THE INVERSE PROBLEM OF VALUE-DISTRIBUTION THEORY FOR MEROMORFPHIC
FUNCTIONS OF FINITE ORDER

-

A. E. Eremenko UbC 517.535

In this article we give an almost complete solutiom of the inverse problem of the
value distribution theory in the class of meromorphic fumctions of finite order. The prob-
lem that corresonds, roughly speaking, to the subclass of emtire functions remains open.

1. We use the standard notation of the Nevanlimma theory {see, e.g., [1}}. A mero-
morphic function, if not stated anything to the comtrary, meamns a function that is meromorphic
in the finite plane.

The following deficiency relation is one of the main results of the theory of meromorphic
functions: For each meromorphic function £

éc;ﬁ(a.i)éz- (1.1)

Moreover, 0<é8(a, f)<i for all asC .

Drasin [2] has solved the inverse problem of the walue distribution theory, formulated
in 1929 by Nevanlinna [3, p. 90}: To find, for each countable subset {aj} of € and arbi-

trary numbers 5j such that 0 < 6j < 1 and }ﬂsjsgz, a meromorphic function £, for which
2
8(ay, f) = 63 and &(a, f) = 0 for a¢{e}). The inverse problem was sclved earlier for entire

functions by Fuchs and Hayman [4]. The functioms, comstructed in [2, 4], have infinite
order.

The solution of the inverse problem in the class of meromorphic functions of finite
order is not less interesting. For example, let us observe that the deficiency of a function
of infinite order is not a completely correct notiom that characterizes the asymptotic behavior
of the function, since it can strongly depend om the choice of the origin of coordinates.

We can easily remove this dependence for meromorphic fumections of finite order (see, e.g.,
[1, Chap. IV, Sec. 6]). Till now the inverse problem for meromorphic functions of finite
order has been solved only in the case of a finite set of deficient values {1, Chap. VII,
Sec. 5]. The difficulty of this problem in the case of am infinite set of deficient values
is elucidated by the fact that the deficiencies of fumctions of finite order satisfy addi-
tional relations besides (1.1). Teichmuller {6} has even conjectured that for functions

f of finite order

‘E-ﬁm(a,j)<m {1.2)
acG
for a = 1/2. The precise result in this direction has been obtained by Weitsman {7]: The
relation (1.2) is valid with o = 1/3 for meromorphic fumctions of finite lower order. The
series in (1.2) can be divergent for a < 1/3 [4]. Moreover, Weitsman [8] has proved that
if equality is attained in (1.1) for a meromorphic fumction of finite lower order, then
the set of deficient values is finite. Then Drasim [%] showed that in this case the defi-
ciencies 6(a, f) must be rational numbers. On the other hand, Nevanlinna {101 has obtained
the following result (see also [1, Chap. VII, Sec. 5]: Let there be given a finite set

of complex numbers a,, ..., aq and positive ratiomzl muebers §,, ..., 5q such that 5} < 1
g
and D)= Then there exists a meromorphic function fof finite order such that 8(ay, £) =483
j=1

2.
for 1 < J = gq. In the present article, we prove the following theorem.
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THEOREM 1. Let {aj}?=1 be a countable subset of C (® <) and 6j be positive
numbers such that

o< é;<t, j=1, ..., o; (1.3)
w
A= 26<2
]_;1 i (1.4)
104 '
28}/3<°O- (1-5)
=1

Then there exists a meromorphic function f of finite order such that §(a;, f) = & and
§(a, f) = for a<{a).

We give the proof of this theorem only for w = ©. The proof in the case of finite w
is obtained by the same method (with simplifications). Moreover, Theorem 1 for w < ® follows
from the mentioned result of Gol'dberg [5].

By virtue of (1.1), (1.2), and the Weitsman theorem [8], all the assumptions of Theorem
1 are necessary, except, possibly, the condition ;3 < 1 in (1.3). Let us consider this con-
dition in detail. If (1.4) is fulfilled, then the equality &(a, f) = 1 can be valid only
for a single value of a. Let us suppose that a; = » and §; = 1. The condition &(=, f) = 1
menas that f is similar to an entire function. We should obviously expect relations,
stronger than (1.2), for these functions. Thus, Arakelyan [11] has put forward the conjec-
ture that

1 _
aé Tog (e/8 (@, ) — (1.6)

for entire functions f of finite order. It is probable that the relation (1.6) is ful-
filled for all meromorphic functions f of finite order sach that 8(a, £f) = 1 for a certain
a<sC.

The method of proof of Theorem 1 enables us to solve completely one more problem in
the theory of meromorphic functions. Petrenko has studied the quantities

B(a, /) =1lim log" M (r, e, /T (r, ),

where M(r, 00,f) = sup | f(z)|, M(r, a, f)=M(r, =, (f—a)~!), and a=C. If f has finite lower
\z|=r

order, then the set Ei(f)={a=C:8(a, /)>0} is countable. The set E, can have the cardi-
nality of the continuum for functions f of infinite lower order. These results of Petrenko
are given in [12]. Solving Petrenko's problem [12], the author [13] has proved that

3 p (@, < oo

eE6
for meromorphic functions of finite lower order. We know [12] that the constant 1/2 in
this relation cannot be replaced by a lesser one. The following theorem gives complete
solution of the inverse problem for the quantities B(a, f) in the class of meromorphic func-
tions of finite order.

THEOREM 2. Let there be given a countable subset {aj}?=l of ¢ (v < =) and numbers
Bj > 0 such that

i)

;S }ﬂ<:<w.

