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In this article we give an almost complete solutiom of the inverse problem of the 
value distribution theory in the class of meromorphie fcnr of finite order. The prob- 
lem that corresonds, roughly speaking, to the s~imss of entire functions remains open. 

i. We use the standard notation of the Nevan1~a theory (see, e.g., [i]). A mero- 
morphic function, if not stated anything to the comtrary, means afunetionthat ismeromorphic 
in the finite plane. 

The following deficiency relation is one of the maim results of the theory of meromorphic 
functions: For each meromorphic function f 

a(a,O<z. (1. I)  

Moreover, 0 ~ 6 ( a , [ ) ~ i  fo r  a l l  a ~ C .  

Drasin [2] has solved the inverse problem o f  t l ~  v a 1 ~  d i s t r i b u t i o n  theory ,  formulated 
in  1929 by Nevanlinna [3, p. 90] :  To f i n d ,  f o r  each c~mmtable subset { a j }  o f  C and a r b i -  

t r a r y  numbers 6j such that 0 < 6j ~ i and ~65~2, a mer~rphic function f, for which 
J 

6(aj, f) = ~j and 6(a, f) = 0 for a6{~. %~ae inverse problem was solved earlier for entire 

functions by Fuchs and Hayman [4]. The functions, em~strueted in [2, 4]~ have infinite 
order. 

The solution of the inverse problem in the class of meromorphic functions of finite 
order is not less interesting. For example, let us observe that the deficiency of a function 
of infinite order is not a completely correct notion that characterizes the asymptotic behavior 
of the function, since it can strongly depend on t~e choice of the origin of coordinates. 
We can easily remove this dependence for meromorphic fxmmctions of finite order (see, e.g,, 
[i, Chap. IV, Sec. 6]). Till now the inverse pro~le~formeremorphic functions of finite 
order has been solved only in the case of a finite set of deficient values [I, Chap. VII, 
See. 5]. The difficulty of this problem in the ease of am infinite set of deficient values 
is elucidated by the fact that the deficiencies of functions of finite order satisfy addi- 
tional relations besides (i.i). Teichmuller [6] has ewes conjectured that for functions 
f of finite order 

for ~ = 1/2. The precise result in this directiom has ~ obtained by Weitsman [7] : The 
relation (1.2) is valid with ~ = 1/3 for meromorphic fca~etions of finite lower order. The 
series in (1.2) can be divergent for ~ < 1/3 [4]. ~oreover, Weits~n [8] has proved that 
if equality is attained in (ioi) for a meromorphie flmetion of finite lower order, then 
the set of deficient values is finite. Then Drasim [9~ showed that in this case the defi- 
ciencies 6(a, f) must be rational numbers. On the other h~nd, Nevanlinna [I0] has obtained 
the following result (see also [i, Chap. VII, Sec. 5~: Let there be given a finite set 
of complex numbers a I .... , aq and positive ratiomal m~rs $I .... , 6q such that 6j ~ 1 

q 

and ~ 5j = 2. Then there exists a meromorphic fumction f of f~n~te order such that ~(aj, f) = ~j 
j=l 

for i ~ j ~ q. In the present article, we prove ~ following theorem. 
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THEOREM i. Let {aj}j= I be a countable subset of C (~ ~) and 6j be positive 
numbers such that 

0<6j< I, ]=I ..... ~; (1.3) 

A =  Y~ ~ < 2; j=l  (1.4) 

~ ~,'3 ( i. 5) v 3 ~ ~. 

Then there exists a meromorphic function f of finite order such that 5(aj, f) = g and 
6(a, f) = for a~{aj}. 

We give the proof of this theorem only for ~ = ~. The proof in the case of finite 
is obtained by the same method (with simplifications). Moreover, Theorem i for ~ < ~ follows 
from the mentioned result of Gol'dberg [5]. 

By virtue of (i.i), (1.2), and the Weitsman theorem [8], all the assumptions of Theorem 
i are necessary, except, possibly, the condition 6j < i in (i.3). Let us consider this con- 
dition in detail. If (1.4) is fulfilled, then the equality 6(a, f) = i can be valid only 
for a single value of a. Let us suppose that a I = = and 6 i = i. The condition 6(~, f) = I 
menas that f is similar to an entire function. We should obviously expect relations, 
stronger than (1.2), for these functions. Thus, Arakelyan [II] has put forward the conjec- 
ture that 

~ec ]og(e/8(a,])) <~ (i.6) 

for entire functions f of finite order. It is probable that the relation (1.6) is ful- 
filled for all meromorphic functions f of finite order sech that 5(a, f) = i for a certain 
a~C, 

The method of proof of Theorem i enables us to solve completely one more problem in 
the theory of meromorphic functions. Petrenko has studied the quantities 

(a, ]) = l ira log + M (r, a , / ) IT (r, 1), 

where M(r, oo,/)= sup ]/(z)[, M(r, a, /)=M(r, ~, (l--a)-1), and a~C. If f has finite lower 
|zl=r 

order, then the set E~(/)={a~C:~(a, /)>0} is countable. The set E n can have the cardi- 
nality of the continuum for functions f of infinite lower order. These results of Petrenko 
are given in [12]. Solving Petrenko's problem [12], the author [13] has proved that 

aE~ 

for meromorphic functions of finite lower order. We know [12] that the constant 1/2 in 
this relation cannot be replaced by a lesser one. The following theorem gives complete 
solution of the inverse problem for the quantities $(a, f) in the class of meromorphic func- 
tions of finite order. 

Let there be given a countable subset {aj}j= I of C (~ ~ ~) and numbers THEOREM 2. 
S~ > 0 such that 
~J 

Then there exists a meromorphic function f of finite order such that ~(aj, f) = Bj and 
~(a, f) = 0 for a~{ej}. 

