GROWTH OF ENTIRE AND SUBHARMONIC FUNCTIONS
ON ASYMPTOTIC CURVES

A, fS Eremenko UDC 517.535.4

Let f be 2 meromorphic, transcendental function in the finite plane having a finite number of a~points.
The well-known theorem of Iversen [1, p. 224] asserts that in this case there exists a curve I" going out to =~
such that f(z) - aas z— o, z=T, Such a curve is called an asymptotic curve. We henceforth make use of the
standard notation from the theory of meromorphic functions [1] without special clarifications, The following
questions arise naturally in connection with Iversen's theorem,

1°, If f is a rapidly increasing function, is if possible to choose the curve I' such that f tends rapidly to
the number a?

2°. Does Iversen's theorem remain true if the equation f(z) = « has an infinite set of roots, but the growth
of N(r, a, f) is substantially less than the growth of the Nevanlinna characteristic T({r, H ?

These questions were posed by Hayman in a lecture at Moscow State Univ. in 1960 {2]. They were later
repeated in [3] (Problems 2.6, 2.8). In answer to question 1°, Chang [4] proved that if the lower order of an
entire function is equal to A > 0, then there exists an asymptotic curve I for which

liminln|f(z)|/In|z|>min (1/2, }).

Z-+00

&

In this inequality the right side cannot be replaced by a larger constant even under the additional assumption
that f is an entire function without zeros [5].

Regarding question 2°, many results of negative character are known [1, Chap. V, See, 2]. The strongest
counterexample is due to Hayman [6]. In this paper Hayman constructed an example of a meromorphic func-
tion f of order zero for which é6(w=, f) = 1 and = is not an asymptotic value, In this same work Hayman proved
the following theorem, If for a meromorphic function
TN (e, )

t:i/‘.’.

Hm!T (r, /) — .i_,rlf’2

T-200

dt} = 4 00,
then a is an asymptotic value of the function f. Hayman's theorem asserts nothing regarding the rate at which
the function f tends to the asymptotic value. It follows easily from the theorem that if A is the lower order of
the function f and the order N(r, f) is strictly less than min (1/2, A}, then = is an asymptotic value. The con~
stant min (1 /2, M) in the results of Chang and Hayman is best possible for the class of all functions of lower
order A,

In the present paper problems 1° and 2° are considered in the class of functions of order o and lower
order A, 0 = A =p =< », Since Iversen's theorem is valid for subharmonic functions [7, 8], we shall consider
problems 1° and 2° for such functions. In the proofs of the theorems of the present work analytic functions are
not used, so that the main result carries over to subharmonic functions in R™, m = 2, However, the case
m = 3 contains certain special features, and a different paper is devoted to it [14}],

Remark. All the results of the present work were obtained independently of [4, 6]. The present work was
completed in the summer of 1977 and was reported at a seminar on function theory at Rostov University (super-
visor Professor M. G. Khaplanov) and at the Lvov Interschool Seminar on Function Theory (supervisor Profes-
sor A. A. Gol'dberg) in September-October of 1977.

Suppose that a function u can be represented in the form

ulz) = uils) — uelz), ©.1)
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where u;, u, are subharmonic functions on C. Wc denote by u; and u,, respectively, the positive and negative
parts in the Jordan decomposition of the signed measure Au, Au -uy —u,. We assume that the supports of the
measures py, p, do not contain the origin. We set
nirouy - ez}, Nrouy) - S ety u;) ’,T{’
o
M (r,wy  maxw;(z), @0 1,2
|:f r
Plrwy N (r,u,) i ’iwj ul (reity di.

[}]

If f is meromorphic on C, then In]fl can be represented in the form (0.1), and n(r, wy) and n(r, uy) are
equal, respectively, to the number of zeros and poles (counting multiplicity) of the function f in the disk {z:
fzl <r},

For a function @ (r) tending to +« as r — = we define the order p and the lower order A by the formulas

51 —_—
p ~Tim T (r)/hy r.
] [

The order (lower order) of a function u of the form (0.1) is called the order (lower order) of its charactceristic
T(r, u). If u is a subharmonic function, its order and lower order do not change if M(r, u) in place of T(r, u) is
used to define them. This follows from the well-known relation