=1
Then there exists a meromorphic function f of finite order such that B(aj, f) = By and
R(a, £) = 0 for a&{a}

The proof of Theorems 1 and 2 is based on the application of the so-called pseudomero-
morphic functions. This method, published in the articles of Poschl and Wittich in the
fourties, was applied for the first time to the inverse problem by Le Van Thiem [14]. By
now the use of pseudomeromorphic functions has become a basic tool for the solution of the
inverse problem of the value distributioen theory [1, 2, 5, 14]. Necessary information on
quasiconformal mappings is contained in [1, Chap. VII, Sec. 15]. We need only piecewise-
smooth quasiconformal mappings.
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A continuous function g in a domain D<€ is said to be pseudomeromorphic if there
exists a discrete subset X of D such that each point X © D has a neighborhocd V for which
the restriction ze&D\X is a (univalent) quasiconformal mapping. If D = €, tnen all these
functions have the representation

g=1f°09, (1.7)
vhere ¢:C—~ € is a quasiconformal homeomorphism and f is a meromorphic function [16]. For
each pseudomeromorphic function g, the characteristic po(z) = ({g | + |87}/ (lzz] = lg7z])
is defined almost everywhere. The Teichmiller—Belinskii theorem [15) states that if

f 3 drdf
P (e =) 22 <o (1.8)

lzl>7'0

fof a certain r, > 0, then there exists a representation (1.7), in which ® is a homeomorphism
such that
lim 8@ . ¢

Z-»00

(1.9)

The further treatment follows the following plan. In Sec. 2 we construct meromorphic
functions that depend on certain parameters. In Secs. 3 and 4 we prove Theorems 1 and 2
respectively with the help of suitable choice of these parameters.

2. Let there be given sequences of positive numbers (Xj) and (83), j=Z a
sequence (b;), j<=Z of points of the extended complex plane, an even natural number M, and
positive numbers x and p such that

Ty =Ty == ... =Ty = Z; : (2,1)
i=0=...=0p=n/p; &, <nlp, jeI; (2.2)
w M2 L a .
* 2.3
71+Zx—j+29_:2;+ 2 u=1 (2.3)
=0 =R
2 b= ' (2.4)
j=—cc
by =0; ba = o; (2.5)
bia b, I<jis<M-—1; , {(2.8)

The set {jeZ: b;=a} is finite for each a= L.

Starting from these data, we construct a meromorphic function f of order g with the
following properties:

T(r, f)=(2+ o(1)) (mp) ~'r*, r—> oo; (2.8)
m(r, a, f) = (2 + 0(1)) (ﬂp)—lrp{ 2 }a:k(i——cos(pek/z))7 P> 00, (2.9)
: : Jop=a
Let us set
kR
(P,§=.2 8;, ¢k=‘_;‘(@k_1 +@Qp), ke Z. {2.10)

=m0

The third property of the function f, which we propose to construct, is the following one:

log|f(re®®) — bp|™ = (2 + o(i))r"sin(p(%ﬁ ——lsfp[~xphl)+). (2.11)

Here ¥ - « and the relation (2.11) is fulfilled uniformly with respect to ¢ in arbitrary
angles of the form ‘

D<e<l|lopl — 4l <0/2—¢ keZ >0

If by = », then the left-hand side of (2.11) should be replaced by log|f(re®)]. In the
sequel, we will not specifically mention about this modification in analogous formulas.
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Let us set Di={z g <argz<qd and Df={z —q,<<argz<<-—@y.;} for keZ The
closures of the angles Dy and D§ fill the whole plane, except the real axis. The bisector
of the angle Dy (Df) is given by the equatiom arg z = yy (arg z = —y). Let Ei be suffi-
ciently small (pairwise disjoint) amgles with the bisectors {z:argz=g¢,). Let n(r, a, E, f)
denote the number of the a-points of f im the set EN{z |zl <7}, and N(r, a, E, f) denote
the corresponding Nevanlinna number fumctiom. The construction of f is carried out in
several steps (Paragraphs 1-5). Everywhere in the sequel, taking liberty with the language,
we will say that a function, defined im D, satisfies the condition (1.8), meaning that the
integration in (1.8) is taken over D. .

1. At first, the construction of the desired Function is carried out in the angles
Gi—{z ¥ <argz<wu}, G ={z:2<G).

LEMMA 1. There exists a pseudomercmorphie (in the domain G;) function g, with the
following properties: The characteristic Pg, satisfies the condition (1.8);

N(ra a, Eﬁm g}l)"-v(z"p)_‘zlﬁr r— %,

eEh} 1<kE<M--1; (2.12)

- M— _
N(r,a,(v”i\ U Eh,gj)=0(logr),r—> 003 (2.13)

3 =

log g, (re™)— Bl ~ z#®sin(p(@ — ¢s—s)) (2.14)

for r » = uniformly with respect to ¢ imside the angles |l — ¥/ <6,/2—¢, 6>0, I1<k<M;
g (re") —exp(— o), r>r; (2.15)
& (r) = exp(ar®), r > 1, (2.16)

