have 

c t  ( z ) =  vc f , .  (z) + o(1) = cZ%, m (cruz) + o (1) = c~"ut= (c,.z) + o(1) = utm (z) + o(1), 

s i n c e  c - P u ( c z )  = u ( z )  f o r  a n y  u e X a n d  c > 0 .  We h a v e  o b t a i n e d  a c o n t r a d i c t i o n  w i t h  ( 7 . 5 )  
a n d  t h i s  p r o v e s  ( 7 . 5 ) .  

I f  u t = u ( . ;  9 0 ( t ) ) ,  t h e n  f r o m  ( 7 . 5 )  t h e r e  f o l l o w s  t h a t  0 0 ( t )  --  8 o ( c t )  § 0 ,  t + = u n i -  
f o r m l y  w i t h  r e s p e c t  t o  c e [ 1 ,  2 ] .  F rom ( 7 . 4 )  we o b t a i n  t h a t  v t ( z )  = u ( z ;  e 0 ( t ) )  + o ( 1 )  i n  

1 
L l o  c f o r  t - oo F i n a l l y ,  w i t h  t h e  a i d  o f  V. S .  A z a r i n ' s  t h e o r e m  on c o n v e r g e n c e  w i t h  r e s p e c t  
t o  t h e  1 - m e a s u r e ,  we o b t a i n  ( 1 . 4 ) .  

The r e m a i n i n g  a s s e r t i o n s  o f  T h e o r e m  1 c a n  b e  d e r i v e d  e a s i l y  f r o m  ( 1 . 4 ) ,  ( 1 . 5 ) .  I n d e e d ,  
f r o m  t h e  a s y m p t o t i c  f o r m u l a  ( 1 . 4 ) ,  i n t e g r a t i n g  a l o n g  c u r v e s  t h a t  d i f f e r  l i t t l e  f r o m  r a y s  and  
go  a r o u n d  t h e  e x c e p t i o n a l  s e t  Co,  we o b t a i n  t h a t  f o r  some b j  e C we h a v e  

log 1 _ _  = ~r~l 1 (r) [ cos p (O .-- [2 (r))l �9 o (r~l 1 (r)), ! / ( r J  O) - -  b/I 

-fb-p (2i - - 3 )  < 0 - -  l~ (r) < -~-~ ( 2 / - -  1), 

when re i8 ~ Co, r + ~ uniformly with respect to e. From here and from (1.5) we obtain at 
once properties 2), 3) from the formulation of Theorem i. 
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