The proof of Theorems 1 and 2 is based on the application of the so-called pseudomero- 
morphic functions. This method, published in the articles of Poschl and Wittich in the 
fourties, was applied for the first time to the inverse problem by Le Van Thiem [14]. By 
now the use of pseudomeromorphic functions has become a basic tool for the solution of the 
inverse problem of the value distribution theory [I, 2, 5, 14]. Necessary information on 
quasiconformal mappings is contained in [i, Chap. VII, Sec. 15]. We need only piecewise- 
smooth quasiconformal mappings. 
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A continuous function g in a domain D c C is said to be pseudomeromorphic if there 
exists a discrete subset X of D such that each point X c D has a neighborhood V for which 
the restriction z~D\X is a (univalent) quasiconformal mapping. If D = C, then all these 
functions have the representation 

g = l o m ,  ( 1 . 7 )  

where ~:C-+E is a quasiconformal homeomorphism and f is a meromorphic function [16]. For 
each pseudomeromorphic function g, the characteristic pg(z) = (ig=l + I g-zl)/(Igzl - I g-zl) 
is defined almost everywhere. The Teichmuller-Belinskii theorem [!5] states that if 

f f  (pg(re~O)_i) drdO ---7--<00. 
b l > r  0 

for a certain r 0 
such that 

> 0, then there exists a representation (1.7), 

l ira r ~ )  = t o 
Z 

The further treatment follows the following plan. In Sec. 2 we construct meromorphic 
functions that depend on certain parameters. In Secs. 3 and 4 we prove Theorems 1 and 2 
respectively with the help of suitable choice of these parameters~ 

2. l.et there be given sequences of positive numbers (xj) and (@j)~ ]~Z, a 
sequence (b~), ] ~ Z, of points of the extended complex plane, an even natural number M, and 
positive numbers x and ~ such that 

( 1 . 8 )  

in which ~ is a homeomorphLsm 

(1 .9 )  

x , = x ~ = . . .  =x.~ = x ;  (2 .1)  

0 ~ = O 2 = . . . = O , ~ = = / p ;  O~<~=/p, ] ~ Z ;  (2 .2)  
oo M / 2  

x_~ + ~ x2j + zj i; 
j = 0  j = l  ~ j = M + I  

~ Oj----~; (2 .4)  

b~ = O; b~ = 0% (2 .5)  

bj+~#b~, I <~]<~M-- 1; (2 .6)  

Ib~t >4 ,  ] >~M+ f; I b / < 5 ,  7-<<0. (2 .7)  

The set {]~Z: bj=a} is finite for each a~C. 

Starting from these data, we construct a meromorphic function f of order p with the 
following properties : 

T(r, / ) = ( 2 +  o(1))(gp)-~r ~, r ~  o~; (2 .8)  

m ( r , a , / ) = ( 2  + o(l))(~p) -l~r) ~_~ xh(t--cos(pO~/2)), r -~c~.  (2 .9)  
{~:~=~} 

Let us set 

h 
I 

~h = .  X 0j, "~a = ~ -  (~k-1 + ~k), k ~ Z. ( 2 . 1 0 )  
$~- -oo  

The t h i r d  p r o p e r t y  of  the  f u n c t i o n  f ,  which we propose to c o n s t r u c t ,  i s  the  fo l i owing  one: 

Here r § ~ and the relation (2.11) is fulfilled uniformly with respect to qD in arbitrary 
angles of the form 

0 < s  < ll~[ - -  r < % / 2 - -  ~, k ~ Z ,  , > 0 .  

If b k = ~, then the left-hand side of (2.11) should be replaced by logl/(rd~)I. In the 
sequel, we will not specifically mention about this modification in analogous formulas. 
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L e t  u s  s e t  D ~ = { z : q ~ - , < a v g z < ~ }  ~md D ~ = { z :  - - ~ < a r g . z < - - ~ _ l }  f o r  k ~ Z .  The 
c l o s u r e s  o f  t h e  a n g l e s  D k and  D~ f i l l  t h e  who le  p l a n e ,  e x c e p t  t h e  r e a l  a x i s .  The b i s e c t o r  
o f  t h e  a n g l e  I ~ ( D ~ )  i s  g i v e n  by  t h e  e q u a t i o n  a r g  z = ~k ( a r g  z = - ~ k ) "  L e t  E k be s u f f i -  
c i e n t l y  s m a l l  ( p a i r w i s e  d i s j o i n t )  a n g l e s  f i t h  t h e  b i s e c t o r s  {z: a r g z =  ~k}. L e t  n ( r ,  a ,  E, f )  
denote the number of the a-points of f im the set Eft {z: Iz] <~ r}, and N(r, a, E, f) denote 
the corresponding Nevanlinna n, mher function. The construction of f is carried out in 
several steps (Paragraphs 1-5). Everywhere in the sequel, taking liberty with the language, 
we will say that a function, defined in D, satisfies the condition (1.8), meaning that the 
integration in (1.8) is taken over D. 

i. At first, the construction of the desired function is carried out in the angles 

LEMMA I. There exists a pse~Iomer~m~rphic (in the domain G I ) function gl with the 
following properties: The characteristic pg~ satisfies the condition (1.8); 

a~lb), |~.k~-~M-- I; (2.12) 

N r,a,G~, U] E~,gl =O(logr),r--+oo; (2.13) 

log Ig,(re~) - -  b~H-' - -  _ ~ s i n ( p  (~ - -  r ) ( 2 . 1 4 )  

f o r  r + -  u n i f o r m l y  w i t h  r e s p e c t  t o  $ i n s i d e  t h e  a n g l e s  1 r  < O k / 2 - - ~ ,  ~ > 0 ,  i < k ~ M ;  

gl (re~) = exp (-- zrP), r> ro; ( 2.15 

P r o o f .  We f o l l o w  [1 ,  Chap.  %-ii,  S e e .  5 ] .  L e t  ~, 0 < z < 1, be so s m a l l  t h a t  t h e  
c l o s e d  d i s k s  C k o f  r a d i u s  ~ w i t h  c e n t e r s  a t  f i n i t e  p o i n t s  b k ,  1 s k -< M, a r e  p a i r w i s e  non-  
intersecting and are all contained in the disk {z: [z] < e-~}. If b k = ~, then we set 
C~={z~C:Izl >~-'}. In each disk C k we ~raw the radius X~={b~+t:O<t<~e}. If b k = ~, 
then A k : [e -i, ~). Let us denote the point of intersection of the radius lk and the circle 
3C k by b~. We join the points ~ and ~+~ by a simple smooth curve A k that does not inter- 
sect any of the disks Cj, 1 ~- J ~ M, so t/~at the curve A k U X k U ik+ ~ is smooth. The 
curve A k is oriented from b~ to ~+x. O~ the Rie~ann surface of the function log((w - bk)/ 
(w -- bk+l)) (~ const by virtue of (2.6)) r~e draw a cut that projects into the curve A k U 
A k U Ak+ x. In addition, the Riem~m~ s~rfa~e splits into two parts - "the logarithmic ends." 
Let us denote the part that abuts on the ~rwe h k on the right by ~-~. Let us map the Riemann 
surface ~ quasiconformaXly onto the ~pper half plane. To this end, let us consider the sub- 
sets ~, ~ ' a  that lie over the disks CK a~d Ck+x respect ively " The function z ~- --10g(w-- b~) 
maps ~'k conformally onto the quadrant H'={~ +~:[>0, x>--loge}. Ifbk=~, thenit is necessary 
to use the function z = log w. In the sa~ewa~, the function z = log(w - bk+ a ) ( z = -log w, if bk+ ~ = ~) 