Proof. We follow [1, Chap. VII, Sec. 5}. Let £, 0 < ¢ < 1, be so small that the
closed disks i of radius € with cemters at finite points by, 1 = k = M, are pairwise non-
intersecting and are all contained in the disk {z: |z| < g~ 1}, If bg = <, then we set
C.={z=C:lzl =2}. In each disk Cy we draw the radius M=1{b,+£0<t<el. If by = =,
then Ay = [e"1, »). Let us denote the poimt of intersection of the radius Ay and the circle
3Cy by bf- We join the points bﬁ and 'ﬂrﬁ.h by a simple smooth curve Ay that does not inter-
sect any of the disks Cj, 1 < J < M, so that the curve Ay U A U A+, is smooth. The
curve A is oriented from bfé to bf4;- On the Riemann surface of the function log((w — byg)/
(w = b)) (= const by virtue of (2.6)) we draw a cut that projects into the curve Ay U
Ak U Ag4:- In addition, the Riemann surface splits into two parts — "the logarithmic ends.”
Let us denote the part that abuts on the curve Ay on the right by &, . Let us map the Riemann
surface ¥, quasiconformally onto the upper half plane. To this end, let us consider the sub-
sets 9;,. Q. Fi that lie over the disks Ck and Cpy, respectively. The function z=—log(w — b)
maps Q'y conformally onto the quadrant O ={zt+iyg:y>0, > —loge}. If by =, thenit isnecessary
touse the functionz=1logw. Inthe sameway, the functionz=log(w - bi+1) (z2=—logw, if by, =)
maps Q! conformally onte the quadrant I" = {x+iy: y>0, x< log €}. In order to extend the
mapping to the remaining part of the surface 3, let us consider the curvilinear quadri-
lateral Qu=C\(C. V(i UA). Two sides of this quadrilateral are the circles 9Cy and
9Cy4+; and the other two sides are the edges of the curve Ay. Let us map the quadrilateral
Qg quasiconformally onto the rectangle R; = {x + iy: 0 <y < Im, |x] < =log €} such that
dilatation on the circles 3Cy and 3Cyy, is comstant and these circles transform into the
right and the left vertical sides respectively of the rectangle R;. Moreover, we require
that the dilatation is constant on the edges of the curve fj,. The left edge transforms into
the upper horizontal side of the rectamgle R; and the right edge transforms into the lower
one. It is easily seen that under this mapping a pair of points that are pasted on 8Qy
transform into points with the same abscizsa. Let us denote the mapping function by oj:

Qx > R, The surface F\(Q: U Q) consists of a denumerable set of open quadrilaterals
QP; that project into Qp and a denumerable set of curves that project into Ag. We suppose
that the quadrilaterals Qg are numbered such that Ql]("'l and QE(’ je=N, have a part of boundary

in common. Let us map the guadrilateral @i onte the rectangle Ry = R; + 2wi(j — 1) with

the help of the function oy +27i(j— 1). It is easily seen that the quasiconformal mapping
F,—»C*={z:Imz>0} is constructed im this mammer. Let Hy denote the inverse mapping.

The pseudomeromorphic function Hy is holemerphic in I' N [I'' and has bounded characteristic
at the remaining points of the half plame. Since the set C*\(II'U ") has finite logarithmic
area (i.e., the integral of the functiom ﬂzﬂ‘z over this set is convergent), the function
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Hy has the property (1.8). Simple computation shows that for each angle E whose bisector is
the positive imaginary semiaxis and for arbitrary a # bk, by¢, we have

N(r, a, E, Hy))~(27)~'r, 7 — oo, (2.17)
and only a finite set of a-points lies outside E.

Now let yy be that branch of the function (z exp(—ifg))P which maps the angle 4 =
{z: yYg < arg z < Yg4;} conformally onto €. Let us define the function g, as follows:

g (z) = Hy (pa (21/°z2)), z = Au, 1M — 1. -

It is obvious from the construction of the functions Hy that the function g, is continuous
(and is even holomorphic) on the sides of the angles Ay for {z] > ry. Changing the function
g1 on a bounded set, we can make it pseudoholomorphic in G,. The function g, has the
property (1.8) because all the functions Hy have this property. The relations (2.12) and
(2.13) follow from (2.17), and (2.14)-(2.16) are verified directly. The lemma is proved.

Let us now construct the analogous pseudomeromorphic function g¥ in the domain,GfL
The function g¥ has the properties (1.8) and (2.12)-(2.16) with Ey replaced by Ej = {z:z B},
Y1 replaced by —0;, and ¢y replaced by Py - ‘

2. Let us consider the function
H(re®y= H(re®, z, 8)= zr° sin(p(0/2 — lo])*),

where lpl<<m and 0<O<an/p. This function can be expressed as a difference

of two subharmonic functions. The positive part of the Riesz charge is concentrated on
the rays arg z = 8/2 and has density (27) 'pxrP~! on each of these rays. The negative
part of the charge is concentrated on the positive ray and has density 7~ !px(cos(p8/2))rP"1
on this ray. We need a meromorphic function, the logarithm of whose modulus approximates
H well.

LEMMA 2. Tet u(t) 4+ », t > 0. Then the integral

a(s) = | log[1— 2 aquty—m e,

is convergent for z#R* and satisfies the estimate |u{z)| = 0(log|z|), z + =, uniformly
with respect to arg z in each domain of the form C\{z:Rez >—¢, lImzl <a}, a>0.

Proof. Integrating by parts, we get

o

—_ di
u(z) = — Rejz—m(u (tz a i”zgt)]) .
1

Consequently,

Yz dt .
u@)]< | A2 < 0(loglz]), 5 oo,
o 1
in the domain under consideration, which was desired to be proved.

