
We note that instead of the inequality ~(m) I < ~, whose proof is very involved, one 

could use the weaker inequalityJ ~ (m) I <P'f"+ pV% proved in [6] by comparatively elementary 
means, 
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MEROMORPHIC SOLUTIONS OF FIRST-ORDER ALGEBRAIC 

DIFFERENTIAL EQUATIONS 

A. ~. Eremenko UDC 517.92 

Let K be the field of germs of meromorphic functions at ~, M be the field of functions 
which are meromorphic for r < Izl < ~ (r depends on the function). By K[t,, ..., tn], 
K(t,, ..., tn) , respectively, we denote the ring of polynomials and field of rational func- 
tions in t,, ..., t n over K. Let y ~ M be a solution of the differential equation F(y', y) = 
0, F~I K[t,~ t=]. We study the order of the function y, i.e., the order of growth Of the 
Nevanlinna characteristic T(r, y) as r ÷ ~. The finiteness of the order is proved in [i], 
and it is established in [2] that the order is a rational number. The history of the question 
is described in [2, 3]. We note that in [2], instead of K the field C(z) is considered, and 
instead of M, the field of functions, meromorphic in C. All the results and their proofs 
from [2] remain valid for the fields K and M also. 

THEOREM. Let the function y ~ Msatisfy a first order differential equation with coeffi- 
cients from K. Then the order of the function y is a number of the form k/2 or k/3, with k 
a nonnegative integer. 

For equations of the special form (y,)m = R(y), R~ K(t) this result is found in [3]. 
Examples from [3] show that all numbers of the form indicated can occur. 

Proof. Since functions from K have order zero, one can assume that y ~ M\ K . We 
consider the field ~ K (y',~)CM . This field is of transcendence degree 1 over K, and is 
closed with respect to differentiation. By Theorem 6 of [2], the field ~ is Fuchsian, so its 
genus is equal to 0 or 1 (cf. [2, Sec. 5]). We note that the orders of all elements of ~ ~ K 
are identical [2]. 

Let the field ~ be of genus 0 over K. By a theorem of Lang [4, Chap. II, Paragraph 3.3 c] 

~-~K~w) holds for some m-~. We have w' = R(w), R ~ K(t). From the Fuchs conditions [2, 5], 

it follows that R is a quadratic polynomial, i.e., w is a solution of a Riccati equation with 
coefficients which are meromorphic at infinity. It is known that the order of any transcen- 
dental solution of such an equation is a number of the form k/2, k ~ N [6], which proves the 
theorem in case of genus O. 

Now let the field ~ be of genus 1 over K. We set ~ = ~ (~',~), where ~ is the algebraic 
closure of the field K, i.e., the field of germs of functions which are algebraic at infinity. 
It is k__nown [5, 7] that a Fuchslan differential field ~of genus i over an algebraically closed 
field K has the form-~[~ ~ (m,~), where 
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w ~ = (x - -  el) (x - -  e2) (x - -  es) = x 3 -~- A x - I -  B ,  ( 1 )  

e. ~ C are pairwise distinct, e~ + e~ + e3 = 0, 

x ' = ~ w ,  ~ , ~ _ ~ ,  ~ ( z ) ~ c o n s t z  c~, z ~ o o ,  c ¢ ~ Q .  ( 2 )  
z 

that x(z)=~(+I~(t)dt), so s >~--i, and the order of the function x is It follows from (i), (2) 
Z0 

equal to 2(1 + ~) [2, Sec. 5]. We shall prove that the number a is a multiple of 1/4 or 1/6. 

For any v ~ ~, we denote by ov the result of analytic continuation of v along a curve 

going once around ~. It follows from the obvious equation oy = y that o is an automorphism 

of the field ~. We note that o commutes with differentiation. The general form of auto- 

Any morphisms of fields of genus 1 determined by (i) is known. Let A = 4A~/(4A 3 + 27B2). 

automorphism of the field ~I is given by [8] 

where ~ = i, v 2 = i 

z l  = ~ {(w - -  b)2 / ( z  - -  a) ~ - -  x - -  a} ,  

Wl = v {(w - -  b ) / ( x  - -  a) [ - - ( t o  - -  b)2/ (x  --: a) 2 -~- x + al - -  ( xb  - -  w a ) / ( x  - -  a)},  

a,  b ~ K ,  b 2 =  ( a - - e l )  ( a - -  e~) ( a - - e 3 ) ,  

if A#=0, i; ~3= l,v ~= I if h=0, ~2_-- i,v 4= i if A = i. 