" to ~' = maps ~kc~176176 the quadrant {x+ iy: y > 0, x < log e}. In order to extend the 
mapping to the remaining part of the surface ~'~ let us consider the curvilinear quadri- 
lateral ~=C\(Ct UC~+,~/~). Two sides ~f this quadrilateral are the circles %C k and 
3Ck+ ~ and the other two sides are the edges of the curve A k. Let us map the quadrilateral 
Qk quasiconformally onto the rectangle ~ = {x + iy: 0 < y < 2~, I xl < -log ~} such that 
dilatation on the circles ~C k and ~Ck+ ~ is constant and these circles transform into the 
right and the left vertical sides ~ctiwely ef the rectangle R~. Moreover, we require 
that the dilatation is constant on the edges of the curve A k. The left edge transforms into 
the upper horizontal side of the r~eta~le l~x and the right edge transforms into the lower 
one. It is easily seen that under this ~ppi~g a pair of points that are pasted on 3Qk 
transform into points with the same abscissa. Let us denote the mapping function by ~k: 
Qk + Rx- The surface /~-~(-~ ~ ~) consists o f  a denumerable set of open quadrilaterals 

Q~ that project into Qk an.d a demmm~ra~e set of curves thatproject into A k. We suppose 
that the quadrilaterals ~ are numlmered s~ch that Q~+I and Q~, ]~ N, have a part of boundary 

in common. Let us map the quadrilatera~ ~k onto the rectangle Rj = R~ + 2~i(j i) with 

the help of the function =k + 2~i(j-- I}. It is easily seen that the quasiconformal mapping 
B e ' l - - . ~ C + = { z : I m z > O }  is constructed in this ~m~er. Let H k denote the inverse mapping. 
The pseudomeromorphic function H k is h91~m~rphic in H' ~ ~" and has bounded characteristic 
at the remaining points of the half plame. Since the set C+\(II'U ~") has finite logarit~hmic 
area (i.e., the integral of the f~=ti~ ~z~ -~ over this set is convergent), the function 
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H k has the property (1.8). Simple computation shows that for each angle E whose bisector is 
the positive imaginary semiaxis and for arbitrary a # b k, bk+ 1 we have 

N(r ,  a, E, H h ) ~ ( 2 ~ ) - ~  r - + ~ ,  (2.17) 

and only a finite set of a-points lies outside E. 

Now let Dk be that branch of the function (z exp(-i@k))P which maps the angle A k = 
{z: ~k < arg z < $k+i} conformaily onto G4. Let us define the function gl as follows: 

It is obvious from the construction of the functions H k that the function gl is continuous 
(and is even holomorphic) on the sides of the angles A k for Izl > r~. Changing the function 
gl on a bounded set, we can make it pseudoholomorphic in G i. The function gl has the 
property (1.8) because all the functions H k have this property. The relations (2.12) and 
(2.13) follow from (2.17), and (2.14)-(2.16) are verified directly. The lemma is proved. 

Let us now construct the analogous pseudomeromorphic function g~ in the domain G~. 
The function g~ has the properties (1.8) and (2.12)-(2.16) with E k replaced by E ~ = { z : 7 ~ E ~ } ~  
~i replaced by -@71, and ~M replaced by -~M" 

2. Let us consider the function 

H (re ~) = H (re~% x, O)= x ~  sin(p(0/2 - -  I~l)+),  

where [~l ~ ~ and 0 < 8 ~ ~/p'. This function can be expressed as a difference 
of two subharmonic functions. The positive part of the Riesz charge is concentrated on 
the rays arg z = • and has density (2~)-ipxrP -i on each of these rays. The negative 
part of the charge is concentrated on the positive ray and has density w-lpx(cos(pO/2))rP-i 
on this ray. We need a meromorphic function, the logarithm of whose modulus approximates 
H well. 

LEMMA 2. Let ~(t) # ~, t > 0. Then the integral 

u (z) = log t -7 "7- d (~ (t) - -  [~ (t)l) 
1 

is convergent for z~R + and satisfies the estimate ]u(z)] = O(loglz]) , z § =, uniformly 
with respect to arg z in each domain of the form C\{z:Rez>--a, llmzl<a},a>O. 

Proof. Integrating by parts, we get 

f (~ (t)-- I~ (t)D at 
u ( z ) = - R e  ~ 7E----6 

1 

Consequently, 

~o 

(' I z ld t  
I ~(~)I~<Jt-frnn]-~i =OOo~lzl), ~--,.oo, 

1 

in the domain under consideration, which was desired to be proved~ 

LEMMA 3. There exists a meromorphic function S(z) = S(z, x, 8) with the following 
properties: S(z) > 0 for z > 0; 

IS(z) I < A/Lzl,  z ~ O = {z: l a r g z / <  072}, A > 0; 
lS(z) l -+ ~,  Is[ -,- oo 

uniformly with respect to arg z in the closed domain D', D' = D + 2; 

= z( ( . .~ ) ) r~  O ( l o g r ) , r - + o o ,  N (r, S) --~ cos + 

and all the poles lie on the positive ray; 

log IS (re~) I = xr  ~ sin (p (0/2 - -  lip I) +) + O (log r) 

for r -- ~ uniformly with respect to (p in each angle of the form 0< 8 < [~p] ~ 0/2, e > 0. 

(2.18) 

(2,19) 

( 2 . 2 0 )  

(2.21) 
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Moreover, if 0 = ~/p, then S is an entire function and 

]ogS(z)=xz~+O(log[zi), lz] ~ ,  ( 2 .22 )  

uniformly with respect to ~ = arg z in each angle of the form l~l ~< ~< 0/2. Here zP > 0 
for z > 0. 