LEMMA 3. There exists a meromorphic function S{(z) = S{z, x, 6) with the following
properties: S(z) > Q for z > 0

IS(z)| < A/lzl, 2 D ={z: largz] < 0/2}, 4>0; (2.18)
1S(2) | = oo, lz| - oo ' (2.19)
uniformly with respect to arg z in the closed domain D', D' =D + 23
7 p8
N(r, S)=—%,(cos (%—))r*’-&-@@ogr),r—*oé, {(2.20)

and all the poles lie on the positive réf;
log IS(re®) | = ar® sin(p(6/2 — lgl)*)+ O(log ry (2.21)
for r » = uniformly with respect to @ in each angle of the form 0 <eg< lol < 8/2, 2 > 0.
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Moreover, if & = n/p, then Sis an entire function and
log S(z)= zz*+ O(log l2l), Iz] = o, (2.22)

uniformly with respect to @ = arg z in each angle of the form |gl <a<0/2. Here zP > 0
for z > 0.

Proof. The charge, corresponding to the function H(z — 1), is concentrated on the
three rays %4, j = -1, 0, 1, numbered in the anticlockwise direction. Let pj(t) denote the

charge on the segment of the ray 2; with the initial point at the point 1 and with length t,
Let us set X = {z: dist(z, Uy Qj) > sin 6/2}. Let us consider the function

=1

wi) = X [0t — s | 48 ) — s ).

By Lemma 2, lu(z)l=0(loglzl), zeX, z—> . The function S$*(z) = H(z — 1) — u(z) has integral
Riesz measure and can, therefore, be expressed in the form log ]Sl(z)l, where 5; is a mero-
morphic function. The equality log [S;(z)| = 0 (log |z|) is valid in C\D<=X . Dividing
S; by a sufficiently high power of z, we get the desired function S with the property
(2.18). The remaining properties (2.19)-(2.22) are obvious.
3. Let us consider the functions
Su(2)=S(zexp(—igs) — 1 Zs ), .
S; (Z) = S (Z €xp (“Ph) —TIp, Tg, eh)7

where k = M, and (xy), (8y), and (i) are given sequences with the properties (2.1)-(2.4)
and (2.10). We choose the numbers ry > 0 so large that

18:(z) 1 <22*, zé D, k=M; (2.23)
N(r, S,)<(mp) 'z, cos(p6/2)r*, r>0; (2.24)
m(r, S)<(mp)~'za(1 — cos(pB:/2))r*;, r>0. (2.25)

Such a choice of ry is possible for (2.23) by virtue of (2.18), for (2.24) by virtue of
(2.20), and for (2.25) by virtue of (2.21). Considering (2.19) and (2.23), we can increase
riy such that the set

Y, = {z: S.(z) =27, 2B (2.26)
has small logarithmic area, i.e.,
er"%hd6<:2"ﬂ (2.27)
Yy

Let us now set
b = 3 (Su(d) + S5 ().
R=M .

The series is uniformly convergent in .C by virtue of (2.23). The meromorphic function
h, has the properties
Ih(z)| <1, argz==%q, k=M, (2.28)

by virtue of (2.23). The set
Y={z;3/4<|h1(z)|<7/4}ck°ﬁMYk; (2.29)

has finite logarithmic area by virtue of (2.27). Further, if x is a number from (2.1),
then

loghy (re'®) = z (re*"¥M)° 1 0 (logr) (2.30)
uniformly with respect to ¢ for l@ — $al <0u/3, I o)
log by (re'®) =z (re®*¥10)° 4 O (log7) (2.31)

uniformly with resepct to ¢ for | +yul <0i/3, r— . These relations follow from 8y =
7/p. Consequently, Sy and Sy are entire functions and a formula, analogous to (2.22), is
valid for them.
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We have
loglhy (re®) | ~ zy® sin (p (6x/2 — ol — 1)) {2.32)

for r » » uniformly with respect to @ in angles of the form 0<e <l|lgpl — 4| <6/2—e, k=M.
This follows from (2.21) and (2.23).

LEMMA 4. Let Ey be arbitrary angles of the form
{z: |argz —qu|<e), & <—;- min {0z, Ort1);

and Ei be the angles symmetric to Ey with respect to the real axis. The following asymptotics
are valid for each g=C:

(2700) (@k + Th4a) 17, 7= 00, k2 M

N(r, a, Ey, k)~ N (r, e, B}, b,) ~ (2np) 23, 7 00, T M — 1 (2.33)
N(r, @, Di\(Ex-a U Ex), b)) + N (r, a, DI\(Ei—i U (2.34)
U Ex), k) = O (logr), r—oco, k= M; |
N (r, 00, Dy) ~ N (r, 00, D3, b)) ~ (rp)=* zr® cos 5’% r—>oco, k=M. (2.35)
Moreover, for each ¢ > 0 there exists a natural number K such that for each a=(
N ('r, a, h:;ﬂ (Dy U DY), h,) Ler®, r>ry(a). (2.36)

Proof. The relation (2.34) follows from (2.3Z), and (2.35) follows from (2.20).
Further, for each a=C the function h;{z) — a is a function of completely regular growth
in the Levin—Pfluger sense [17] in the angles Ex, k = M — 1, and E =1{z; —qu- < argz < qa—i}-
For the angles Ep, k > M, this follows from (2.32) and for the angle E this follows from
a theorem of Cartwright [17, Chap. 1V, Sec. 2, Theorem 6], since the indicator of the func-
tion h; is identically equal to 0 in E. Together with (2.32) for k = M, this gives complete
regular growth in Ey.,. The indicator of h; is equal to

Tpy1 S0P (P — @r)y 2= Pa,

1@ !
: & B k> M.
Z, Sin p (@x — @), P < Py }re Pr B

If k = M — 1, then the second row must be replaced by zero. Hence, as we know, (2.33)
follows [17].