(3) 

(4) 

(5) 

Now let xl = ox, wl = w. We write theconditions on a and b under which the automorphism 

(3), (4) commutes with differentiation. For this we apply o to (2) and into the formula ob- 

tained x~ = (oX)wl we substitute the expressions for x~, wl found from (3), (4). First let 
b # 0. After transformations considering (i), (2), (5), we get 

(a,)2 = ( ~ - l w o ~  __ %)2(a __ e l ) (  a __ e 2 ) (  a __ e3). 

(Compare [7, Sec. 13], where this calculation is made in the Jacobi notation.) Since the 

function a is algebraic at ~, and a # ei, i = i, 2, 3 (by (5) and the assumption that b # 0), 

we get 

~ - l v o ~ ( z ) -  ~ ( z ) =  o ( z - 1 ) ,  z ~ ~ .  ( 6 )  

If b = 0, analogous calculations give ~-Iv~X = h, so in any case (6) holds. The number 

~-i~ is a root of one of degree 4 or 6. Hence it follows from (6) that the number ~ is a 
multiple of 1/4 or 1/6, which is what had to be proved. 

Now we consider an equation whose coefficients have an essential singularity at ~, namely 

F(g',y) = 0, f ~M[tl, ti]. The solution of this equation y ~ M is called admissible, if for any 

coefficient a of the polynomial F one has T(r, a) = o(T(r, y)). In contrast with many results 
on first order algebraic differential equations (cf., e.g., the survey in [2]), the theorem 
proved does not have an analog for admissible solutions. In fact, in [9] A. A. Gol'dberg 
constructed an entire function w of preassigned order p > 0 with the following properties. 
The function N(r), counting simple roots of the equation wZ(z) = 1 in the disc {z: [z I < r} 

has order Zero. All remaining roots of this equation have multiplicity 2. 

We consider the meromorphicfunction a = (w'2/(w 2 --i). The functions counting poles of 

this function, obviously has order zero. Moreover, by the lemma on the logarithmic derivative 
[i0], for the Nevanlinna approximation function m(r, a) one has 

m ( r , a )  < m ( r , w ' / ( w  - -  t ) ) +  m ( r , w ' / ( w  + t ) ) =  O ( l n r ) .  

Thus, the function w has order zero, and the entire function wof preassigned order p > 0is an 
admissible solution of the differential equation (w') 2 = a(w 2 -- i). 

The author thanks A. A. Gol'dberg and V. G. Drinfel'd for helpful discussion, and the 
referee for valuable remarks. 
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CONSTRUCTION OF CANONICAL COORDINATES ON ORBITS 

OF THE COADJOINT REPHESENTATION OF GRADED LIE GROL~S 

S. A. Kamalin and A. M. Perelomov UDC 519.46 

In this note we construct canonical coordinates on the simplest Ad*-orbits of-Z+-graded 

Lie algebras. Using a theorem of P. vanM6rbecke, completely integrable systems on certain 
orbits of Borel subalgebras of simple Lie algebras are produced. 

~ 

I. Let ~= ~be a Z+-graded Lie algebra and ~*~ ~ ~ be the dual space with the dual 
. ~ o .  ~ o  

grading ~=(~ ~)~. Obviously, for f ~ ~ the stationary subalgebra ~.f is graded, 
~ 

a!=~.~, ~,~ = at ~ ~ , and for even k the space ~k/= is orthogonal to ~ ~ with respect to 
~ / 2  

the form 4f, [.,.]>. 

THEOREM i. ~ = ~  is a Z+-graded Lie algebra. Suppose for f ~ ~k, ~k > 0 there exists 
~.>_~ 

a ~f,o-invariant maximal isotropic subspace ~.~/= of the space Nk/= with respect to the form 

<f,[.,.]> ~72 = 0 for odd k). Then 

~ = ~ ~f, ~ # ~;12 ~ i > ~ l ~  i<~l~ " " 

is a polarization satisfying Pukanskii's condition. 

Remarks. i. If all operators of the algebra ~f,01~/2 are nilpotent, the hypotheses of the 

theorem hold. 

2. If the algebra ~ is completely solvable and the grading is compatible with the filtra- 
tion by derived series, the polarization p can be constructed with the help of the construc- 
tion of Vergne [7, 8], described in [i, 2]. 

3. The hypotheses of the theorem hold for Borel subalgebras of semisimple Lie algebras. 
This immediately gives the following 
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