VM2, w) = Ty w) - M, w0, (0.2)
We define the function A(p, A) for 0 = A = p = w as follows:
(A for A= ti2, (0.3)
p#—‘_i(L—,i_)—.‘_ for %<k<1, (»<LK—M—‘——IE, (0.4)
Al - { ) 1 :1/};(1 ) 2 R 27
a3 for _3“<7”<-1> p= - I'»);L“ T {0.5)
lm“ . for A1 (0.6)

It is shown below (Lemma 5) that for 0 = A =p = w
min(1/2, 2) < Alp, 1) < minll, A). 0.7)

THEOREM 1. Let the function u be subharmonic on C and have order p and lower order A, 0 <A <p = e,
There exists an asymptotic curve I' for which

(0.8)

]i_m Inu(zj/lnfz| = Alp, &).
o

1t follows from (0.7) that in the case of finite order Theorem 1 is stronger than the result of Chang. For
p = o (0.8) goes over into Chang's theorem.

THEOREM 2. Suppose that the function u has form (0.1) and has order s and lower order A, 0 <A =p <
«, Suppose that p[N] = p[N(r, uy)] < A(p, A). Then there cxists an asymptotic curve for which (0.8) is satisficd,

Estimate (0.8) is best possible for A = 1/2 and for A - 1,

For the case where u(z) - Inif(z)l, f a meromorphic function, Theorem 2 answers questions 1° and 2°
(it may be assumed with no loss of generality that « - <), In this case the conditions for the existence of an
asymptotic curve given by Theorem 2 and by Hayman's theorem [6] arc not comparablc,

It is obvious that Theorem 1 is a special case of Theorem 2. We shall show that Theorem 2, in turn,
follows from Thcorem 1. Suppose that the function u has the form (0.1). By means of a thcorem of Hadamard
{7, p. 142], we construct 2 subharmonic function uy of order p[N] with associated measure p,. The function
u* = u + u,; has order p and lower order A by (0.7). This function is subharmonic on C, and Thecorem 1 can be
applied to it. Thus, therc exists an asymptotic curve I’ for which

Himlnu® (z)/Infz| 2= A(p, A).

Py
a2
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Since the order pfug] = p[N] <A(p, A, (0.8) is satisfied for the function u{z) = u*(z) ~ ug(z).

Some auxiliary results needed for the proof of Theorem 1 are presented in Sec. 1, Theorem 1 is proved
in Sec. 2. Talpur's method is used to construct the asymptotic curve in the case of subharmonic functions.
Simplifications arising in the case of entire functions are indicated in each case. In Sec, 3 a version of Theo-
rem 1 is presented which encompasses the case of zero lower order. Moreover, examples indicating the ac-
curacy of Theorems 1 and 2 for A = 1 are analyzed in Sec. 3. The construction of these examples is based on
the method of Kennedy [9].

1

We set D(r) ={z:lzl <r}, D(x) ={z:lzl =r}, S@) ={z:lzl=r}, Ky, ry) ={z:r; <!z| = ry}. By the
derivative of a function of a real variable we henceforth mean the right derivative.

Suppose that a function u is subharmonic in D(ry), 0 <r; = %, We fix a number ry, 0 <r; < r;. A compo-
nent of the set E ={z:u@) = M(ry, u)} is called thick if it contains a point z for which uz) > M{r, u). We shall
consider only thick components of the set E and call them simply components. Let R be such a component. We
set

¢ (2) { 0. =l ' (1.1)
Mir,w), s D @I\

The function v is subharmonic in D(ry [7, p. 172]. Suppose that for the point z; =R the following relations are
satisfied:
“

d ] N
Jinr

Ho(roen

A, w)

o ':«Hnr‘[r '
! ! (1.2)

i:ll =Ty,

This implies that
wlz) = M. ). (1.3)
In this case we call the point z; a principal point of the function u on the circle S(ry).

LEMMA 1. For eachry, 0 <r; <ry,thereexists at least one principal point of the function u on the cirele
S(I‘i).

Proof, Let 0 <ry <r, <r;, The set ENK(r, r) has a finite number of thick components. This follows
from Hayman's theorem [7, p. 175]. We denote these components by Ry, . . ., Ry. We consider the sequence
(a), j=N, j=rp—r)7", of points for which u(ej) = M(lajl, w), lajl =ry + j~!. Obviously, each point aj belongs
to one of the components Ry, . . ., Ry. It is therefore possible to select a convergent subsequence (a_;h), a;, = I

y

where R is one of the sets Ry, . . ., Rp. We set z; = lim a;, and define the function v(z) by the relation (1.1).