To prove (2.36), let us, at first, find an upper bound for N(r, a, h;) with the help
of (2.24), (2.25), and the inequality |k, (z)— S.(2)| < 1/4, z€ Dy

N ) ST m) O =m )+ N )+ O(M<2 3 NS+ 4 3 [ tog* By (re) 1o + 0 (1)<

k=M reiof"AED‘:;i

<2 EM N(r, Sy + 2 thm (r, SE) +0() << 2(np) P EM’”" cos(p8x/2) +

+20)1° 3, (1 cos(p0u2) + O () = 2™ r° 3+ 0t

On the other hand, by virtue of (2.33) we have
. K £ K—1
o (r’ g, U (DnU D), b=+ 0 (D) (mp) ' r® 3 2.
R=M—1 R h=M

Consequently, (2.36) is fulfilled. The lemma is proved.

4. We will now carry out a quasiconformal deformation of h;. The following lemma
is easily proved.

LEMMA 5. For arbitrary a=G, la] >4, there exists a quasiconformal mapping q of the
"disk" {z:5/4< |zl <»} onto itself that is the identity mapping on the circle {z: |z| =

5/4} and is conformal for |z| > 6/4; gu(~) = a, and the characteristic Pq, ts bounded by a
constant that does not depend on a.
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Let us now consider the set {z: [h;(z)| > 5/4}. By virtue of (2.28), this set is de-
composed into connected components that lie entirely in Dy and Dﬁ, k = M. It is easily
shown that exactly one unbounded component of this set lies in each angle Dy and Dﬁ; we de-
note it by %, (ﬂﬂ); Let us define a new function:

) = 1 5SC \ U, (8 U #0),
' -Qbh (hl (Z))1 Z E -%Ih U Qz, k>M»

where qb), is the quasiconformal mapping of Lemma 5 and by is an element of the given sequence
(bk) with property (2.7). If by = =, then we assume that by is the identity mapping. It

is obvious that h, is a pseudomeromorphic function. It is meromorphic everywhere, except
the set Y*=1{z: 5/4<'|h,(z)| <6/4}, and has bounded characteristic on this set. Since the
logarithmic area of the set Y* is finite by virtue of (2.29), the function h, satisfies
the condition (1.8). The following properties of h, follow from (2.33)-(2.35) and (2.32):
N(r,a, Ey, h;) ~ N (r,a, Ey, hy) ~
@rp) 7 1P (@ + Tpga), T 00, K= M, (2.37)
(27p) " rPzy, r—> 00, k=M —1, '

where a # bk, bg41s

N(rl a, Dh\(Ek U Ek—1)1 h2)+
+ N(T, a, D:\(E; U E:—l)f h2)= O(IOgT), r~—>o00, az/ébkv k>M7 (2'38)
log | ks (re®) — b,l=* ~ z,r* sin(p ((64/2) — gl — ul} ™) (2.39)

for r + = uniformly with respect to ¢ in the angles 0<e <|lgp| —ul <8,/2 —e.

We show that for each € > 0 there exists a natural number K such that
Nir, a, U (D D*,k)<erp,r>r a)
) ( k=9(+1( e U k){ 2 | &= o() (2.40)

for almost all a=C. If |a] < 5/4, then (2.40) follows Ffrom (2.36). Then it follows from
(2.40), (2.37), and (2.38) that

N0, )= @+ o)) P B a1, 7> 00 (2.41)

for |a| < 5/4. Let us now observe that by virtue of the Teichmuller—Belinskii theorem we
have h,=f+@, where f is a meromorphic function and ¢(z)~ z, z—> . Therefore, (2.41) is
valid with h, replaced by f for Ial < 5/4., Hence by the Valiron theorem [1, Chap. IV,

Sec. 2] we have (2.41) with h, replaced by f for almost all a=C. Consequently, (2.41) is
valid for almost all ge=(C. Hence, again using (2.37) and (2.38), we get (2.40).

Let us observe that the quasiconformal deformation, constructed by us, does not affect
the angles Dy and Dﬁ, since by = » (see (2.5)). In these angles we make one more deforma-

tion, as a result of which the asymptotic equations (2.30) and (2.31) turn into exact equa-
tions on the rays {z: arg z = Ijy}.
LEMMA 6. Let the following analytic function be defined in the domain D = {z: |arg z| <
8}, 8 < n/(2p):
f(z)=cz*+ O(log lz]), ¢>0, z oo,
Then there exists a quasiconformal mapping B that is continuous and univalent in the closure

of the domain D' = {z: |z| > ry, 0 < arg z < 6/2}, has the property (1.8), and fulfills
the conditions

B(z)= 7, arg z = 0/2, 1zl > 14;
1(8(2) = o, 1> 0.

Proof. It is sufficient to prove the lemma for ¢ = p = 1. Let us map the sector
D\{z: ]z <1} onto the halfstrip I = {§ + in: £ > 0O, Inl < 2} by means of the function C =
x(z) = 2671 log z. We set h(Q) = xofex () = ¢ + O(exp(-<cg)), ¢ > 0, £ = Ref, » +=. The
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function h is univalent in a halfstrip I' = {§ + in: & > r,, qi < 1}. It is obvious that
the image h(I') contains a halfstrip I" = {£ = in: £ > r,, |n| < 1/2}, and the inverse
function satisfies the following conditions in I'':

B (E)=§ + O(exp(—eail)),
(B (X)) =1+ Ofexp(—cif)), Rel ->-.-vi‘0<>. ‘
Let T « II' denote the inverse image of the ray {{: § > r,} under mapping by the function

h. It is easily seen that the curve T, starting from a certain place, is the graph of a
certain function n = y(§), £ > rj, such that y(§) = O(exp(—c,£),

1 (8)=0(exp(-—c:E)), Iy (EM < 1/2,
Y(Be& ' (E))=Im A (E). (2.42)

Let us consider the quasiconformal mapping o;, defined in the halfstrip II; = {£ + in: £ >
rsz, 0 < n < 1} as follows:

G )~ EyE+nE—vE).