Proof. The charge, corresponding to the function H(z - i), is concentrated on the 
three rays Ej, j = -I, 0, i, numbered in the anticlockwise direction. Let Bj(t) denote the 

charge on the segment of the ray ~J with the initial point at the point 1 and with length t. 
Let us set X = {z: dist(z, U Ej) ~ sin 0/2}. Let us consider the function 

1 oo 

, ,  = .]a (t) - (t)D. 
J 

By Lemma 2, ]~(z) l=O(log[z[), z~, z-~oo. The function S*(z) = H(z - i) - u(z) has integral 
Riesz measure and can, therefore, be expressed in the form log ISz(z) I , where S I is a memo- 
morphic function. The equality log [St(z) [ = 0 (log Izl) is valid in C\D~X. Dividing 
S I by a sufficiently high power of z, we get the desired function S with the property 
(2.18). The remaining properties (2.19)-(2.22) are obvious. 

3. Let us consider the functions 

&(z)= 
S~ (z) = 8 (z exp (iCh) -- r~, x~, 0~), 

where k > M, and (Xk),  (Ok),  and (~k) a r e  g iven  sequences  w i t h  t h e  p r o p e r t i e s  ( 2 . 1 ) - ( 2 . 4 )  
and ( 2 . 1 0 ) .  We choose  t h e  numbers r k > 0 so l a r g e  t h a t  

t & ( z ) l < 2  -~-~, zq~D~, k>~M; ( 2 . 23 )  
N(r, &) <~ (ap) -'x~ cos (90J2) r ~ r > O; (2 .24 )  

re(r, &)~<(~p)-~xa(t--  cos(pOJ2))~% r > O .  (2 . 25 )  

Such a c h o i c e  of  r k i s  p o s s i b l e  f o r  ( 2 . 2 3 )  by v i r t u e  o f  ( 2 . 1 8 ) ,  f o r  ( 2 . 2 4 )  by v i r t u e  of  
( 2 . 2 0 ) ,  and f o r  ( 2 . 25 )  by v i r t u e  o f  ( 2 . 2 1 ) .  C o n s i d e r i n g  ( 2 .1 9 )  and ( 2 . 2 3 ) ,  we can i n c r e a s e  
r k such that the set 

Yk---- {z: I&(z)l ~ [2-', 2]}" (2 .26 )  

has small logarithmic area, i.e., 

Let us now set 

.f S r-'drdO<2-k" (2 .27 )  
g h  

h = M  

The series is uniformly convergent in C by virtue of (2.23). 
h I has the properties 

ih~ (z) 1 ~ 1, arg z = "+q~, k >~ M, 

by virtue of (2.23). The set 

The meromorphic function 

(2 .28 )  

Y={z:3/4<~lhl(z)l<~ 7/4}~ ~ YR, (2 .29 )  
h ~ M  

has finite logarithmic area by virtue of (2.27). Further, if x is a number from (2.1), 

then 

log  hi  = x ,' + 0 ( 2 . 3 0 )  

uniformly with respect to ~ for [~-- ~] < 0M/3, r-~ oo; 

Jog h i (re t~) = x (rei(r162 ) ~ + 0 (log r) ( 2 .31 ) 

uniformly with resepct to ~ for ]~+~[<0~73, r-~. These relations follow from @M = 
~/9. Consequently, S M and S~ are entire functions and a formula, analogous to (2.22), is 

valid for them. 
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We have 

loglh~ (re '~) ] ~ x~r' sin (p ({~k/2- f (o] --  ~[ ) )' ( 2 .3  2) 

for r + ~ uniformly with respect to , in angles of the form 0 < e < I[<pl -- ~I < 0~/2-- e, k I> M. 

This follows from (2.21) and (2.23). 

LEMMA 4. Let E k be arbitrary angles of the form 

i 
{z: I arg z --  q~ I < e}, e < 7 min (Oh, Oh+l); 

and E~ be the angles symmetric to E k with respect to the real axis. The following asymptotics 

are valid for each a~C: 

N (r, a, Eh, hi) N N (r, a, E~, h,:) N / (2~9)-1 (xk + x~+l) r ~, r - ~  oo, k I> M; ( 2 . 3 3 )  
[(2~p) -1 x~r ~, r-+ co, k = M - -  1; 

N (r, a, Dh\(E~_~ U Eh), hl) + N (r, a, D~\,(E~-I U 
(2.34) 

, pO.~ 
N (r, co, D~)N N (r, oo, D~, h x ) ~  (~p)-~ xkr ~ cos -~-, r - +  c~, k ~  M. ( 2 . 3 5 )  

Moreover, for each ~ > 0 there exists a natural number K such that for each a~C 

N(r,a,~=~+l~ (Dk U D~)'h') ~ e r ~  r>r~ ( 2 . 3 6 )  

Proof. The relation (2.34) follows from (2.32), and (2.35) follows from (2.20). 
Further, for each a~C the function hl(z) ' - a is a function of completely regular growth 
in the Levin-Pfluger sense [17] in the angles E k, k ~ M- i, and E=~{z:--~p~x_~<argz<~r-~}. 
For the angles E k, k ~ M, this follows from (2.32) and for the angle E this follows from 
a theorem of Cartwright [17, Chap. IV, Sec. 2, Theorem 6], since the indicator of the func- 
tion h I is identically equal to 0 in E. Together with (2.32) for k = M, this gives complete 
regular growth in EM_ I. The indicator of h I is equal to 

Xk+l sin p (q~ - -  qDh), q~ /> q)h, / re~ ~ E k, k >I M. 
x~ sin p (r - -  ~), (p < ~p~, J 

I f  k = M - 1, t h e n  t h e  s e c o n d  row mus t  be r e p l a c e d  by z e r o .  Hence ,  as  we know, ( 2 . 3 3 )  
follows [17]. 

To prove (2.36), let us, at first, find an upper bound for N(r, a, h~) with the help 
of (2.24), (2.25), and the inequality Ih~(z)--S~(z)l<l/4, z~D~: 

oo oo 

N(r ,a ,h~)~T(r ,  h l ) + O ( l ) = m ( r ,  hO+ N(r ,h~)+O( i )~2  = (r,.S~)+--~. ~*~. ~ 

2 Z + 2 E m + 0 O) < 2 + 
h = M  h = M  h = M  

+ 2(zp)-~r ~ ~ xh(l -- COS(p0h/2)) + O( i )  " 2(ZP) -xrp d.~ ~ X h + 0({) .  

On the other hand, by virtue of (2.33) we have 

K K--I 

N r, a, U (D~ U D~), hO~(2+o(l))(np)-~r ~ ~_~ x~. 
h = M ~ l  h = M  

C o n s e q u e n t l y ,  ( 2 . 3 6 )  i s  f u l f i l l e d .  The lemma i s  p r o v e d .  