20

It is obvious that 5, € R, |z =ri, and hence (1.3) is satisfied. We have M(ry + ji’, u} = M(r; + ji’, v). Because
of the convexity of the functions M(r, w), M(r, v) with respect to the logarithm, from this we obtain (1.2). Thus,
z4 is a principal point of the function u on the circle S(ry). The proof of the lemma is complete,

For a function u = 0 subharmonic in ﬁ(ro) we set
m{r, u) = \ w? (re’® do, r<lr,
0
The function u?
and hence

is subharmonic in D(ry) {7, p. 46]. This implies that m(r, w) is convex relative to the logarithm,

dm(r, u)/dinr=0, r<ro (1.4)

LEMMA 2. Suppose that in the ring K= K, y), 0 <x <y < =, y >ex, there are continua R and R' each
of which connects the circle S) with the circle Sy}, and R n R’ = @. Suppose that v and v! are subharmonic
functions in K, v(z)=0, v'(z) = 0; v(z) = 0 for z= K\R; v'(z) = 0 for z= K\R’. Then there exist positive functions
Iy, &, L{t) + L(t) = 27 such that

wle

rode A i (r, )} ! -
In M (y, v) > | m—;—_—_,ln(%ix)~?1nln, (1.5)
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ye dt g [dr i)
' mr, v
In M (y,v') ==n S‘ RO hl( dlur

£

)w‘—tlnﬂﬂ. (1.6)

This lemma follows easily from Carleman’'s inequality for subharmonic functions [10]. (See also {1, p.
230] for the case v(z) = In" If;(z)], v'(z) = Int [f,(z)|, where f, and f, are holomorphic in K(x, y).)

LEMMA 3. Suppose that the function u is subharmonic in D(ry, ry > 1, u(z) = 0 for Izl = 1, Then for all
r,1 <r =r,

dM(r, w/dlur = M, w)/Inr
Proof, By the theorem on finite increments

Mr,u)--M(,0) M (r, u)
Inr Z Inr

dM (r, 1)
dlnr

>

LEMMA 4. Let 4 (t) >0, L(t) > 0 be two functions on the interval (0, =), 4(t) + L) 27, and let X < (0, o)
be an arbitrary measurable set. Suppose that

. ‘ot (* dt {
S tl.,w\pﬁ'f’ P> 1.7)
A X
Then
dt n 2t
- T —
R_ ztlu)‘/:p ~4\ ¢
X IS

Proof. By the Cauchy— Bunyakovskii inequality we have

‘ ot l(’) e (/1\“’ . PR 1,8)
X 'y VX
From (1.7), (1.8) with j - 2 it follows that
£, (0 x (e
\ t “27.\ T
X X

Hence,

."[ 4/) r / el
i . g ﬂ — iy, dt
s ——dl = s (210 — {5 (1) = K—'J 7) s <
X Y .

Substituting this inequality into (1.8) with j : 1, we obtain the assertion of the lemma.

Suppose there are given numbers pand A, 0 = A =p =, We consider the extremal problem

A min] gl (1o E < oo, p < p oo, oiple— 1) - 1.9)

LEMMA 5. A solution of the extremal problem (1.9) is given by the function A(p, A) defined by relations
(0.3)-(0.6). This function satisfies inequalities (0.7). .

Proof. We first prove that the function A (p, A) defined by relations (0.3)~(0.6) satisfies condition (0.7).
It is obvious that (0.7) is satisfied for A = 1/2 and for A = 1.

Let1/2 <a<l,p = A+ VA(T=N)/@A—1). It is easy to see that in this case dA(p, M) /dp = 0, and

therefore it suffices to verify (0.7) for p = A and for p = (A + A0 =) /2A— 1),

Suppose now that 1 /2 <A <1, p > (A + YA(I = A) /@A —1). Inthis case the left inequality of (0.7) is ob-
vious, while it suffices to verify the right inequality for p = (A + YA(1 = N) /(21— 1), since the function A(p, A)

p/(2p—1) is decreasing.
We shall first prove the first assertion of the lemma. We set x = 1/l, ¢ = p/(2p—1), A= min  A{p),