The characteristic p of this mapping is easily estimated: p = 1 + O(/y? + (y'}?, £ » +w,
It is obvious that

[ fo® - 1dn < . (2.43)
o : .

Further, let us consider the mapping o,: II; » I,, defined as follows: (£, n) > {gn +
(Re h™'(£))(1 — n), n). The characteristic of this mapping also satisfies the condition
(2.43), since

En+(Re2™(8)) (1 — m)=E +8(E),
8(8)= O(exp(—cit)), 8'(§)= O(exp(—ciE)), & ~ +.

Let us set o = ajoa,. By virtue of (2.42), we have o{g) = ¢ for Im C = 1 and Re [ >
r3 and h(a(Z)) = ¢ for Im ¢ = 0 and Re { > ry. The characteristic of the mapping a satis-
fies the condition (2.43). Let us extend o by the identity mapping in the halfstrip {£ +
in: & > rg, 0 < n < 2} and set B = x loacx. The mapping B is the desired one. The in-
equality {1.8) follows from (2.43).

Using Lemma 6 and the relations (2.30) and (2.31), we make quasiconformal deformation
in the angles {z: Yw<argz<qu} and {z: —@u< argz< —¢x} such that the new function (for
which we retain the old symbol h,) is pseudomeromorphic for Y < arg z < 27 = Py and, be-
sides (2.37)-(2.40), we have

Ry (rexp (Ziga) )= exp 2r®, r > 71, (2.44)

5. Now we can complete the construction of f. We construct the function h; in the
same manner as h,, but h, is pseudomeromorphic in the angle —¢; < arg z < ¥, and has the
following properties (cf. (2.37)-(2.40), (2.44)):

N (r, a, Ex, h) ~ N (v, @, B3, hy) ~ (200)™21% (z, + Z4),

r—oo, k<0, a & {b;}; (2.45)
N (r,a, DA(Ew U Ens), hy) + N (v, 2, D\ (BX U Ei—y), hy) = O (log 1),

’ r—>oo, k<0, a# by (2.46)
log by (re®) — b,l=* ~ &r® sin (p (6,/2— [l — pul)*) (2.47)
for r » = uniformly with respect to g in angles of the form 0<e<llgl —pl'<6,/2 —&. For

each £ > 0 there exists a natural number X such that for almost all g=(
N (r, a, ﬁ (D_k U D’_‘k)‘,vha) < 8re, r>rq{a); (2.48)

T keFep1

hs (T exp (i) ) = exp{—ar®), r>r,. (2.49)

Let us now define the function g for |z| > ry:
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g:(2), Wy <<argz<<iy,
B ho(z), Y<K argz<< 2w — Pay
T el 0y —vu<argz<<—y,
hy(z)y —Py<<argz <.

By virtue of (2.15), (2.16), the properties of the function g¥ indicated at the end of p. 1,
(2.44), and (2.49), the function g is continuous for |z| = r,. It is also obvious that it
is pseudomeromorphic with the property (1.8). We change the function g in a bounded domain
and define it such that it becomes pseudomeromorphic in € [1, Chap. VII].

For arbitrary ge=C we set

N(a, Ex) = N (a, E;)= limnpr—°N (r, a, Ey, g).
T-x00

By virtue of (2.40), (2.48), (2.13), (2.38), (2.46), and the definition of the function g%,
for almost all g=(C we have

N(r,a,g)=(2+ o(1))(np)? rpkg N(a, Ep), r—oco. (2.50)

If a# (b, then, by (2.12), (2.1), (2.37), (2.45), and (2.3),
M/2

2 N (a, Eh)——'*“ +“2(xh+xh+1)+—2($ k+x—k+1)——+2ng+ E xk+2x p=1.

he=—co E=M41 k=0

(2.51)
Since g satisfies the condition (1.8), then exists a meromorphic function f such that g =
feo, o(2)~ 3z, 2~ . If a=C does not belong to a certain exceptional set of measure zero,
then by virtue of (2.50) and (2.51) we have

T(r, fy~N(r,a, )~ N(r, a, g)~ 2(np) "%, r > o=,
i.e., (2.8). 1In particular, the function f has order p < =,

Let € be an arbitrary positive number. By a theorem of Edrei and Fuchs [1, Chap. I,
Theorem 7.3] there exists a T > 0 such that for each set E; © [0, 27] of length 1 and a=C
arbitrary

(mrljmyWHMQ—akW¢<war>4ww

Eg

We choose a finite union of open intervals that cover all the points 0, m, =@, =V, k=Z, as
E.. Then the uniform asymptotics (2.14), (2.39), and (2.47) are valid for ¢&E,. There-
fore, for arbitrary g=(

0,
m(r,a, fy =24 o(1))(mp)~2r° Z :ch(l — ¢O0s ﬂ—-) + a (r),

A: by=a}

where Ia{r)lsZaﬂ% Dividing by rP and taking limit, at first, as r - « and then as € + 0,
we get (2.9).