4. We will now carry out a quasiconformal deformation of h~. The following lemma 
is easily proved. 

LEMMA 5. For arbitrary a~ C, lal > 4, there exists a quasiconformal mapping qa of the 
"disk" { z : 5 / 4 ~  [z[ ~} onto itself that is the identity mapping on the circle {z: I zl = 
.5/4} and is conformal for Izl > 6/4; qa (~) = a, and the characteristic Pqa ~s bounded by a 
constant that does not depend on a. 
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Let us now consider the set {z: Ih1(z) I > 5/4}. By virtue of (2.28), this set is de- 
composed into connected components that lie entirely in D k and D~, k ~ M. It is easily 
shown that exaqtly one unbounded component of this set lies in each angle D k and D~; we de- 
note it by ~ (~). Let us define a new function: 

/ " ~ (z) = ~1 (z), z ~ C ~ ~ U ~ )  

[ ~  (~ (z)), z ~ ~ U ~ ,  ~ >I M~ 

where qb k i s  the  quas iconformal  mapping of  Lemma 5 and b k i s  an element of the  given sequence 

(b k) with property (2.7). If b k = ~, then we assume that qb k is the identity mapping. It 

is obvious that h2 is a pseudomeromorphic function. It is meromorphic everywhere, except 
the set Y* = {z: 5/4~lh~(z)l ~ 6/4}, and has bounded characteristic on this set. Since the 
logarithmic area of the set Y* is finite by virtue of (2.29), the function h~ satisfies 
the condition (1.8). The following properties of h2 follow from (2.33)-(2.35) and (2.32): 

N (r, a, Ek, h~ N N (r, a, E~, h2) 

/(2~p)-I r p (xk + xh-~l), r --~ o o ,  k ~ M, 

[(2ap) -~ r%~, r - *  oo, k = M - -  i,  
(2.37) 

where a ~ b k, bk+1; 

N ~, a, DA(E~ U Ek-1), h2)+ 
N (r, a, D~\(E[ U E~-,), h2)=  0 (log r), r -~  ~ ,  a =~ bh, k ~> M; (2.38)  

log I ha ( re ~) - -  bk I=' N x ~ :  s in ( P ( ( 0 J 2 )  - -  I l $ ] - -  ~'hl ) ~ ) ( 2 . 3 9  ) 

for r ~ ~ uniformly with respect to ~ in the angles 0 < a < II~I--%~I < 0J2--8. 

We show that for each e > 0 there exists a natural number K such that 

N(r,a, k=x+x ~ (DhUD~) ,~h~)~er  p,r>ro(a) (2.40) 

fo r  a lmost  a l l  a ~ C  . I f  l a l  < 5 /4 ,  then (2.40)  fo l lows  ~rom (2 .36) .  Then i t  fo l lows  from 
(2 .40 ) ,  ( 2 .37 ) ,  and (2 .38)  t h a t  

N(r, a, h2) = (2 + o(l))(~p)-lr p ~ x~, r - +  ~ (2.41)  

for la[ < 5/6. Let us now observe that by virtue of the Teichmuller-Belinskii theorem we 
have h2 =/~ where f is a meromorphic function and ~(z)~ z, z ~ ~. Therefore, (2.41) is 
valid with h 2 replaced by f for [a] < 5/4. Hence by the Valiron theorem [i, Chap. IV, 
Sec. 2] we have (2.41) with h 2 replaced by f for almost all a E C. Consequently, (2.41) is 
valid for almost all a~C. Hence, again using (2.37) and (2.38), we get (2.40). 

Let us observe that the quasiconformal deformation, constructed by us, does not affect 
the angles D M and D~, since b M = ~ (see (2.5)). In these angles we make one more deforma- 

tion, as a result of which the asymptotic equations (2.30) and (2.31) turn into exact equa- 

tions on the rays {z: arg z = • 

LEMMA 6. Let the following analytic function be defined in the domain D = {z: [arg z I < 

e}, 0 < ~/(2p): 
f(z)=czp+O(loglzl), c > 0 ,  z ~ = .  

Then there exists a quasiconformal mapping $ that is continuous and univalent in the closure 
of the domain D' = {z: lzl > r0, 0 < arg z < B/2}, has the property (1.8), and fulfills 

the conditions 

~(z~=z, a r g z = O / 2 ,  Izl >~;  
/ ( ~ ( z ) ) =  c~, r >  r0. 

Proof. It is sufficient to prove the lemma for c = p = i. Let us map the sector 
D\{z:Iz[ ~I} onto the halfstrip H = {g + iq: ~ > 0, lql < 2} by means of the function ~ = 
X(Z) = 2e -I log z. We set h(~) = xofox-I(~) = ~ + O(exp(-cr c > 0, ~ = Rer + 4~. The 
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function h is univalent in a halfstrip H' = {~ + in: $ > ri, q| < i}. It is obvious that 
the image h(H') contains a halfstrip H" = {~ = in: $ > r2, I~ < 1/2}, and the inverse 
function satisfies the following conditions in Y": 

h- i (~)  ' =  ~ + O ( exp ( - - c l~ ) ) ,  

( h - i ) ' ( ~ )  = l + O ( e x p ( - - c l ~ ) ) ,  Re~ -~- + ~ .  

L e t  F c 9 '  d e n o t e  t h e  i n v e r s e  image  o f  t h e  r a y  {5: ~ > r2} u n d e r  mapp ing  by t h e  f u n c t i o n  
h .  I t  i s  e a s i l y  s e e n  t h a t  t h e  c u r v e  F, s t a r t i n g  f r o m  a c e r t a i n  p l a c e ,  i s  t h e  g r a p h  o f  a 
c e r t a i n  f u n c t i o n  ~ = ~ ( ~ ) ,  ~ > r u ,  s u c h  t h a t  ? ( ~ )  = O ( e x p ( - c 2 ~ ) , `  

~ ' ( ~ ) = O ( e x p ( - - c ~ $ ) ) ,  I'~(~).l < i /2,  

i r e  h -~ ( ~ ) )  = I m  h - '  (~ ) .  ( 2 . 4 2 )  

L e t  us  c o n s i d e r  t h e  q u a s i c o n f o r m a l  mapp ing  a~ ,  d e f i n e d  i n  t h e  h a l f s t r i p  H~ = {~ + i n :  ~ > 
r~, 0 < U < i} as follows: 

(~, ~) ~ (~, "e (~) + '1 ( i  - -  V (~))). 