1fagpoo

Alp) = mindg + h—qgla: O<ae<<1, ptA—plz< p}. It is easy to see that A - A for A = 1/2, Let A >1 /2. We

bhave
(1.10)

Alpy=2»n for pZp, A<y
(1.11)

Alp)=¢q Jor pZop, L=,
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Ap)=p—20— NGt == 20— 0B () for p>p. (1.12)

It follows from (1.10) and (1,11) that
min 4(p) = min (A, p/(2p0—1)). 1.13)

p<p

Investigating the function B(p) by elementary methods, we obtain

o] I
max B(p) =Blp) for 1/2<n <4, p>=> -+ Vall—n))/(2a—1), (1.15)
p=p
o %%V?»(i-?,))_ 1
I;)iZ(B(m_B[\ 2 —1 T2 VAT 1.16)
for 1/2<i<<1, p<’—;2v—’_<—’—i——’~’
We note that
p—2{p—~n)B(p) = p/(2p—1). (1.17)

From (1.12), (1.13), and (1.15) we obtain (0.4). From (1.12), (1.13), (1.15), and (1.17) we obtain (0.5}, From
(1.12), (1.13), (1.14), and (1.17) we obtain (0.6). The proof of the lemma is complete,

2

Proof of Theorem 1, We may assume with no loss of generality that

w(z) <0 for lzl < L 2.1)

We shall construct an asymptotic curve T whose existence is asserted in Theorem 1. We set e = ekaz,
k=2,3,....

Let z; be a principal point of the function u on 8(r, /4) which exists by Lemma 1. We shall construct by
induction certain sequences of points (zy) and curves (I,), I', < D{(r,.1), such that the curve Ik joints the point z
to the point z,.,, z, = S(n/4), and they possess a number of additional properties enumerated during the course
of the construction,

Suppose that the points z,, ..., zp and curves [y, ..., ['p.y, 0 = 2,havealready been constructed. We
consider the closed set E, ={z:ufz) = u(zp)f. It is known {7, 11] that the thick components of the set Ep are
unbounded. Let Ry be a2 component of the set E, 0 D(r,.;) containing the point z,. We set

o [p@ ), ze Ry 2.2)
Un (") - ‘lO~ ze=D (rn+1> .\R'll'

The function vy is subharmonic in D(rp+y). By Lemma 1 there exists a principal point z,,, = Str,.,/4) of the
function vy,

We shall need the following result of Talpur [11; 7, p. 188].

THEOREM A, Suppose that u is subharmonic in a neighborhood N of the continuum R, and u = M on R.
Any two points of R can be joined by a curve on whichu = M~ 1.

Using this theorem, we draw a curve 'y joining the point zy and the point zp4y so that
ulz) Zulz,) — 1, z=T,, 2.3)
This completes the inductive construction,

Remark. In the case where u(z) = Inlf(z)| and f is an entire function, the set Ry, is linearly connected,
and it is therefore nof necessary to use Theorem A, In place of (2.3) in this case it is possible to obtain the
stronger relation u(z) = ulz.), z=1,.

We set T'= OC) I's and prove that the curve I" satisfies all the conditions of Theorem 1.
=2

For each k = 3 we consider the component Ri’; of the set R, " D(r,) containing the point Zi. It is easy to
see that

Ri <R, RicR._.. @.4)
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We define the function vy as follows:

*
Uk(z)v ZERh;

U* Z) = —_
() 0, z&D(r)\ R

The functions vig and v — Vi; are subharmonic in ﬁ(rk). Since zy is a principal point of the function v_;, it
follows from (2.2) and (2.4) that vj; = 0 for z < D(lz,]), and hence

M (I';‘//L, vyl =m (7’;‘/4, LZ\' = 0. 2.5)
Moreover, by (1.4) we have for rp /4 = r =< ry
dm (r,v;) _ dm (r, v;) din (r, vy — z:/} dam [ﬁr, z;‘:)
dinr ~ dinr dlnr ATy 2.6)

Since for ri /4 = r < ri. we have M(r, vi;) — M(r, vi—y) = ulzg-{) —u(zy), it follows that

M (r, vy) _ M (n )

dlnr dlnr

.
SISy (2.7)
For any subharmonic function we have by the Cauchy —Bunyakovskii inequality and (0.2)

mir, )= 28T (r, w) 3= 0 M (1/2, ). 2.8)

We decompose the natural numbers k = 2 into two classes as follows.