Finally, (2.11) follows at once from (2.14), (2.39), and (2.47). Thus, a function with
the properties (2.8), (2.9), and (2.11) has been constructed.

3. Proof of Theorem 1. Without loss of generality, we can assume that a, = «, a, =
0, for i < j, and the annulus {z: 4 < |z| < 5} contains infinite set of the numbers
aj. All tﬂls can be achieved by making a bilinear transformation and renumbering aj. Let
us construct a two-sided sequence (b:) with the properties (2.5)-(2.7), the set of whose
values coincides with {aj} (and all the sets {j: by = ag} are finite), and a sequence of
positive numbers (d), JE;Z with the following properties:

> di=8; (3.1)
j2 bj=ap
brten . (3.2)
di=dy= ...=dy=M,", M,>0;
) M2
+2d_1+ 2 d; +Zd9]<1 (3.3)
=0 j=M+1
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To prove the possibility of construction of these sequences, let us consider two cases.

st Case. &, < A/2. We choose a natural number N so large that

N .
261'>261) (3.4)
=1\ )
2 6<<(2—A)S. (3.5)
j=N+1
Next, we approximate the numbers &,, ..., dy by smaller rational numbers 6? such that
8 =MiiMy 1<J<<N, M;>0 even, My>8/(2— A); (3.6)
8 =07 + 8, 80, 1Ki<N; (3.7)
N
28 <2 — A% (3.8)
=1
l *
187 >28,, 1<<E<AN. (3.9)
j=1

The condition (3.9) is fulfilled by virtue of (3.4). The relations (3.6)-(3.8) are obtained

. N
if we choose the number M; sufficient large and set My = 2[(1/2)M06j] + 2. Llet M= 2 M,
fi)
and define dj for 1 < j < M by Eq. (3.2). Let us define the numbers b, and by as required
in (2.5). We choose the numbers b,, ..., bpy-; such that the set by, ..., by contains pre-
cisely M; numbers equal to aj, 1< j < N. The inequality (3.9) implies that M > M.
Therefore the numbers b;, ..., by can be ordered such that (2.6) holds. -

We decompose the sequence 8!, &, ..., 6&, ) «..intc two infinite parts such that

N+1?
laj| > 4 for the numbers j of the first part and |aj| < 5 for the numbers j of the second
part. We enumerate the first part as a subseries with the natural numbers, starting from
M + 1, and the second part with all nonositive integers. We get a sequence (dj), i=M+1
and j < 0. If dy = 8g or &/, then we set bj = ag. Thus, the sequences (bj) and (dj) are

constructed. The properties (3.1), (3.2), and (2.5)-(2.7) are valid by construction. To
prove (3.3) we use (3.2), (3.6), (3.5), and (3.8) successively:

0o M/2 N
AN 2—A 2—A  2—A | ® 2 —A A
doy+ 2 i+ Ddy<ipt it 220 L Wy 2 Ly

0 =M1 Jj=1 =1

s

4,
el
7T

J

I

2nd Case. &8, = Af2. We choose a number N so large that
2 & <(1— b))/ (3.10)
=N+1 .

Now we choose even numbers My, 0 < j < N, such that (3.6) and (3.7) with 2 < j < N are
fulfilled and, moreover,

. N '
My>4/(1 —8), kg 8 <<(1—8)8. : (3.11)
Let us set
N
M=2 i, (3.12)
k=3
* 3 *
b= Z 8 (3.13)
Then .
8, =08 + 6, 8,>0, {3.14)

sl N
since 61:>;S 8> > 8;.. Let us now define the numbers dy, ..., dy by Eq. (3.2). WHe set
i=2 =2

by = a; (=0) and b,;=a,(==), 1<j<M/2. We choose the numbers by with odd indices j,
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1 € j < M, such that they include precisely My numbers equal to ay, 1 < k < N. This is
possible by virtue of (3.12). We deal with the numbers 5&, 1< k < N, defined in {(3.7)
and (3.14), and the numbers &, k = N + 1, in exactly the same manner as in the first case.
We get sequences (bj) and (dj), j&'Z, with the properties (3.1), (3.2), and (2.5)-(2.7).

Let us verify (3.3). By virtue of (3.11), (3.10), (3.13), and (3.14), we have

o M/2

d, % < A8, o =8 1—8, o 1—8 o . 1 8
Ui_+;2‘d”j+.‘%d,di+ zd2i<~f"8"—“¥'61+ T3 +26_.,-= 3 +61+61=_?:.+_§T-<1.
F=9 J=M+1 cj=1 =3

Thus, sequences with the properties (3.1}-(3.3) and (2.5)-(2.7) have been constructed.
it follows from (1.5) that

2 dVi<<oo. (3.15)
je=—o00
LEMMA 7. Let there be given a sequence (dj), j=Z with the properties (3.2), (3.3),
and (3.15). Let us set A=2\{1, 3,5, ..., M —1}. Then there exist sequences (xy) and (6y),
ke=Z and a number p > 1 such that

0<0,<alp, 2,>0, keZ; (3.16)
z,/2 +.k§Axh='1, k§29k=n; | (3.17)
To= Ty ==, 8= 0= =0 = 5/p; (3.18)
i.e., (2.1)-(2.4) are fulfilled, and, moreover,
dy =(1 — cos(p0,/2) )z, k= L. (3.19)
Proof. At first, we choose N > M such that
N gt — Zdh—‘f—’, (3.20)

k>N RZA

which is possible by virtue of (3.3) and (3.15). Let us set

r,=dy, =1, ksd, [EI<N;, - (3.21)
zp = 12d)%, 2, = 17143, V| >N, (3.22)

where £t > 1 is a parameter, which will be fixed later on. For each t = 1 we have
z, 2 =dy, ke A (3.23)