The characteristic p of this mapping is easily estimated: p = i + 0<~ 2 "~ (~')2 ~ _> @oo 
It is obvious that 

Further, let us consider the mapping a2: HI ~ ~i, defined as follows: ($, ~) + ($,~ + 
(Re h-i(~))(l - ~), q). The characteristic of this mapping also satisfies the condition 
(2.43), since 

8(~)= O(e~p(-c,D),  ~'(~)= O(ex~(-c,~)), ~ ~ +~ .  

Let us set a = ~ioa2. By virtue of (2.42), we have ~(~) = ~ for !m ~ = I and Re ~ > 
r~ and h(~(~)) = ~ for Im ~ = 0 and Re ~ > r~. The characteristic of the mapping ~ satis- 
fies the condition (2.43). Let us extend ~ by the identity mapping in the halfstrip {~ + 
iD: ~ > r~, 0 < D < 2} and Set $ = x-ioaoX. The mapping $ is the desired one, The in- 
equality (1.8) follows from (2.43). 

Using Lemma 6 and the relations (2.30) and (2.31), we make quasiconformal deformation 
in the angles {z: ~<argz<~ and {z: --~ argz<--~} such that the new function (for 
which we retain the old symbol h 2) is pseudomeromorphic for @M < arg z < 2v - *M and, be- 
sides (2.37)-(2.40), we have 

h2 (r  exp ( - r  = exp x#,  r > ro. ( 2 . 4 4  ) 

5. Now we can complete the construction of f. We construct the function h~ in the 
same manner as h2, but hs is pseudomeromorphic in the angle -@i < arg z < ~i and has the 
following properties (cf. (2.37)-(2.40), (2.44)): 

N (r,. a, E~, ha) --. N (r, a, E~, h~) ,-- (2gp)-~x rV (x~ + x~+O,~ 

r--* co,  k < 0 ,  a ~ {bi}; ( 2 . 4 5 )  

N (r, a~ D~\(E~ U E~-0,~ h~) + N (r, a, D;  I ( E ;  U E~_~), ha) = 0 (log r), 

r - ~  0% k ~ 0 ,  a r  ( 2 . 4 5 )  

log ]h~(re~r - b~[ -~ ~ x~r~ sin(p (0~/2 ' -  I IT[ - -  r ' ( 2 . 4 7 )  

for r ~ ~ uniformly with respect to T in angles of the form 0 < s < If(p[---~A] '< 8~/2--e. For 
each e > 0 there exists a natural number K such that for almost all a~ C 

r, a, (D_~ U D_~), h~) .~< er~, r > r~ (a); ( 2 48)  
\ k.~/a+ 1 ' 

h~ (r  exp (:t:i~b,)) = exp (--x#y, .  r > re. ( 2 . 4 9  ) 

Let us now define the function g for ]z[  > r0: 
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]h~ (z), ~ u  ~< arg z < 2re - -  ~ m  

(h 3 (z),: - -  ~ ~ arg z < ~1. 

By v i r t u e  o f  ( 2 . 1 5 ) ,  ( 2 . 1 6 ) ,  t h e  p r o p e r t i e s  o f  t h e  f u n c t i o n  g~ i n d i c a t e d  a t  t h e  end o f  p.  1, 
( 2 . 4 4 ) ,  and ( 2 . 4 9 ) ,  t he  f u n c t i o n  g i s  c o n t i n u o u s  f o r  Iz l  ~ r 0. I t  i s  a l s o  o b v i o u s  t h a t  i t  
i s  p s e u d o m e r o m o r p h i c  w i t h  t h e  p r o p e r t y  ( 1 . 8 ) .  We change  t h e  f u n c t i o n  g in a bounded domain 
and d e f i n e  i t  such  t h a t  i t  becomes p s e u d o m e r o m o r p h i c  in  C [1 ,  Chap. V I I I .  

For arbitrary a~G we set 

N (a, Ek) = N (a,. E ~ ) =  l imnpr-ON (r , a, E~, g). 
7"--~,0o 

By virtue of (2.40), (2.48), (2.13), (2.38), (2.46), and the definition of the function g~, 
for almost all a~C we have 

N(r,  a, g) = (2 + o(l))(np)- lr  o ~ N(a,  E~),, r -+oo.  ( 2 . 5 0 )  
~ - - ~ o  

I f  a~{bj} ,  t h e n ,  by ( 2 . 1 2 ) ,  ( 2 . t ) ,  ( 2 . 3 7 ) ,  ( 2 . 6 5 ) ,  and ( 2 . 3 ) ,  

2 2 2 2 t 1 x~ N (a, ~ )  = M @ x + - r  (x~ + x~+O + - r  (x_~ + ~-~+0 = ~ -  + ]~ x~ + x~ + ]~ ~_~ = ~. 
h~--oo  h = M  h=0 j = l  h = M +  I h ~ o  

(2.5i) 
Since g satisfies the condition (1.8), then exists a meromorphic function f such that g = 
[o(p, (p(z)Nz, z-~oo. If a~C does not belong to a certain exceptional set of measure zero, 
then by virtue of (2.50) and (2.51) we have 

T(r, ]) -- N(r, a, ]) ~ N(r, a, g) N 2 ( n p ) - b  ~ r -~ 0% 

i.e., (2.8). In particular, the function f has order p < ~. 

Let r be an arbitrary positive number. By a theorem of Edrei and Fuchs [i, Chap. I, 
Theorem 7.3] there exists a z > 0 such that for each set Ez c [0, 2~] of length < and a~C 
arbitrary 

(2~)-1 ~ log+ I ] (rei~) -- a 1-1 dq0 <~ erP, r > r 0 (a). 
N~ 

We c h o o s e  a f i n i t e  u n i o n  o f  open i n t e r v a l s  t h a t  c o v e r  a l l  t h e  p o i n t s  0, u, --+%, --+~, k e Z, as  
E T. Then t h e  u n i f o r m  a s y m p t o t i c s  ( 2 . 1 4 ) ,  ( 2 . 3 9 ) ,  and ( 2 . 4 7 )  a r e  v a l i d  f o r  ~ E ~ .  T h e r e -  
f o r e ,  f o r  a r b i t r a r y  a ~  

m ( r , a , / ) = ( 2  +o(t))(r~p)-lr~{h ~,~ x k ( l - - c o s % ) + a ( r ) ,  
: b h ~ a  } 

where  l a ( r )  l ~ er ~ D i v i d i n g  by rP and t a k i n g  l i m i t ,  a t  f i r s t ,  as  r + ~ and t h e n  as  ~ + 0, 
we g e t  ( 2 . 9 ) .  