1°, The number k we assign to the first class if the set R contains a principal point aj of the function u
on the cirele S(ri/4). In this case gy is a principal point not only of u but of vi. as well. Therefore,

Mr/4, u)=ule) <max{u(z):ze R, lzl =r, /4 =ulz1), 2.9)
aM (r,uw)] M (rvy)
dlnr |rga  dlnr jm (2.10)

where the function vy is defined in (2.2). By (2.1) the function u satisfies the hypotheses of Lemma 3. This
lemma together with (2.10) gives

aM (r, rh)
dlnr

M (r,f4, ©) @.11)

rpia Z In (rk/4) )

2°. We assign a number k to the second class if the set Ri; contains no principal point of the functionu
on the circle S(ry /4). Let ¢ be a principal point of the function u on the circle S(r /4). We denote by R{< the
component of the set {z : u(z) = M(r/4, w)} N D(r,y1)) containing the point «y. It is easy to see that R, R, = &
and that the continuum Ri{ joins the circle S(ry /4) to the circle S(r.,). We set

e — fu (z) — 1_1 (ral4, w). ze R,
' IO, z& D (res)\ By

By means of Lemmas 1 and 3 we obtain the relation

dM (7 u;) M (r, /4, )
dinr  jra ™ Ingr iy 2.12)
which is analogous to 2.11),
We can now prove (0.8). Because of (2.3) for this it suffices to show that
o w(za,1) = Alp, A Inlzapl +oln lz.1D), n— oo (2.13)

If the number n belongs to the first class, we have by (2.9), (0.7), and the choice of the numbers rp
In ulz,.1) = M0, /4, w) 2 Aln (r/4) + oln 12,,,1)
= Alp, &) In (r/4) + olln |z, 1) = Alp, &} ]In lzpgrt o (n lzagil), 10— <.

Suppose now that the number n belongs to the second class. Let q be the largest number of the first class
not exceeding n, Such a number q always exists, since the number 2 belongs to the first class by construction.
Tet k be a natural number, g + 1 = k = n., We apply Lemma 2 to the ring K = K(rk, rk+q /4), setting there R =
R.NK R —R,NK» V=V, V' = Vk. By this lemma there exists functions lik(t), bk(t), Lk(® + br® =27
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satisfying the inequalities (1.5) and (1.6). We set
l;(l‘.) = llk(t), Ty <i< rH;/(fJ.e),

L) =L lD). <<t < ruy/lhe), gti<k=smn

From (1.8) it follows that

i /() .
v o ) > Y a1 dm (r, ;) }__:_1 5 1
I M (rpnidy w) 200 M Ara/s, vl 200 | e g I == 1= g In e 2.14)
TR - ‘
By the convexity of the function m(r, vi{) relative to the logarithm
dm ‘r, v, 1 ’ ' o 2%
-d—}rﬁﬁ rh>ln_4{m {rg, vh)—zn (7k/4, v,‘)). (2.15)

From the definition of the function vy it follows that M(ry /4, v{{) = m(rg /4, vii) = 0. Using (2.15) and (2.8}, we
find that

dm (r. 1";:)
dinr

1 ’
= wam (,"1:., Uh) =

27 o s ’

, a7 M 2, )

"k

Apgain using the theorem on finife increments, the convexity of the function M(r, vi{) relative to the logarithm,
and inequality (2.12), we obtain

dm (r v!) xln ZMZ (rp,/4. uy

TR
dinr ; ) In® (ruf% ’ 2.16)
Substituting (2.16) into (2.14), we arrive at the inequality
Fpay/the)
In M (rpq/4, w) =0 ”dit) +In M (r/4, w)y—Inlnr,— Q, 2.17)
Ik 2
where Q is an absolute constant. Summing formulas (2.17) onk for g + 1 = k = n, we find
p L0
M etdy=a S L 2 M (rgasld w) — nInln ry— 5O
In M (rppa/h, u) =5 )‘Aq!l . TR (rgs1/4, u ? 1 ry — 1. 2.18)
s Iy -
From (1.5) it follows that for each k,q +1 = k < n, we have
rp11(4e)
L , o
n A ! . dt 1 dm (r, 1 (\, 1
M (rpa/b, vy =mn J T -+ Tin (\——“d—dlnrl irk)— — In2m, 2.19)