The sum

SO =22+ Dr= b+ X dt 1t 3 At oo, troo,
. €A izA iI>N
: lileN :
is a continuous increasing function of t and S(1) < 1 by virtue of (3.20). Therefore, we
can fix a value of t > 1 such that the first equation of (3.17) is valid. Let us observe
that 0 < zg < 1 by virtue of (3.21), (3.22), and (3.20). Let yi denote the solution of

the equaticn

Cd—cosy =z, 0<yn<m/2. (3.24)

It follows from (3.15) and (3.22) that the series ) y, is convergent. Let us denote the
h=—o00

sum of this series by wp/2. Let us now set By = Zyk/p. Then, by virtue of the choice of p,

the second equation of (3.17) is valid and, by virtue of (3.24), the inequality (3.16)

holds. Finally, (3.18) follows from (3.21) and (3.24), and (3.19) is none else than (3.23).

The lemma is proved.

The function f of Sec. 2 with the selected values of the parameters is the desired one.
Indeed, it follows from {3.8), (3.9), (3.19), and (3.1) that G(aj, £) = 8y for jeN and
6(a, £) = 0 for a¢ {a}. The order of fis finite and is equal to p.
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4, Proof of Theorem 2. Without loss of generality, e can assume that the annulus
{z: 4 < |z| < 5} contains an infinite set of the numbers aj- The case of finite w is ob-
tained by a simple modification of the procf. Moreover, we assmme that 0, =< {g), §(o)<
R{0). Let us consider a sequence (bj), jeZ, the set of whose values coincides with {ajy}
and each nongero number aj occurs once and the number 0 securs twice among {bj), by = 0,

by, ==, {bj] > 4 for j > 2, and [bj] < 5 for § < 1. Let us defime the sequence (dj) as

follows: If bj = ag, j # 1, then dj = By and, moreover, 4, = B8{=~j. Thus, d4; = d,.

LEMMA 8. Let there be given a sequence (dj}, i=Z, surh that d; >0, ¥ d§/2< o0,

=
and d; = d,. Then there exist two sequences (zj) and (64}, j=Z and a number p > 0 such
that (2.1)-(2.4) are fulfilled with M = 2 and

d; = S z;sin{pf,/2), i=Z. (4.1)

Proof. TFor each natural number N 2 3 such that dy < 1 for %kg > N, we set

i) 5= Vi,
; NTIES A N7 5N A
Yr =m/2 Yy =arcsin ¥ d
If N is increased, then the sum §;,= 2] z, —x,/2 decreases and the sum S,= 2 y» Iincreases
B0 Bzm—00

unboundedly. We fix N such that 5, < $,. Let us set x = mgi and wy = arc sin{t !sin yy),
where $>1, k=3, vxfzng——x'l =, and v; = ¥, = wf{2. Vor arbitrary ¥ > 1 we have

dj—a] siny;, y<w2, jeZ. (4.2)

As t increases, the sum S, ()= 2 2 —2,/2 increases unboundedly and the sum S, ()= 2 I

h=—o R==—00
decreases. Since S,(1)} = S, > §; = 5,(1), we can find £ > 1 such that S,{t) = S,{t).
Let us now set xp = 2xi/(wp) , where p > 0 is chosen such that {2.3) is fulfilled, i.e.,

2 2
p=—"75:0) =80

Then S,(f)= 2 ys=np/2, and, setting 6y = 2yy/p, we get {2.4). Finally, (4.1) and (2.2)
&

follow from (4.2). The lemma is proved.
Using the constructed sequences (bj), (Xj), and (g}i\} with the properties (2.1)-(2.7)

for M = 2, we construct a meromorphic function f with the properties {2.8), (2.9), and (2.11).
The order of this function is equal to p. It follows from (2.8}, {2.11), and (4.1) that if

aj = by for k # 1, then
f(aj, f)=lim 2 o log M (r, a, ) = lim 2 »  max Iogif(zﬁé-—b&gﬂzﬁ-zksin p8,/2 = dy, = B;.
Pl el =720y, g

In order to obtain the reverse inequality, we set Bla) = By if a = a; and B(a) = 0 if
a#{a}. Moreover, let A(a)=9, if a{a); A(@)=|gs @b if 3 = by # 0, and A(a)={p.,
@] Ufgo, 0, if a = by =0, k = 1. It follows from {2.9) and {2.11) that

log*{f(ret®) —a|ldg = o(rf), r—co, @e=C.
lelzA@ ' .
In [18] the author has proved that this implies that

sup log+|/ (ret®) —a{~* — ofrs),
lplz Afe)
for r » » outside a set of zero density. By construction, the function f(z) — by is holo-
morphic in the angle ||arg z| — x| < 64/2 — ¢ for arbitrary £ > 0 and for each ke Z. It
follows from (2.11) that this function has completely regular growth in the indicated angle.
Hence
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sup log*|f(re®®) —a |~ << (B(a) + o (1) P,
lglsA(e) _
for r » » outside a set of zero density. Thus, f{a, f) = B(a), which was desired to be
proved.

The author thanks V. S. Azarin, A. A. Gol'dberg, and M. L. Sodin for advice and numerous
remarks.
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