F i n a l l y ,  ( 2 . 1 1 )  f o l l o w s  a t  once  f rom ( 2 . 1 4 ) ,  ( 2 . 3 9 ) ,  and ( 2 . 4 7 ) .  Thus ,  a f u n c t i o n  w i t h  
the properties (2.8), (2.9), and (2.11) has been constructed. 

3. Proof of Theorem i. Without loss of generality, we can assume that az = ~, a2 = 
0, 6i ~ 5j for i < j, and the annulus {z: 4 < Izl < 5} contains infinite set of the numbers 
aj. All this can be achieved by making a bilinear transformation and renumbering aj. Let 
us construct a two-sided sequence (bj) with the properties (2.5)-(2.7), the set of whose 
values coincides wit h {aj} (and all the sets {j: bj = ak} are finite), and a sequence of 
positive numbers (d~), ]~Z, with the following properties: 

Y, d ~ = ~ ;  ( 3 . 1 )  

(~: ~="~} ( 3 . 2  ) 
dl = d~ . . . . .  dM = Mo ~, M 0 > O; 

dt ( 3 . 3 )  "-U + d_~ + d~ + X d2~ < I. 
J=o j=M+I, j = l  
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To prove the possibility of construction of these sequences, let us consider two cases~ 

Ist Case. 5 1 < b/2. We choose a natural number N so large that 

N 

6 i 7> 26i, 3 . 4 )  
i=i \ 

0o 

6r < (2 -- 5)/8. 3 . 5 )  
j=.~r 

Next, we approximate the numbers 6 1 . . . .  , ~N by smaller rational numbers ~ such that 

6~ Mj/Mo, I ~ j ~ N ,  M j > 0  even, Mo > 8/(2 - -  A); 3 . 6 )  

6 j = 6 ; + 6 ] ,  6]>0, I~]~N; (3.7 
N 

6j < (2 - A)/4; 3 .8  

N 

6f > 26~, i ~ < k ~ < N .  3 . 9  
J = l  

The condition (3.9) is fulfilled by virtue of (3.4). The relations (3.6)-(3.8) are obtained 

N 
if we choose the number M 0 sufficient large and set Mj = 2[(i/2)M06j] + 2. Let 7Pf= ~ Mj~ 

j=l 

and define dj for 1 ~ j ~ M by Eq. (3.2). Let us define the nombers b I and b M as required 
in (2.5). We choose the numbers b 2 .... , bM_ I such that the set bl, ..., b M contains pre- 
cisely Mj numbers equal to aj, 1 ~ j ~ N. The inequality (3.9) implies that M > 2M~, 
Therefore the numbers b I ..... b M can be ordered such that (2.6) holds. 

' . . .  into two infinite ~arts such that We decompose the sequence 6~, 6~, .... 6N, 5N+I, 

l ajl > 4 for the numbers j of the first part and l ajl < 5 for the numbers j of the second 
part. We enumerate the first part as a subseries with the natural numbers, starting from 
M + i, and the second part with all nonositive integers. We get a sequence (dj), j ~> M + i 
and j ~ 0. If dj = 6k or 6~, then we set bj = a k. Thus, the sequences (bj) %nd { dj j are 

constructed. The properties (3.1), (3.2), and (2.5)-(2.7) are valid by construction. To 
prove (3.3) we use (3.2), (3.6), (3.5), and (3.8) successively: 

d, 4 +  + - - - a - + - - v - + - r  - r =  -f-. + d_j + ~d~ 6j + L 
J=o . i=M+l  j = l  .i=1 

2nd Case. 5~ >i. A/2. We choose a number N so large that 

~] 6~<(i-- 6~)/4. (3.i0) 
i=N+~ 

Now we choose even numbers Mj, 0 <~ j ~ N, such that (3.6) and (3.7) with 2 ~< j ~ N are 
fulfilled and, moreover, 

Let us set 

N 

E < (1--  61)/8. (B.11)  
h = 2  

Then 

N 

M= 2 E (3.12) 
h=2 

N 

= E (3.13) 
h=2 

p. 

6 i=6;-}-6~, 31>0,: (3.14) 

since 61> 6j>~ ~. Let us now define the numbers d I .... d M by E~. (3.2). We set 
j=2 j=2 ' " 

b I = a 2 (=0) and b2j=ai(=oo), i~]~M/2. We choose the numbers bj with odd indices j, 
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i ~ j < M, such that they include precisely M k numbers equal to ak ,  1 ~ k ~ N. This is 
possible by virtue of (3.12). We deal with the numbers 5~, 1 ~ k ~ N, defined in (3.7) 
and (3.14), and the numbers 5k, k ~ N + I, in exactly the same manner as in the first case. 
We get sequences (bj) and (dj), /~'Z, with the properties (3.1), (3.2), and (2.5)-(2.7)~ 

Let us verify (3.3). By virtue of (3.11), (3.10), (3.13), and (3.14), we have 

~ M/2 N. 

T +  
j=O j = M + I  " j = l  J ~  

Thus, sequences with the properties (3.1)-(3.3) and (2.5)-(2.7) have been constructed. 
It follows from (1.5) that 

d'/~ < P~ ~(3.15) 

LEMMA 7. Let the re  be g iven a sequence (dj) ,  ] ~  ~ w i t h  the p r o p e r t i e s  ( 3 . 2 ) ,  ( 3 . 3 ) ,  
and (3.15). Let us set A = Z\{I, 3, 5,...,M--i). Then there exist sequences (x k) and (Sk), 
k ~ Z, and a number p > i such that 

0<0k~-a/p, xh>0, k~Z; 

x l /2  + ~.~ xh i ,  ~ ,  O h =  ~; 
k'~A k~Z 

& = x 2 - - . . . ' = x ~ ,  0 ~ = 0 ~ =  . = O ~ = U / p ;  

i.e., (2.1)-(2.4) are fulfilled, and, moreover, 

dk = ( 1  - -  cos(p0J2))xk,  /c ~- Z. 