r

Using (2.6), the convexity of the function m(r, vi) relative to the logarithm, 2.5), 2.7), and (2.8), we obtain

dm (r, vk) dm (r, zf:} 1 [ * 9 2 i P xln2 [dM (r, v;:) ‘\2 aln2 /dM(;-, L'/;‘-l)’ \\2
T 0= dTr |2 ma™ e U) 2y VP 2, el =5 ATV P ( dinr i"k/ii - 2.20
Applying Lemma 3 to the function vi_; we obtain from (2.20)
dm (r, v,) aln2 M* (rpl4 vyq)
dlnr |p/e® 9 n® (1, /4) )
We substitute the last inequality into (2.19). We have
rh+1/(;¢’)
In M (rpal4, v) = j 7#27) + In M (ri/4, vy—y) — Inlnr, — Q. 2.21}
1
l’k
Summing (2.21) onk for g + 2 = k = n, we obtain
n T]H;l/([‘e)
d
In M (rpi2/4, vn) >nl 2 % ﬁ I M (rgs /b, ver) — (n— D) Inlnr, — (n— 1) Q. 2.22)
TR
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From (2.20) for k =q + 1 and 2.11) for k = q, using the fact that the number g belongs to the first class, we
obtain

dm (r vq+1)
dlnr

nin 2 {dﬂ[ (r q)
rq1® 9 dinr

rq+1/4} =9 dlnr

From (2.23), 2.19) for k=q + 1, and (2.22), we obtain

2 amM (r, 2
nln2 {—-(iiﬂ 5 ,4} > B2 (ry/4, w)/In? (rgf4). 2.23)

n Tet1/(30)
dt
In M (rps1/4, va) = h:;irl T +1In M (r4/4, v) — ninlnr, — n@. (2.24)
2 "

We set X, = U [rn, "ei/(4e)]l. We note that
k=q+1

Y %t-: In|zppy | — Infzg] + o (In]2ny |}
X
n(lnlnr, + Q) =o(In|zp4|), n—oo. 2.25)

We choose the number p, from the condition

Using Lemma 4, from this we obtain

at P, dt 1
”Y tll(t)>2pn~1ST’ P
Xn x

Inequalities (2.18) and (2.24) can now be rewritten in the form

In M(|zupil, @) = pulln g0l —1n 2,1 + In Mz, ) +oln lz.D); (2.26)
th(lzn+1i,Vn)>——2pp11(1nlzn+1|~hllqu)+lnM(|Zq[7 u)+o(ln|zp41]), n—>oo. 2.27)

We observe that
pln lzepil = 1n Mz, |, w) + olln l2,.0), n - o, 2.28)
An lzl <In M(lz,], )+ olln 12,11), 7 — o, 2.29)
In u(z,.1) = In M(|z,41, v,), n > o, 2.30)

We set lnu(zpsy) = Aplnlzpyl. From (2.26)-(2.30) it follows that for sufficiently large n

(p+ £,) In 12,0| = polin l2,01—In [2,]) T A 1n lz],
r
(A, 4 &) Inlzﬂ+1l>‘2p—li(lnlzn+1|" lnlqu) +}"1nlzq|v
n
where eq — 0 as n — %, We set tn =1nlzp+!/Ini zql and arrive at (1.9) withp + £p in place of p, Aph + €p in
place of A, and py, in place of p. It follows from Lemma 5 that Ap + en = A(p + €p, A). Letting n tend to =, we
obtain lim 4,2 A4(p, }), and hence In u(z,,1) = A(p, A)In |z, +o(n |z,}), » > o, which proves (2.13) in the

n->00

case where the number n is of second class., The proof of the theorem is complete.

3

By the method used in the proof of Theorem 1 it is possible to obtain the following result which encom-
passes the case of zero lower order.

THEOREM 3. Suppose that the positive, differentiable function ¢ is increasing on [0, =),

ae () 1
dlnr é? (3'1)

and suppose for the subharmonic function u

In M(r, u) 2 ¢lr), 0<r <o, (3.2)
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Then there exists an asymptotic curve T" for which

In eiz) Z @eUzD)—(In [z])V2*, 2= T, r>rle) (3.9

for any ¢ > 0,

Proof, We construct the curve I' as in the proof of Theorem 1, Because of (2.3), it suffices to show that
the relation (3.3) is satisfied at the points z, = I'. If the number n belongs to the first class, we use 2.9}, 3.1),
and (3.2):

nulz) =In Mzl w=oelz.l) =elz,nl) — Velln lz, | —In |2,])
= plz )=+ 1)2n2) = ¢UzpD—n—2 = Uz, D—In {21112 5 o5 o,
If the number n belongs to the second class,wehave by (2.24}, 2.25), and [;{t) = 2« the following inequalities:
Inw(z,y) = In M{z,,00, v2) 2 Yaln 120l —In 12,1) @Uzan D) = @Uz) <ol 2,00 = Indgf). 8.4)
From (3.1) it follows that
@Uznar 1) — @lzgD) <1/20n 17, ~ In {2,]).

Together with (3.4) this gives

Inw(z,,1) 2 olz,,1) + 0 In n) = @z, D —(In 12,V 1 — o,
The proof of the theorem is complete.

It is obvious that Theorems 1 and 2 are sharp for A = 1/2. The following example shows that Theorem 1
is sharp for A = 1, For such A we have A(p, }) =p/{2p— 1).

Example, Letp <=, On [0, <) we define two functions ¥, and ¢, as follows:

1/, 8% < r << 8% - 1
(/o — 1/3) (r — 8k — 1) + 4/h, 8k~ 1 < r < 8k - 2;
1p, 8k + 2 r << 8 - 3;
(1% — 1) (r — 8k — 3) 4 1/p, 8 -+ 3 < r<C 8k +- 4;
¥a () = A/, 8k -+ 4< 1< 8F + 5;
(2 — 4/p — 1/3) (r — 8k — 5) 41/, 8k 4+ 5 < << 8k - 6;
2—1/p, 8k +6<r<(8k+T,;
(1/h— 2 = 1/g) (r — 8k — T) + 2 — 1/p, 8k - 7 < r<8%+-8.
E=0,1,...;

1/h, 8k<lr<{8k-+1;
@—1/p— 1A —8k—1) + 1A, 8k +1<r <8k -+ 2
2—4/p, 8k +2<Lr <8k +3;

(1/h— 2 +1/p) (r— 8k — 3) + 2 — 1/p, 8k + 3T r<Bh+4;

Py (1) = 1, 8k +4<r <8k 4 5;
(1/p — /) (r — 8k — 5) + 1/A, 8k + 5 <r <8k + 6;
i/p, 8k + 6 <Cr<C8E 4T
(A/h— ip)(r — 8k —T7) = 1/p, 8k 4+ T<Lr<C8k+8;
k=0,1,....

We set Jj(r) = pj(In"In"r), j =1, 2. It is obvious that

dL, (r)
dlnr

<4, j=12 3.5)
We consider the half strips

o =l—styiyi<Fl@ a>cf j-1,2
Suppose that the function £ (z) maps conformally and in single-sheeted fashion the half sirip Q25 onto the half

stripQo=1{C=8+in:inl <a/2, £>0}, T(=in/2\ + e°) = in/2, T;(c0) = oo . Applying a theorem of Ahlfors [12, p,
226] and a theorem of Varshavskii [12, p. 230], we obtain, on recalling (3.5),

681



Rel; e+ i) =U+o() | 77, 7=1,2 (3.6)

j

uniformly with respect to y as x — », We set xi = expexpk. Using the definition of the functions lj, we deduce
from (3.6):

Refilz+iy) < U+oll)px, z— o 3.7

max Retdz+iy)t = U +o))rz, z— oo; 3.8)

Re 8i(zsnys T iy) = (4 + o)) pzgsys, k — o (3.9)

Re Cilagner +iy) = (1 + o) hzgry, k- oo; 3.10)

Reg; Ttz + ) = (L + o (1)) (p/(20 — 1)) Zspi7, k> o0; 3.11)
Re &y (zsnrs + iy) = (1 4- 0 (1)) (0/(20 — 1)) Zgpy3, kb~ oo. 3.12)

The function w = e%Z maps the half strip £; onto a Jordan region Dy in the C plane, « = @&D,. The function
¢1(Inz) maps conformally and in single-sheeted fashion the domain D, onto the half strip Q,, We set oy(r) =
max { Re ¢i(lnz): lzl = r}. By Kennedy's theorem [9, Theorem 2] there exists an entire function Fy(z) bounded
off the domain Dy for which

Inln M(r, F1) ~ gy(r), r— oo, (3.13)