Proof. At first, we choose N > M such that 

d~/3 di 

Ihl>N h~A 

which is possible by virtue of (3.3) and (3.15). Let us set 

x~=d~, z~=i, k~A, lid ~<N; 

xa = t=d~/a, zk = t - ] d Y  a, 1 k t 7> N ,  " 

where t > 1 is a parameter, which will be fixed later on. For each t > 1 we have 

x ~ z ~ = d h ,  k ~ A .  

d i S ( t )= Z1/2 JF ~ Zj -'~ Jl- ~ dj'JF t 2 ~.a 1~1/3"-)" _j _ -[- oo,: t --0- co, 
)~-a j~A I~I>N 

titan 

The sum 

is a continuous increasing function of t and S(1) < 1 by virtue of (3.20). 
can fix a value of t > 1 such that the first equation of (3.17) is valid. 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

Therefore, we 
Let us observe 

Let Yk denote the solution of that 0 < z k ~ 1 by virtue of (3.21), (3.22), and (3.20). 
the equation 

i - - c o s y  = z~, 0 < : : y a ~ u / 2 .  ( 3 . 2 4 )  

It follows from (3.15) and (3.22) that the series ~ Yh is convergent. Let us denote the 

sum of this series by ~p/2~ Let us now set 8 k = 2Yk/p. Then, by virtue of the choice of p, 
the second equation of (3.17) is valid and, by virtue of (3.24), the inequality (3.16) 
holds. Finally, (3.18) follows from (3.21) and (3.24), and (3.19) is none else than (3.23). 
The lemma is proved. 

The function f of Sec. 2 with the selected values of the parameters is the desired one. 
Indeed, it follows from (3.8), (3.9), (3.19), and (3.1) that 5(aj, f) = 5j for j~N and 
8(a~ f) = 0 for a~{aj}. The order of fis finite and is equal to p. 
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4. Proof of Theorem 2. Without loss of generality, we e~ as~ that the annu]us 
{z: 4 < is[ < 5} contains an infinite, set of the n~mbers aj. The ease of finite r is ob- 
tained by a simple modification of the proof. Moreo~er~ we as, s~m~ that O, ~{~}, }(oo)~ 
~(0)~ Let us consider a sequence (bj), ]EZ, the set of Whose ~al~es coincides with {aj} 
and each nonzero m~nber aj occurs once and the number 0 ~ars twice among (bj), b~ = 0, 

b~ = ~, Ibj! > 4 for j > 2, and ]bjl < 5 for j ~ I. Let ~s define the sequence (dj) as 

follows: If bj = ak, j ~ i, then dj = ~k and~ moreover, d~ = ~(=.). Thus, d~ = d 2 . 

LEM~iA 8 .  L e t  t h e r e  be  g i v e n  a s e q u e n c e  ( d j ) ,  ] ~  

and  d~ = d 2, Then  t h e r e  e x i s t  two  s e q u e n c e s  ( x j )  a n d  ( ~ j ) ,  ~ 
t h a t  ( 2 . 1 ) - ( 2 . 4 )  a r e  f u l f i l l e d  w i t h  M = 2 a n d  

d~ = 2~" x~ s in  (pO,[2), ~ ~ g.. 

Proof. 

m ~/2 
s u c h  t h a t  d j  > 0 ,  ~] d~ < ~ , ,  

a n d  a m~nber  p > 0 s u c h  

For each natural number N >~ 3 such that d k < I for ~k I > N, we set 

" w = am s m  V ~ ] "  

I f  N i s  i n c r e a s e d ,  t h e n  t h e  sum $1 = . x k - - x l / 2  d e c r e a s e s  a n d  ~l~e s,Jm S o =  Y'h . i n c r e a s e s  
h ~ - - e o  h = - -  co 

,) u n b o u n d e d l y ,  We f i x  N s u c h  t h a t  S~ < S 2.  L e t  u s  s e t  x~. = ~ a n d  Yk = a r c  s i n ( t - ~ s i n  Yk 
w h e r e  t ~ l ,  .b~"-3,_x~ =x~- - - - x~ - -x~ ,  a n d  y:~ = y~ = ~ / 2 .  F o r  a r ~ i t r a x i g  t ) t we h a v e  

As t increases, the stun S,  (t)= ~ x ; - - z ] / 2  increases unhomm{leW~V a r i a  t h e  sum S~(t)=. ~ U~ 
~ = - - o o  h - = - -  co 

d e c r e a s e s ~  S i n c e  S ~ ( 1 )  = S~ > S l = S ~ ( 1 ) ,  we c a n  f i n d  t > I s u c h  t h a t  S ~ ( t )  = S ~ ( t ) .  

Let us now set x k = 2x~/(~p) , where p > 0 is chosen s~eh that (2.3) is fulfilled, i.e., 

p = (,) = { -  ( , ) .  

Then S~(t)= ~ y~=aW2, and, setting 9 k = 2Yk/p, we get (2.4)~ Finally, (4,1) and (2.2) 

follow from (4.2). The lemma is proved. 

Using the constructed sequences (bj), (xj) and (Sj) with the properties (2.1)-(2.7) 
for M = 2, we construct a meromorphic function f with the properties (2.8), (2.9), and (2.11). 
The order of this function is equal to p. It follows from (2.8), (2.11), and (4.1) that if 
aj = b k for k ~ i, then 

l i ra  g - - r - 0  ~(aj,  a , / ) ~ l i m  2-~-r-P max I o g i ] ( z ) - - b ~ l - l = - ~ x ~ s i n l : ~ k / 2  -- dh = ~j,. 1) l o g M ( r ,  
up ' 7-JE up in~,z~_o~ 

In order to obtain the reverse inequality, we set ~(a) = ~j if a = aj and g(a) = 0 if 
a~{aJ. Moreover, let A(a)=f ~, if a~{aj}; A(a)=[~_~, ~ if a = b k #- 0, and A(a)~[~_~, 
~]'U [~0,~], if a = b k = 0, k ~ i. It follows from (2.9) and {2.11) that 

[ ~p [~dA(a) 

In [18] the author has proved that this implies that 

sup log+ [ / (rei D - -  a ]-~ = o(re),  
I~I~A(u) 

f o r  r + ~ o u t s i d e  a s e t  o f  z e r o  d e n s i t y .  By c o n s t r u c t i o n ,  t h e  f u n c t i o n  f ( z )  - b k i s  h o l o -  
m o r p h i c  i n  t h e  a n g l e  t t a r g  z I - %1 < % / 2  - e f o r  a r b i t r a r y  ~ > 0 a n d  f o r  e a c h  k - ~ Z .  I t  
follows from (2.11) that this function has completely regular growth in the indicated angle. 
Hence 
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sup log + I f('re~m) --- a 1-1 _< (~(a)  + o (t)) rP, 
!~l~A(a) 

for r ~ ~ outside a set of zero density. Thus, ~(a, f) = ~(a), which was desired to be 
proved. 

The author thanks V. S. Azarin, A. A. Gol'dberg, and M. L. Sodin for advice and numerous 
remarks. 
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