Similarly, the function ~eZ maps the half strip @, onto the domain D,, « < 8D,. It is easy to see that
DN Dy= 3. The function g, (In (—z)) maps conformally and in single-sheeted fashion the domain D, onto the
half strip Q¢. There exists an entire function F,(z) bounded off the domain D, for which

Inln M(r, Fy) ~ 03(r), r— oo, (3.14)

where oy (r) = max{Re Z,(In (~z)): lz| = r},

We set ¥(z) = Fy(z) + Fy(z). From 3.7), (3.9), (3.13), and (3.14) it follows that the function F is of order
p, and from (3.8), (3.10), (3.13), and (3.14) it follows that the lower order of the function F is equal to A,

Let T be an asymptotic curve along which F(z) — %. Since the function F is bounded on C\(D; U Dy),
starting from some point, the curve T is contained in one of the domains Dj. Suppose, e.g., that I'= D;, From
(3.11), (3.13) it then follows that the order of growth of the function F on the curve I' does not exceed p/@2p —
1). If T =Dy, we use (3.12) and (3.14).

An analogous example can be constructed for p = » as well by choosing suitable functions y; and ¢,.

Thus, Theorem 1 is best possible for A = 1, By applying to the example constructed above the method
used in Example 2 of [1, Chap. V, Sec. 2], it is possible to construct an example demonstrating the sharpness
of Theorem 2 for A = 1, In this case for each € > 0 we obfain a meromorphic function f of order p and lower
order A, 1 = A = p = o, for which p[N] = p[N(r, £)] <p/(2c —1) + &, and « is not an asymptotic value of the func-
tion f.

In order to construct an analogous example with p[N} =p/@p — 1), it is necessary to invoke refined
orders and in place of Lemma 2.1 of [1, Chap. V, Sec. 2] to use Theorem 5 of [13, Chap. II].

In the case where 1/2 <A <1 it is not possible to construct corresponding examples. Probably Theorems
1 and 2 can be refined somewhat in this case.

The author thanks A, A. Gol'dberg for many suggestions and remarks made during the course of the
work.
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A REMARK ON RIGIDITY OF QUASICONFORMAL
DEFORMATIONS OF DISCRETE ISOMETRY GROUPS
OF HYPERBOLIC SPACES

S. L. Krushkal"’ UDC 512.817:515,178:517.54

1. Mostow's well-known rigidity theorem [1] asserts that in more than two dimensions quasiconformal
equivalence of two complete Riemannian manifolds of constant negative curvature and finite volume implies
their isometry (uptohomotopy). See [2] for strengthenings and generalizations of this theorem. In a recently
published, very substantive preprintof Sullivan [3] is given, in particular, an extension of this theorem to the
case of manifolds of infinite volume, whose volume grows slower than the volume of a hyperbolic space, Let
us observe that the hypothesis about the validity of this result was first made in an equivalent form by the
author in [4]. Sullivan's proof is based on very deep facts from ergodic theory, The indicated rigidity theorem
admifs an equivalent reformulation in terms of appropriate Kleinian groups after passage to universal cover-
ings of the considered manifolds.

Here we show that in the more special case of manifolds, also, in general, of infinite volume, we can
give an elementary proof of the rigidity theorem. This case covers Mostow's theorem, and for groups with a
nonempty set of discontinuity on the invariant sphere somewhat sharpens the corresponding result of Sullivan.
The proposed proof clears up the period of rigidity well,

2. Let #(n) be the Mdbius group of (orientation-preserving) conformal automorphisms of the space
R*=R"U{w}, n=2, and T be its discrete subgroup with the limit set A(I) and the set of discontinuity ()
(which can be empty).

The elements of #(n) are extended to isometries of the half space Rf}“ ={x = &y . .05 Xnpq)ixXpe > 0f,
considered as a hyperbolic space with the metric
w1
ds* = 2 da/ gy (1)
=1

Then the extension of I' gives a discontinuous group in R*; the boundary points of its fundamental polyhedron
inRI™, lying in A(T), will be called its boundary vertices,

The group I is said to be (quasiconformally) rigid if each compatible with it) dquasiconformal automor-
phism f:RY™ — R, je., an automorphism f such that T/t =T, = (), induces a M&bius mapping on R =
oRIH! fi.e., for each such f the group I't is conjugate to ' in £(n) .
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